1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
/* dgebal.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int dgebal_(char *job, integer *n, doublereal *a, integer *
lda, integer *ilo, integer *ihi, doublereal *scale, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
doublereal d__1, d__2;
/* Local variables */
doublereal c__, f, g;
integer i__, j, k, l, m;
doublereal r__, s, ca, ra;
integer ica, ira, iexc;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
doublereal *, integer *);
doublereal sfmin1, sfmin2, sfmax1, sfmax2;
extern doublereal dlamch_(char *);
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *);
logical noconv;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGEBAL balances a general real matrix A. This involves, first, */
/* permuting A by a similarity transformation to isolate eigenvalues */
/* in the first 1 to ILO-1 and last IHI+1 to N elements on the */
/* diagonal; and second, applying a diagonal similarity transformation */
/* to rows and columns ILO to IHI to make the rows and columns as */
/* close in norm as possible. Both steps are optional. */
/* Balancing may reduce the 1-norm of the matrix, and improve the */
/* accuracy of the computed eigenvalues and/or eigenvectors. */
/* Arguments */
/* ========= */
/* JOB (input) CHARACTER*1 */
/* Specifies the operations to be performed on A: */
/* = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0 */
/* for i = 1,...,N; */
/* = 'P': permute only; */
/* = 'S': scale only; */
/* = 'B': both permute and scale. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the input matrix A. */
/* On exit, A is overwritten by the balanced matrix. */
/* If JOB = 'N', A is not referenced. */
/* See Further Details. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* ILO (output) INTEGER */
/* IHI (output) INTEGER */
/* ILO and IHI are set to integers such that on exit */
/* A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. */
/* If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
/* SCALE (output) DOUBLE PRECISION array, dimension (N) */
/* Details of the permutations and scaling factors applied to */
/* A. If P(j) is the index of the row and column interchanged */
/* with row and column j and D(j) is the scaling factor */
/* applied to row and column j, then */
/* SCALE(j) = P(j) for j = 1,...,ILO-1 */
/* = D(j) for j = ILO,...,IHI */
/* = P(j) for j = IHI+1,...,N. */
/* The order in which the interchanges are made is N to IHI+1, */
/* then 1 to ILO-1. */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* The permutations consist of row and column interchanges which put */
/* the matrix in the form */
/* ( T1 X Y ) */
/* P A P = ( 0 B Z ) */
/* ( 0 0 T2 ) */
/* where T1 and T2 are upper triangular matrices whose eigenvalues lie */
/* along the diagonal. The column indices ILO and IHI mark the starting */
/* and ending columns of the submatrix B. Balancing consists of applying */
/* a diagonal similarity transformation inv(D) * B * D to make the */
/* 1-norms of each row of B and its corresponding column nearly equal. */
/* The output matrix is */
/* ( T1 X*D Y ) */
/* ( 0 inv(D)*B*D inv(D)*Z ). */
/* ( 0 0 T2 ) */
/* Information about the permutations P and the diagonal matrix D is */
/* returned in the vector SCALE. */
/* This subroutine is based on the EISPACK routine BALANC. */
