aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ctrevc.c
blob: 05c60f4aad389cec63dc763ceaa0f65cf1ac9243 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/* ctrevc.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static complex c_b2 = {1.f,0.f};
static integer c__1 = 1;

/* Subroutine */ int ctrevc_(char *side, char *howmny, logical *select, 
	integer *n, complex *t, integer *ldt, complex *vl, integer *ldvl, 
	complex *vr, integer *ldvr, integer *mm, integer *m, complex *work, 
	real *rwork, integer *info)
{
    /* System generated locals */
    integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
	    i__2, i__3, i__4, i__5;
    real r__1, r__2, r__3;
    complex q__1, q__2;

    /* Builtin functions */
    double r_imag(complex *);
    void r_cnjg(complex *, complex *);

    /* Local variables */
    integer i__, j, k, ii, ki, is;
    real ulp;
    logical allv;
    real unfl, ovfl, smin;
    logical over;
    real scale;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *);
    real remax;
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *);
    logical leftv, bothv, somev;
    extern /* Subroutine */ int slabad_(real *, real *);
    extern integer icamax_(integer *, complex *, integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
	    *), xerbla_(char *, integer *), clatrs_(char *, char *, 
	    char *, char *, integer *, complex *, integer *, complex *, real *
, real *, integer *);
    extern doublereal scasum_(integer *, complex *, integer *);
    logical rightv;
    real smlnum;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CTREVC computes some or all of the right and/or left eigenvectors of */
/*  a complex upper triangular matrix T. */
/*  Matrices of this type are produced by the Schur factorization of */
/*  a complex general matrix:  A = Q*T*Q**H, as computed by CHSEQR. */

/*  The right eigenvector x and the left eigenvector y of T corresponding */
/*  to an eigenvalue w are defined by: */

/*               T*x = w*x,     (y**H)*T = w*(y**H) */

/*  where y**H denotes the conjugate transpose of the vector y. */
/*  The eigenvalues are not input to this routine, but are read directly */
/*  from the diagonal of T. */

/*  This routine returns the matrices X and/or Y of right and left */
/*  eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */
/*  input matrix.  If Q is the unitary factor that reduces a matrix A to */
/*  Schur form T, then Q*X and Q*Y are the matrices of right and left */
/*  eigenvectors of A. */

/*  Arguments */
/*  ========= */

/*  SIDE    (input) CHARACTER*1 */
/*          = 'R':  compute right eigenvectors only; */
/*          = 'L':  compute left eigenvectors only; */
/*          = 'B':  compute both right and left eigenvectors. */

/*  HOWMNY  (input) CHARACTER*1 */
/*          = 'A':  compute all right and/or left eigenvectors; */
/*          = 'B':  compute all right and/or left eigenvectors, */
/*                  backtransformed using the matrices supplied in */
/*                  VR and/or VL; */
/*          = 'S':  compute selected right and/or left eigenvectors, */
/*                  as indicated by the logical array SELECT. */

/*  SELECT  (input) LOGICAL array, dimension (N) */
/*          If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
/*          computed. */
/*          The eigenvector corresponding to the j-th eigenvalue is */
/*          computed if SELECT(j) = .TRUE.. */
/*          Not referenced if HOWMNY = 'A' or 'B'. */

/*  N       (input) INTEGER */
/*          The order of the matrix T. N >= 0. */

/*  T       (input/output) COMPLEX array, dimension (LDT,N) */
/*          The upper triangular matrix T.  T is modified, but restored */
/*          on exit. */

/*  LDT     (input) INTEGER */
/*          The leading dimension of the array T. LDT >= max(1,N). */

/*  VL      (input/output) COMPLEX array, dimension (LDVL,MM) */
/*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
/*          contain an N-by-N matrix Q (usually the unitary matrix Q of */
/*          Schur vectors returned by CHSEQR). */
/*          On exit, if SIDE = 'L' or 'B', VL contains: */
/*          if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
/*          if HOWMNY = 'B', the matrix Q*Y; */
/*          if HOWMNY = 'S', the left eigenvectors of T specified by */
/*                           SELECT, stored consecutively in the columns */
/*                           of VL, in the same order as their */
/*                           eigenvalues. */
/*          Not referenced if SIDE = 'R'. */

