1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
|
/* cstedc.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__9 = 9;
static integer c__0 = 0;
static integer c__2 = 2;
static real c_b17 = 0.f;
static real c_b18 = 1.f;
static integer c__1 = 1;
/* Subroutine */ int cstedc_(char *compz, integer *n, real *d__, real *e,
complex *z__, integer *ldz, complex *work, integer *lwork, real *
rwork, integer *lrwork, integer *iwork, integer *liwork, integer *
info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2, i__3, i__4;
real r__1, r__2;
/* Builtin functions */
double log(doublereal);
integer pow_ii(integer *, integer *);
double sqrt(doublereal);
/* Local variables */
integer i__, j, k, m;
real p;
integer ii, ll, lgn;
real eps, tiny;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
complex *, integer *);
integer lwmin;
extern /* Subroutine */ int claed0_(integer *, integer *, real *, real *,
complex *, integer *, complex *, integer *, real *, integer *,
integer *);
integer start;
extern /* Subroutine */ int clacrm_(integer *, integer *, complex *,
integer *, real *, integer *, complex *, integer *, real *);
extern doublereal slamch_(char *);
extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
*, integer *, complex *, integer *), xerbla_(char *,
integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
integer finish;
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, real *, integer *, integer *), sstedc_(char *, integer *, real *, real *, real *,
integer *, real *, integer *, integer *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *,
real *, integer *);
integer liwmin, icompz;
extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *,
complex *, integer *, real *, integer *);
real orgnrm;
extern doublereal slanst_(char *, integer *, real *, real *);
extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
integer lrwmin;
logical lquery;
integer smlsiz;
extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *,
real *, integer *, real *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
/* symmetric tridiagonal matrix using the divide and conquer method. */
/* The eigenvectors of a full or band complex Hermitian matrix can also */
/* be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this */
/* matrix to tridiagonal form. */
/* This code makes very mild assumptions about floating point */
/* arithmetic. It will work on machines with a guard digit in */
/* add/subtract, or on those binary machines without guard digits */
/* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
/* It could conceivably fail on hexadecimal or decimal machines */
/* without guard digits, but we know of none. See SLAED3 for details. */
/* Arguments */
/* ========= */
/* COMPZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only. */
/* = 'I': Compute eigenvectors of tridiagonal matrix also. */
/* = 'V': Compute eigenvectors of original Hermitian matrix */
/* also. On entry, Z contains the unitary matrix used */
/* to reduce the original matrix to tridiagonal form. */
/* N (input) INTEGER */
/* The dimension of the symmetric tridiagonal matrix. N >= 0. */
/* D (input/output) REAL array, dimension (N) */
/* On entry, the diagonal elements of the tridiagonal matrix. */
/* On exit, if INFO = 0, the eigenvalues in ascending order. */
/* E (input/output) REAL array, dimension (N-1) */
/* On entry, the subdiagonal elements of the tridiagonal matrix. */
/* On exit, E has been destroyed. */
/* Z (input/output) COMPLEX array, dimension (LDZ,N) */
/* On entry, if COMPZ = 'V', then Z contains the unitary */
/* matrix used in the reduction to tridiagonal form. */
/* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
/* orthonormal eigenvectors of the original Hermitian matrix, */
/* and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
/* of the symmetric tridiagonal matrix. */
/* If COMPZ = 'N', then Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1. */
