1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
/* dgeqp3.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;
/* Subroutine */ int dgeqp3_(integer *m, integer *n, doublereal *a, integer *
lda, integer *jpvt, doublereal *tau, doublereal *work, integer *lwork,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
integer j, jb, na, nb, sm, sn, nx, fjb, iws, nfxd;
extern doublereal dnrm2_(integer *, doublereal *, integer *);
integer nbmin, minmn;
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
doublereal *, integer *);
integer minws;
extern /* Subroutine */ int dlaqp2_(integer *, integer *, integer *,
doublereal *, integer *, integer *, doublereal *, doublereal *,
doublereal *, doublereal *), dgeqrf_(integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *), xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
extern /* Subroutine */ int dlaqps_(integer *, integer *, integer *,
integer *, integer *, doublereal *, integer *, integer *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, integer *);
integer topbmn, sminmn;
extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *);
integer lwkopt;
logical lquery;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGEQP3 computes a QR factorization with column pivoting of a */
/* matrix A: A*P = Q*R using Level 3 BLAS. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the M-by-N matrix A. */
/* On exit, the upper triangle of the array contains the */
/* min(M,N)-by-N upper trapezoidal matrix R; the elements below */
/* the diagonal, together with the array TAU, represent the */
/* orthogonal matrix Q as a product of min(M,N) elementary */
/* reflectors. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* JPVT (input/output) INTEGER array, dimension (N) */
/* On entry, if JPVT(J).ne.0, the J-th column of A is permuted */
/* to the front of A*P (a leading column); if JPVT(J)=0, */
/* the J-th column of A is a free column. */
/* On exit, if JPVT(J)=K, then the J-th column of A*P was the */
/* the K-th column of A. */
/* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/* The scalar factors of the elementary reflectors. */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO=0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= 3*N+1. */
/* For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB */
/* is the optimal blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of elementary reflectors */
/* Q = H(1) H(2) . . . H(k), where k = min(m,n). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a real/complex scalar, and v is a real/complex vector */
/* with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in */
/* A(i+1:m,i), and tau in TAU(i). */
/* Based on contributions by */
/* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
/* X. Sun, Computer Science Dept., Duke University, USA */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test input arguments */
/* ==================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--jpvt;
--tau;
--work;
/* Function Body */
*info = 0;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
*info = -4;
}
if (*info == 0) {
minmn = min(*m,*n);
if (minmn == 0) {
iws = 1;
lwkopt = 1;
} else {
iws = *n * 3 + 1;
nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);
lwkopt = (*n << 1) + (*n + 1) * nb;
}
work[1] = (doublereal) lwkopt;
if (*lwork < iws && ! lquery) {
*info = -8;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGEQP3", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible. */
if (minmn == 0) {
return 0;
}
/* Move initial columns up front. */
nfxd = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (jpvt[j] != 0) {
if (j != nfxd) {
dswap_(m, &a[j * a_dim1 + 1], &c__1, &a[nfxd * a_dim1 + 1], &
c__1);
jpvt[j] = jpvt[nfxd];
jpvt[nfxd] = j;
} else {
jpvt[j] = j;
}
++nfxd;
} else {
jpvt[j] = j;
}
/* L10: */
}
--nfxd;
/* Factorize fixed columns */
/* ======================= */
/* Compute the QR factorization of fixed columns and update */
/* remaining columns. */
if (nfxd > 0) {
na = min(*m,nfxd);
/* CC CALL DGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) */
dgeqrf_(m, &na, &a[a_offset], lda, &tau[1], &work[1], lwork, info);
/* Computing MAX */
i__1 = iws, i__2 = (integer) work[1];
iws = max(i__1,i__2);
if (na < *n) {
/* CC CALL DORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA, */
/* CC $ TAU, A( 1, NA+1 ), LDA, WORK, INFO ) */
i__1 = *n - na;
dormqr_("Left", "Transpose", m, &i__1, &na, &a[a_offset], lda, &
tau[1], &a[(na + 1) * a_dim1 + 1], lda, &work[1], lwork,
info);
/* Computing MAX */
i__1 = iws, i__2 = (integer) work[1];
iws = max(i__1,i__2);
}
}
/* Factorize free columns */
/* ====================== */
if (nfxd < minmn) {
sm = *m - nfxd;
sn = *n - nfxd;
sminmn = minmn - nfxd;
/* Determine the block size. */
nb = ilaenv_(&c__1, "DGEQRF", " ", &sm, &sn, &c_n1, &c_n1);
nbmin = 2;
nx = 0;
if (nb > 1 && nb < sminmn) {
/* Determine when to cross over from blocked to unblocked code. */
/* Computing MAX */
i__1 = 0, i__2 = ilaenv_(&c__3, "DGEQRF", " ", &sm, &sn, &c_n1, &
c_n1);
nx = max(i__1,i__2);
if (nx < sminmn) {
/* Determine if workspace is large enough for blocked code. */
minws = (sn << 1) + (sn + 1) * nb;
iws = max(iws,minws);
if (*lwork < minws) {
/* Not enough workspace to use optimal NB: Reduce NB and */
/* determine the minimum value of NB. */
nb = (*lwork - (sn << 1)) / (sn + 1);
/* Computing MAX */
i__1 = 2, i__2 = ilaenv_(&c__2, "DGEQRF", " ", &sm, &sn, &
c_n1, &c_n1);
nbmin = max(i__1,i__2);
}
}
}
/* Initialize partial column norms. The first N elements of work */
/* store the exact column norms. */
i__1 = *n;
for (j = nfxd + 1; j <= i__1; ++j) {
work[j] = dnrm2_(&sm, &a[nfxd + 1 + j * a_dim1], &c__1);
work[*n + j] = work[j];
/* L20: */
}
if (nb >= nbmin && nb < sminmn && nx < sminmn) {
/* Use blocked code initially. */
j = nfxd + 1;
/* Compute factorization: while loop. */
topbmn = minmn - nx;
L30:
if (j <= topbmn) {
/* Computing MIN */
i__1 = nb, i__2 = topbmn - j + 1;
jb = min(i__1,i__2);
/* Factorize JB columns among columns J:N. */
i__1 = *n - j + 1;
i__2 = j - 1;
i__3 = *n - j + 1;
dlaqps_(m, &i__1, &i__2, &jb, &fjb, &a[j * a_dim1 + 1], lda, &
jpvt[j], &tau[j], &work[j], &work[*n + j], &work[(*n
<< 1) + 1], &work[(*n << 1) + jb + 1], &i__3);
j += fjb;
goto L30;
}
} else {
j = nfxd + 1;
}
/* Use unblocked code to factor the last or only block. */
if (j <= minmn) {
i__1 = *n - j + 1;
i__2 = j - 1;
dlaqp2_(m, &i__1, &i__2, &a[j * a_dim1 + 1], lda, &jpvt[j], &tau[
j], &work[j], &work[*n + j], &work[(*n << 1) + 1]);
}
}
work[1] = (doublereal) iws;
return 0;
/* End of DGEQP3 */
} /* dgeqp3_ */
|