aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dgeqpf.c
blob: 10743f5f5f416ea5d554ccfb72dd2c4fc226d091 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/* dgeqpf.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int dgeqpf_(integer *m, integer *n, doublereal *a, integer *
	lda, integer *jpvt, doublereal *tau, doublereal *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, ma, mn;
    doublereal aii;
    integer pvt;
    doublereal temp;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    doublereal temp2, tol3z;
    extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *);
    integer itemp;
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dgeqr2_(integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *), 
	    dorm2r_(char *, char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *);
    extern doublereal dlamch_(char *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dlarfp_(integer *, doublereal *, doublereal *, 
	     integer *, doublereal *), xerbla_(char *, integer *);


/*  -- LAPACK deprecated driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  This routine is deprecated and has been replaced by routine DGEQP3. */

/*  DGEQPF computes a QR factorization with column pivoting of a */
/*  real M-by-N matrix A: A*P = Q*R. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A. N >= 0 */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the upper triangle of the array contains the */
/*          min(M,N)-by-N upper triangular matrix R; the elements */
/*          below the diagonal, together with the array TAU, */
/*          represent the orthogonal matrix Q as a product of */
/*          min(m,n) elementary reflectors. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,M). */

/*  JPVT    (input/output) INTEGER array, dimension (N) */
/*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/*          to the front of A*P (a leading column); if JPVT(i) = 0, */
/*          the i-th column of A is a free column. */
/*          On exit, if JPVT(i) = k, then the i-th column of A*P */
/*          was the k-th column of A. */

/*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(n) */

/*  Each H(i) has the form */

/*     H = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */

/*  The matrix P is represented in jpvt as follows: If */
/*     jpvt(j) = i */
/*  then the jth column of P is the ith canonical unit vector. */

/*  Partial column norm updating strategy modified by */
/*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
/*    University of Zagreb, Croatia. */
/*    June 2006. */
/*  For more details see LAPACK Working Note 176. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --jpvt;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGEQPF", &i__1);
	return 0;
    }

    mn = min(*m,*n);
    tol3z = sqrt(dlamch_("Epsilon"));

/*     Move initial columns up front */

    itemp = 1;
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (jpvt[i__] != 0) {
	    if (i__ != itemp) {
		dswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1], 
			 &c__1);
		jpvt[i__] = jpvt[itemp];
		jpvt[itemp] = i__;
	    } else {
		jpvt[i__] = i__;
	    }
	    ++itemp;
	} else {
	    jpvt[i__] = i__;
	}
/* L10: */
    }
    --itemp;

/*     Compute the QR factorization and update remaining columns */

    if (itemp > 0) {
	ma = min(itemp,*m);
	dgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
	if (ma < *n) {
	    i__1 = *n - ma;
	    dorm2r_("Left", "Transpose", m, &i__1, &ma, &a[a_offset], lda, &
		    tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], info);
	}
    }

    if (itemp < mn) {

/*        Initialize partial column norms. The first n elements of */
/*        work store the exact column norms. */

	i__1 = *n;
	for (i__ = itemp + 1; i__ <= i__1; ++i__) {
	    i__2 = *m - itemp;
	    work[i__] = dnrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
	    work[*n + i__] = work[i__];
/* L20: */
	}

/*        Compute factorization */

	i__1 = mn;
	for (i__ = itemp + 1; i__ <= i__1; ++i__) {

/*           Determine ith pivot column and swap if necessary */

	    i__2 = *n - i__ + 1;
	    pvt = i__ - 1 + idamax_(&i__2, &work[i__], &c__1);

	    if (pvt != i__) {
		dswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
			c__1);
		itemp = jpvt[pvt];
		jpvt[pvt] = jpvt[i__];
		jpvt[i__] = itemp;
		work[pvt] = work[i__];
		work[*n + pvt] = work[*n + i__];
	    }

/*           Generate elementary reflector H(i) */

	    if (i__ < *m) {
		i__2 = *m - i__ + 1;
		dlarfp_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + 1 + i__ * 
			a_dim1], &c__1, &tau[i__]);
	    } else {
		dlarfp_(&c__1, &a[*m + *m * a_dim1], &a[*m + *m * a_dim1], &
			c__1, &tau[*m]);
	    }

	    if (i__ < *n) {

/*              Apply H(i) to A(i:m,i+1:n) from the left */

		aii = a[i__ + i__ * a_dim1];
		a[i__ + i__ * a_dim1] = 1.;
		i__2 = *m - i__ + 1;
		i__3 = *n - i__;
		dlarf_("LEFT", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
			tau[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[(*
			n << 1) + 1]);
		a[i__ + i__ * a_dim1] = aii;
	    }

/*           Update partial column norms */

	    i__2 = *n;
	    for (j = i__ + 1; j <= i__2; ++j) {
		if (work[j] != 0.) {

/*                 NOTE: The following 4 lines follow from the analysis in */
/*                 Lapack Working Note 176. */

		    temp = (d__1 = a[i__ + j * a_dim1], abs(d__1)) / work[j];
/* Computing MAX */
		    d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
		    temp = max(d__1,d__2);
/* Computing 2nd power */
		    d__1 = work[j] / work[*n + j];
		    temp2 = temp * (d__1 * d__1);
		    if (temp2 <= tol3z) {
			if (*m - i__ > 0) {
			    i__3 = *m - i__;
			    work[j] = dnrm2_(&i__3, &a[i__ + 1 + j * a_dim1], 
				    &c__1);
			    work[*n + j] = work[j];
			} else {
			    work[j] = 0.;
			    work[*n + j] = 0.;
			}
		    } else {
			work[j] *= sqrt(temp);
		    }
		}
/* L30: */
	    }

/* L40: */
	}
    }
    return 0;

/*     End of DGEQPF */

} /* dgeqpf_ */