/* If eigenvectors are desired, then LDZ >= max(1,N). */
/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1. */
/* If COMPZ = 'V' and N > 1, LWORK must be at least N*N. */
/* Note that for COMPZ = 'V', then if N is less than or */
/* equal to the minimum divide size, usually 25, then LWORK need */
/* only be 1. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal sizes of the WORK, RWORK and */
/* IWORK arrays, returns these values as the first entries of */
/* the WORK, RWORK and IWORK arrays, and no error message */
/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* RWORK (workspace/output) REAL array, dimension (MAX(1,LRWORK)) */
/* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
/* LRWORK (input) INTEGER */
/* The dimension of the array RWORK. */
/* If COMPZ = 'N' or N <= 1, LRWORK must be at least 1. */
/* If COMPZ = 'V' and N > 1, LRWORK must be at least */
/* 1 + 3*N + 2*N*lg N + 3*N**2 , */
/* where lg( N ) = smallest integer k such */
/* that 2**k >= N. */
/* If COMPZ = 'I' and N > 1, LRWORK must be at least */
/* 1 + 4*N + 2*N**2 . */
/* Note that for COMPZ = 'I' or 'V', then if N is less than or */
/* equal to the minimum divide size, usually 25, then LRWORK */
/* need only be max(1,2*(N-1)). */
/* If LRWORK = -1, then a workspace query is assumed; the */
/* routine only calculates the optimal sizes of the WORK, RWORK */
/* and IWORK arrays, returns these values as the first entries */
/* of the WORK, RWORK and IWORK arrays, and no error message */
/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
/* LIWORK (input) INTEGER */
/* The dimension of the array IWORK. */
/* If COMPZ = 'N' or N <= 1, LIWORK must be at least 1. */
/* If COMPZ = 'V' or N > 1, LIWORK must be at least */
/* 6 + 6*N + 5*N*lg N. */
/* If COMPZ = 'I' or N > 1, LIWORK must be at least */
/* 3 + 5*N . */
/* Note that for COMPZ = 'I' or 'V', then if N is less than or */
/* equal to the minimum divide size, usually 25, then LIWORK */
/* need only be 1. */
/* If LIWORK = -1, then a workspace query is assumed; the */
/* routine only calculates the optimal sizes of the WORK, RWORK */
/* and IWORK arrays, returns these values as the first entries */
/* of the WORK, RWORK and IWORK arrays, and no error message */
/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: The algorithm failed to compute an eigenvalue while */
/* working on the submatrix lying in rows and columns */
/* INFO/(N+1) through mod(INFO,N+1). */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Jeff Rutter, Computer Science Division, University of California */
/* at Berkeley, USA */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
--rwork;
--iwork;
/* Function Body */
*info = 0;
lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
if (lsame_(compz, "N")) {
icompz = 0;
} else if (lsame_(compz, "V")) {
icompz = 1;
} else if (lsame_(compz, "I")) {
icompz = 2;
} else {
icompz = -1;
}
if (icompz < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
*info = -6;
}
if (*info == 0) {
/* Compute the workspace requirements */
smlsiz = ilaenv_(&c__9, "CSTEDC", " ", &c__0, &c__0, &c__0, &c__0);
if (*n <= 1 || icompz == 0) {
lwmin = 1;
liwmin = 1;
lrwmin = 1;
} else if (*n <= smlsiz) {
lwmin = 1;
liwmin = 1;
lrwmin = *n - 1 << 1;
} else if (icompz == 1) {
lgn = (integer) (log((real) (*n)) / log(2.f));
if (pow_ii(&c__2, &lgn) < *n) {
++lgn;
}
if (pow_ii(&c__2, &lgn) < *n) {
++lgn;
}
lwmin = *n * *n;
/* Computing 2nd power */
i__1 = *n;
lrwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3;
liwmin = *n * 6 + 6 + *n * 5 * lgn;
} else if (icompz == 2) {
lwmin = 1;
/* Computing 2nd power */
i__1 = *n;
lrwmin = (*n << 2) + 1 + (i__1 * i__1 << 1);
liwmin = *n * 5 + 3;
}
work[1].r = (real) lwmin, work[1].i = 0.f;
rwork[1] = (real) lrwmin;
iwork[1] = liwmin;
if (*lwork < lwmin && ! lquery) {
*info = -8;
} else if (*lrwork < lrwmin && ! lquery) {
*info = -10;
} else if (*liwork < liwmin && ! lquery) {