/*  LDVL    (input) INTEGER */
/*          The leading dimension of the array VL.  LDVL >= 1, and if */
/*          SIDE = 'L' or 'B', LDVL >= N. */

/*  VR      (input/output) COMPLEX array, dimension (LDVR,MM) */
/*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
/*          contain an N-by-N matrix Q (usually the unitary matrix Q of */
/*          Schur vectors returned by CHSEQR). */
/*          On exit, if SIDE = 'R' or 'B', VR contains: */
/*          if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
/*          if HOWMNY = 'B', the matrix Q*X; */
/*          if HOWMNY = 'S', the right eigenvectors of T specified by */
/*                           SELECT, stored consecutively in the columns */
/*                           of VR, in the same order as their */
/*                           eigenvalues. */
/*          Not referenced if SIDE = 'L'. */

/*  LDVR    (input) INTEGER */
/*          The leading dimension of the array VR.  LDVR >= 1, and if */
/*          SIDE = 'R' or 'B'; LDVR >= N. */

/*  MM      (input) INTEGER */
/*          The number of columns in the arrays VL and/or VR. MM >= M. */

/*  M       (output) INTEGER */
/*          The number of columns in the arrays VL and/or VR actually */
/*          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M */
/*          is set to N.  Each selected eigenvector occupies one */
/*          column. */

/*  WORK    (workspace) COMPLEX array, dimension (2*N) */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The algorithm used in this program is basically backward (forward) */
/*  substitution, with scaling to make the the code robust against */
/*  possible overflow. */

/*  Each eigenvector is normalized so that the element of largest */
/*  magnitude has magnitude 1; here the magnitude of a complex number */
/*  (x,y) is taken to be |x| + |y|. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function definitions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Decode and test the input parameters */

    /* Parameter adjustments */
    --select;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --work;
    --rwork;

    /* Function Body */
    bothv = lsame_(side, "B");
    rightv = lsame_(side, "R") || bothv;
    leftv = lsame_(side, "L") || bothv;

    allv = lsame_(howmny, "A");
    over = lsame_(howmny, "B");
    somev = lsame_(howmny, "S");

/*     Set M to the number of columns required to store the selected */
/*     eigenvectors. */

    if (somev) {
	*m = 0;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    if (select[j]) {
		++(*m);
	    }
/* L10: */
	}
    } else {
	*m = *n;
    }

    *info = 0;
    if (! rightv && ! leftv) {
	*info = -1;
    } else if (! allv && ! over && ! somev) {
	*info = -2;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ldt < max(1,*n)) {
	*info = -6;
    } else if (*ldvl < 1 || leftv && *ldvl < *n) {
	*info = -8;
    } else if (*ldvr < 1 || rightv && *ldvr < *n) {
	*info = -10;
    } else if (*mm < *m) {
	*info = -11;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CTREVC", &i__1);
	return 0;
    }

/*     Quick return if possible. */

    if (*n == 0) {
	return 0;
    }

/*     Set the constants to control overflow. */

    unfl = slamch_("Safe minimum");
    ovfl = 1.f / unfl;
    slabad_(&unfl, &ovfl);
    ulp = slamch_("Precision");
    smlnum = unfl * (*n / ulp);

/*     Store the diagonal elements of T in working array WORK. */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = i__ + *n;
	i__3 = i__ + i__ * t_dim1;
	work[i__2].r = t[i__3].r, work[i__2].i = t[i__3].i;
/* L20: */
    }

