1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
/* dgerq2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int dgerq2_(integer *m, integer *n, doublereal *a, integer *
lda, doublereal *tau, doublereal *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
integer i__, k;
doublereal aii;
extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
doublereal *), dlarfp_(integer *, doublereal *,
doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGERQ2 computes an RQ factorization of a real m by n matrix A: */
/* A = R * Q. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the m by n matrix A. */
/* On exit, if m <= n, the upper triangle of the subarray */
/* A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; */
/* if m >= n, the elements on and above the (m-n)-th subdiagonal */
/* contain the m by n upper trapezoidal matrix R; the remaining */
/* elements, with the array TAU, represent the orthogonal matrix */
/* Q as a product of elementary reflectors (see Further */
/* Details). */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). */
/* WORK (workspace) DOUBLE PRECISION array, dimension (M) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of elementary reflectors */
/* Q = H(1) H(2) . . . H(k), where k = min(m,n). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a real scalar, and v is a real vector with */
/* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */
/* A(m-k+i,1:n-k+i-1), and tau in TAU(i). */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGERQ2", &i__1);
return 0;
}
k = min(*m,*n);
for (i__ = k; i__ >= 1; --i__) {
/* Generate elementary reflector H(i) to annihilate */
/* A(m-k+i,1:n-k+i-1) */
i__1 = *n - k + i__;
dlarfp_(&i__1, &a[*m - k + i__ + (*n - k + i__) * a_dim1], &a[*m - k
+ i__ + a_dim1], lda, &tau[i__]);
/* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right */
aii = a[*m - k + i__ + (*n - k + i__) * a_dim1];
a[*m - k + i__ + (*n - k + i__) * a_dim1] = 1.;
i__1 = *m - k + i__ - 1;
i__2 = *n - k + i__;
dlarf_("Right", &i__1, &i__2, &a[*m - k + i__ + a_dim1], lda, &tau[
i__], &a[a_offset], lda, &work[1]);
a[*m - k + i__ + (*n - k + i__) * a_dim1] = aii;
/* L10: */
}
return 0;
/* End of DGERQ2 */
} /* dgerq2_ */
|