*info = -12;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CSTEDC", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (icompz != 0) {
i__1 = z_dim1 + 1;
z__[i__1].r = 1.f, z__[i__1].i = 0.f;
}
return 0;
}
/* If the following conditional clause is removed, then the routine */
/* will use the Divide and Conquer routine to compute only the */
/* eigenvalues, which requires (3N + 3N**2) real workspace and */
/* (2 + 5N + 2N lg(N)) integer workspace. */
/* Since on many architectures SSTERF is much faster than any other */
/* algorithm for finding eigenvalues only, it is used here */
/* as the default. If the conditional clause is removed, then */
/* information on the size of workspace needs to be changed. */
/* If COMPZ = 'N', use SSTERF to compute the eigenvalues. */
if (icompz == 0) {
ssterf_(n, &d__[1], &e[1], info);
goto L70;
}
/* If N is smaller than the minimum divide size (SMLSIZ+1), then */
/* solve the problem with another solver. */
if (*n <= smlsiz) {
csteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1],
info);
} else {
/* If COMPZ = 'I', we simply call SSTEDC instead. */
if (icompz == 2) {
slaset_("Full", n, n, &c_b17, &c_b18, &rwork[1], n);
ll = *n * *n + 1;
i__1 = *lrwork - ll + 1;
sstedc_("I", n, &d__[1], &e[1], &rwork[1], n, &rwork[ll], &i__1, &
iwork[1], liwork, info);
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * z_dim1;
i__4 = (j - 1) * *n + i__;
z__[i__3].r = rwork[i__4], z__[i__3].i = 0.f;
/* L10: */
}
/* L20: */
}
goto L70;
}
/* From now on, only option left to be handled is COMPZ = 'V', */
/* i.e. ICOMPZ = 1. */
/* Scale. */
orgnrm = slanst_("M", n, &d__[1], &e[1]);
if (orgnrm == 0.f) {
goto L70;
}
eps = slamch_("Epsilon");
start = 1;
/* while ( START <= N ) */
L30:
if (start <= *n) {
/* Let FINISH be the position of the next subdiagonal entry */
/* such that E( FINISH ) <= TINY or FINISH = N if no such */
/* subdiagonal exists. The matrix identified by the elements */
/* between START and FINISH constitutes an independent */
/* sub-problem. */
finish = start;
L40:
if (finish < *n) {
tiny = eps * sqrt((r__1 = d__[finish], dabs(r__1))) * sqrt((
r__2 = d__[finish + 1], dabs(r__2)));
if ((r__1 = e[finish], dabs(r__1)) > tiny) {
++finish;
goto L40;
}
}
/* (Sub) Problem determined. Compute its size and solve it. */
m = finish - start + 1;
if (m > smlsiz) {
/* Scale. */
orgnrm = slanst_("M", &m, &d__[start], &e[start]);
slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
start], &m, info);
i__1 = m - 1;
i__2 = m - 1;
slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
start], &i__2, info);
claed0_(n, &m, &d__[start], &e[start], &z__[start * z_dim1 +
1], ldz, &work[1], n, &rwork[1], &iwork[1], info);
if (*info > 0) {
*info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
(m + 1) + start - 1;
goto L70;
}
/* Scale back. */
slascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
start], &m, info);
} else {
ssteqr_("I", &m, &d__[start], &e[start], &rwork[1], &m, &
rwork[m * m + 1], info);
clacrm_(n, &m, &z__[start * z_dim1 + 1], ldz, &rwork[1], &m, &
work[1], n, &rwork[m * m + 1]);
clacpy_("A", n, &m, &work[1], n, &z__[start * z_dim1 + 1],
ldz);
if (*info > 0) {
*info = start * (*n + 1) + finish;
goto L70;
}
}
start = finish + 1;
goto L30;
}
/* endwhile */
/* If the problem split any number of times, then the eigenvalues */
/* will not be properly ordered. Here we permute the eigenvalues */
/* (and the associated eigenvectors) into ascending order. */
if (m != *n) {
/* Use Selection Sort to minimize swaps of eigenvectors */
i__1 = *n;
for (ii = 2; ii <= i__1; ++ii) {
i__ = ii - 1;
k = i__;
p = d__[i__];
i__2 = *n;
for (j = ii; j <= i__2; ++j) {
if (d__[j] < p) {
k = j;
p = d__[j];
}
/* L50: */
}
if (k != i__) {
d__[k] = d__[i__];
d__[i__] = p;
cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1
+ 1], &c__1);
}
/* L60: */
}
}
}
L70:
work[1].r = (real) lwmin, work[1].i = 0.f;
rwork[1] = (real) lrwmin;
iwork[1] = liwmin;
return 0;
/* End of CSTEDC */
} /* cstedc_ */
|