/*     Compute 1-norm of each column of strictly upper triangular */
/*     part of T to control overflow in triangular solver. */

    rwork[1] = 0.f;
    i__1 = *n;
    for (j = 2; j <= i__1; ++j) {
	i__2 = j - 1;
	rwork[j] = scasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
/* L30: */
    }

    if (rightv) {

/*        Compute right eigenvectors. */

	is = *m;
	for (ki = *n; ki >= 1; --ki) {

	    if (somev) {
		if (! select[ki]) {
		    goto L80;
		}
	    }
/* Computing MAX */
	    i__1 = ki + ki * t_dim1;
	    r__3 = ulp * ((r__1 = t[i__1].r, dabs(r__1)) + (r__2 = r_imag(&t[
		    ki + ki * t_dim1]), dabs(r__2)));
	    smin = dmax(r__3,smlnum);

	    work[1].r = 1.f, work[1].i = 0.f;

/*           Form right-hand side. */

	    i__1 = ki - 1;
	    for (k = 1; k <= i__1; ++k) {
		i__2 = k;
		i__3 = k + ki * t_dim1;
		q__1.r = -t[i__3].r, q__1.i = -t[i__3].i;
		work[i__2].r = q__1.r, work[i__2].i = q__1.i;
/* L40: */
	    }

/*           Solve the triangular system: */
/*              (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK. */

	    i__1 = ki - 1;
	    for (k = 1; k <= i__1; ++k) {
		i__2 = k + k * t_dim1;
		i__3 = k + k * t_dim1;
		i__4 = ki + ki * t_dim1;
		q__1.r = t[i__3].r - t[i__4].r, q__1.i = t[i__3].i - t[i__4]
			.i;
		t[i__2].r = q__1.r, t[i__2].i = q__1.i;
		i__2 = k + k * t_dim1;
		if ((r__1 = t[i__2].r, dabs(r__1)) + (r__2 = r_imag(&t[k + k *
			 t_dim1]), dabs(r__2)) < smin) {
		    i__3 = k + k * t_dim1;
		    t[i__3].r = smin, t[i__3].i = 0.f;
		}
/* L50: */
	    }

	    if (ki > 1) {
		i__1 = ki - 1;
		clatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[
			t_offset], ldt, &work[1], &scale, &rwork[1], info);
		i__1 = ki;
		work[i__1].r = scale, work[i__1].i = 0.f;
	    }

/*           Copy the vector x or Q*x to VR and normalize. */

	    if (! over) {
		ccopy_(&ki, &work[1], &c__1, &vr[is * vr_dim1 + 1], &c__1);

		ii = icamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
		i__1 = ii + is * vr_dim1;
		remax = 1.f / ((r__1 = vr[i__1].r, dabs(r__1)) + (r__2 = 
			r_imag(&vr[ii + is * vr_dim1]), dabs(r__2)));
		csscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);

		i__1 = *n;
		for (k = ki + 1; k <= i__1; ++k) {
		    i__2 = k + is * vr_dim1;
		    vr[i__2].r = 0.f, vr[i__2].i = 0.f;
/* L60: */
		}
	    } else {
		if (ki > 1) {
		    i__1 = ki - 1;
		    q__1.r = scale, q__1.i = 0.f;
		    cgemv_("N", n, &i__1, &c_b2, &vr[vr_offset], ldvr, &work[
			    1], &c__1, &q__1, &vr[ki * vr_dim1 + 1], &c__1);
		}

		ii = icamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
		i__1 = ii + ki * vr_dim1;
		remax = 1.f / ((r__1 = vr[i__1].r, dabs(r__1)) + (r__2 = 
			r_imag(&vr[ii + ki * vr_dim1]), dabs(r__2)));
		csscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
	    }

/*           Set back the original diagonal elements of T. */

	    i__1 = ki - 1;
	    for (k = 1; k <= i__1; ++k) {
		i__2 = k + k * t_dim1;
		i__3 = k + *n;
		t[i__2].r = work[i__3].r, t[i__2].i = work[i__3].i;
/* L70: */
	    }

