aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ctbtrs.c
blob: d19e3ea76c1d75be68a0ebcd28845aea363c57b4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/* ctbtrs.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int ctbtrs_(char *uplo, char *trans, char *diag, integer *n, 
	integer *kd, integer *nrhs, complex *ab, integer *ldab, complex *b, 
	integer *ldb, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, b_dim1, b_offset, i__1, i__2;

    /* Local variables */
    integer j;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int ctbsv_(char *, char *, char *, integer *, 
	    integer *, complex *, integer *, complex *, integer *);
    logical upper;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    logical nounit;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CTBTRS solves a triangular system of the form */

/*     A * X = B,  A**T * X = B,  or  A**H * X = B, */

/*  where A is a triangular band matrix of order N, and B is an */
/*  N-by-NRHS matrix.  A check is made to verify that A is nonsingular. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  A is upper triangular; */
/*          = 'L':  A is lower triangular. */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the form of the system of equations: */
/*          = 'N':  A * X = B     (No transpose) */
/*          = 'T':  A**T * X = B  (Transpose) */
/*          = 'C':  A**H * X = B  (Conjugate transpose) */

/*  DIAG    (input) CHARACTER*1 */
/*          = 'N':  A is non-unit triangular; */
/*          = 'U':  A is unit triangular. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals or subdiagonals of the */
/*          triangular band matrix A.  KD >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  AB      (input) COMPLEX array, dimension (LDAB,N) */
/*          The upper or lower triangular band matrix A, stored in the */
/*          first kd+1 rows of AB.  The j-th column of A is stored */
/*          in the j-th column of the array AB as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
/*          If DIAG = 'U', the diagonal elements of A are not referenced */
/*          and are assumed to be 1. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD+1. */

/*  B       (input/output) COMPLEX array, dimension (LDB,NRHS) */
/*          On entry, the right hand side matrix B. */
/*          On exit, if INFO = 0, the solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the i-th diagonal element of A is zero, */
/*                indicating that the matrix is singular and the */
/*                solutions X have not been computed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    nounit = lsame_(diag, "N");
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! lsame_(trans, "N") && ! lsame_(trans, 
	    "T") && ! lsame_(trans, "C")) {
	*info = -2;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*nrhs < 0) {
	*info = -6;
    } else if (*ldab < *kd + 1) {
	*info = -8;
    } else if (*ldb < max(1,*n)) {
	*info = -10;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CTBTRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Check for singularity. */

    if (nounit) {
	if (upper) {
	    i__1 = *n;
	    for (*info = 1; *info <= i__1; ++(*info)) {
		i__2 = *kd + 1 + *info * ab_dim1;
		if (ab[i__2].r == 0.f && ab[i__2].i == 0.f) {
		    return 0;
		}
/* L10: */
	    }
	} else {
	    i__1 = *n;
	    for (*info = 1; *info <= i__1; ++(*info)) {
		i__2 = *info * ab_dim1 + 1;
		if (ab[i__2].r == 0.f && ab[i__2].i == 0.f) {
		    return 0;
		}
/* L20: */
	    }
	}
    }
    *info = 0;

/*     Solve A * X = B,  A**T * X = B,  or  A**H * X = B. */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	ctbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &b[j * b_dim1 
		+ 1], &c__1);
/* L30: */
    }

    return 0;

/*     End of CTBTRS */

} /* ctbtrs_ */