/* Modified by Tzu-Yi Chen, Computer Science Division, University of */
/* California at Berkeley, USA */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--scale;
/* Function Body */
*info = 0;
if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
&& ! lsame_(job, "B")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGEBAL", &i__1);
return 0;
}
k = 1;
l = *n;
if (*n == 0) {
goto L210;
}
if (lsame_(job, "N")) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
scale[i__] = 1.;
/* L10: */
}
goto L210;
}
if (lsame_(job, "S")) {
goto L120;
}
/* Permutation to isolate eigenvalues if possible */
goto L50;
/* Row and column exchange. */
L20:
scale[m] = (doublereal) j;
if (j == m) {
goto L30;
}
dswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
i__1 = *n - k + 1;
dswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);
L30:
switch (iexc) {
case 1: goto L40;
case 2: goto L80;
}
/* Search for rows isolating an eigenvalue and push them down. */
L40:
if (l == 1) {
goto L210;
}
--l;
L50:
for (j = l; j >= 1; --j) {
i__1 = l;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ == j) {
goto L60;
}
if (a[j + i__ * a_dim1] != 0.) {
goto L70;
}
L60:
;
}
m = l;
iexc = 1;
goto L20;
L70:
;
}
goto L90;
/* Search for columns isolating an eigenvalue and push them left. */
L80:
++k;
L90:
i__1 = l;
for (j = k; j <= i__1; ++j) {
i__2 = l;
for (i__ = k; i__ <= i__2; ++i__) {
if (i__ == j) {
goto L100;
}
if (a[i__ + j * a_dim1] != 0.) {
goto L110;
}
L100:
;
}
m = k;
iexc = 2;
goto L20;
L110:
;
}
L120:
i__1 = l;
for (i__ = k; i__ <= i__1; ++i__) {
scale[i__] = 1.;
/* L130: */
}
if (lsame_(job, "P")) {
goto L210;
}
/* Balance the submatrix in rows K to L. */
/* Iterative loop for norm reduction */
sfmin1 = dlamch_("S") / dlamch_("P");
sfmax1 = 1. / sfmin1;
sfmin2 = sfmin1 * 2.;
sfmax2 = 1. / sfmin2;
L140:
noconv = FALSE_;
i__1 = l;
for (i__ = k; i__ <= i__1; ++i__) {
c__ = 0.;
r__ = 0.;
i__2 = l;
for (j = k; j <= i__2; ++j) {
if (j == i__) {
goto L150;
}
c__ += (d__1 = a[j + i__ * a_dim1], abs(d__1));
r__ += (d__1 = a[i__ + j * a_dim1], abs(d__1));
L150:
;
}
ica = idamax_(&l, &a[i__ * a_dim1 + 1], &c__1);
ca = (d__1 = a[ica + i__ * a_dim1], abs(d__1));
i__2 = *n - k + 1;
ira = idamax_(&i__2, &a[i__ + k * a_dim1], lda);
ra = (d__1 = a[i__ + (ira + k - 1) * a_dim1], abs(d__1));
/* Guard against zero C or R due to underflow. */
if (c__ == 0. || r__ == 0.) {
goto L200;
}
g = r__ / 2.;
f = 1.;
s = c__ + r__;
L160:
/* Computing MAX */
d__1 = max(f,c__);
/* Computing MIN */
d__2 = min(r__,g);
if (c__ >= g || max(d__1,ca) >= sfmax2 || min(d__2,ra) <= sfmin2) {
goto L170;
}
f *= 2.;
c__ *= 2.;
ca *= 2.;
r__ /= 2.;
g /= 2.;
ra /= 2.;
goto L160;
L170:
g = c__ / 2.;
L180:
/* Computing MIN */
d__1 = min(f,c__), d__1 = min(d__1,g);
if (g < r__ || max(r__,ra) >= sfmax2 || min(d__1,ca) <= sfmin2) {
goto L190;
}
f /= 2.;
c__ /= 2.;
g /= 2.;
ca /= 2.;
r__ *= 2.;
ra *= 2.;
goto L180;
/* Now balance. */
L190:
if (c__ + r__ >= s * .95) {
goto L200;
}
if (f < 1. && scale[i__] < 1.) {
if (f * scale[i__] <= sfmin1) {
goto L200;
}
}
if (f > 1. && scale[i__] > 1.) {
if (scale[i__] >= sfmax1 / f) {
goto L200;
}
}
g = 1. / f;
scale[i__] *= f;
noconv = TRUE_;
i__2 = *n - k + 1;
dscal_(&i__2, &g, &a[i__ + k * a_dim1], lda);
dscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1);
L200:
;
}
if (noconv) {
goto L140;
}
L210:
*ilo = k;
*ihi = l;
return 0;
/* End of DGEBAL */
} /* dgebal_ */
|