	    --is;
L80:
	    ;
	}
    }

    if (leftv) {

/*        Compute left eigenvectors. */

	is = 1;
	i__1 = *n;
	for (ki = 1; ki <= i__1; ++ki) {

	    if (somev) {
		if (! select[ki]) {
		    goto L130;
		}
	    }
/* Computing MAX */
	    i__2 = ki + ki * t_dim1;
	    r__3 = ulp * ((r__1 = t[i__2].r, dabs(r__1)) + (r__2 = r_imag(&t[
		    ki + ki * t_dim1]), dabs(r__2)));
	    smin = dmax(r__3,smlnum);

	    i__2 = *n;
	    work[i__2].r = 1.f, work[i__2].i = 0.f;

/*           Form right-hand side. */

	    i__2 = *n;
	    for (k = ki + 1; k <= i__2; ++k) {
		i__3 = k;
		r_cnjg(&q__2, &t[ki + k * t_dim1]);
		q__1.r = -q__2.r, q__1.i = -q__2.i;
		work[i__3].r = q__1.r, work[i__3].i = q__1.i;
/* L90: */
	    }

/*           Solve the triangular system: */
/*              (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK. */

	    i__2 = *n;
	    for (k = ki + 1; k <= i__2; ++k) {
		i__3 = k + k * t_dim1;
		i__4 = k + k * t_dim1;
		i__5 = ki + ki * t_dim1;
		q__1.r = t[i__4].r - t[i__5].r, q__1.i = t[i__4].i - t[i__5]
			.i;
		t[i__3].r = q__1.r, t[i__3].i = q__1.i;
		i__3 = k + k * t_dim1;
		if ((r__1 = t[i__3].r, dabs(r__1)) + (r__2 = r_imag(&t[k + k *
			 t_dim1]), dabs(r__2)) < smin) {
		    i__4 = k + k * t_dim1;
		    t[i__4].r = smin, t[i__4].i = 0.f;
		}
/* L100: */
	    }

	    if (ki < *n) {
		i__2 = *n - ki;
		clatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", &
			i__2, &t[ki + 1 + (ki + 1) * t_dim1], ldt, &work[ki + 
			1], &scale, &rwork[1], info);
		i__2 = ki;
		work[i__2].r = scale, work[i__2].i = 0.f;
	    }

/*           Copy the vector x or Q*x to VL and normalize. */

	    if (! over) {
		i__2 = *n - ki + 1;
		ccopy_(&i__2, &work[ki], &c__1, &vl[ki + is * vl_dim1], &c__1)
			;

		i__2 = *n - ki + 1;
		ii = icamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki - 1;
		i__2 = ii + is * vl_dim1;
		remax = 1.f / ((r__1 = vl[i__2].r, dabs(r__1)) + (r__2 = 
			r_imag(&vl[ii + is * vl_dim1]), dabs(r__2)));
		i__2 = *n - ki + 1;
		csscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);

		i__2 = ki - 1;
		for (k = 1; k <= i__2; ++k) {
		    i__3 = k + is * vl_dim1;
		    vl[i__3].r = 0.f, vl[i__3].i = 0.f;
/* L110: */
		}
	    } else {
		if (ki < *n) {
		    i__2 = *n - ki;
		    q__1.r = scale, q__1.i = 0.f;
		    cgemv_("N", n, &i__2, &c_b2, &vl[(ki + 1) * vl_dim1 + 1], 
			    ldvl, &work[ki + 1], &c__1, &q__1, &vl[ki * 
			    vl_dim1 + 1], &c__1);
		}

		ii = icamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
		i__2 = ii + ki * vl_dim1;
		remax = 1.f / ((r__1 = vl[i__2].r, dabs(r__1)) + (r__2 = 
			r_imag(&vl[ii + ki * vl_dim1]), dabs(r__2)));
		csscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
	    }

/*           Set back the original diagonal elements of T. */

	    i__2 = *n;
	    for (k = ki + 1; k <= i__2; ++k) {
		i__3 = k + k * t_dim1;
		i__4 = k + *n;
		t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i;
/* L120: */
	    }

	    ++is;
L130:
	    ;
	}
    }

    return 0;

/*     End of CTREVC */

} /* ctrevc_ */