1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
/* cptts2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int cptts2_(integer *iuplo, integer *n, integer *nrhs, real *
d__, complex *e, complex *b, integer *ldb)
{
/* System generated locals */
integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6;
real r__1;
complex q__1, q__2, q__3, q__4;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
integer i__, j;
extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
*);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CPTTS2 solves a tridiagonal system of the form */
/* A * X = B */
/* using the factorization A = U'*D*U or A = L*D*L' computed by CPTTRF. */
/* D is a diagonal matrix specified in the vector D, U (or L) is a unit */
/* bidiagonal matrix whose superdiagonal (subdiagonal) is specified in */
/* the vector E, and X and B are N by NRHS matrices. */
/* Arguments */
/* ========= */
/* IUPLO (input) INTEGER */
/* Specifies the form of the factorization and whether the */
/* vector E is the superdiagonal of the upper bidiagonal factor */
/* U or the subdiagonal of the lower bidiagonal factor L. */
/* = 1: A = U'*D*U, E is the superdiagonal of U */
/* = 0: A = L*D*L', E is the subdiagonal of L */
/* N (input) INTEGER */
/* The order of the tridiagonal matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* D (input) REAL array, dimension (N) */
/* The n diagonal elements of the diagonal matrix D from the */
/* factorization A = U'*D*U or A = L*D*L'. */
/* E (input) COMPLEX array, dimension (N-1) */
/* If IUPLO = 1, the (n-1) superdiagonal elements of the unit */
/* bidiagonal factor U from the factorization A = U'*D*U. */
/* If IUPLO = 0, the (n-1) subdiagonal elements of the unit */
/* bidiagonal factor L from the factorization A = L*D*L'. */
/* B (input/output) REAL array, dimension (LDB,NRHS) */
/* On entry, the right hand side vectors B for the system of */
/* linear equations. */
/* On exit, the solution vectors, X. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Quick return if possible */
/* Parameter adjustments */
--d__;
--e;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
if (*n <= 1) {
if (*n == 1) {
r__1 = 1.f / d__[1];
csscal_(nrhs, &r__1, &b[b_offset], ldb);
}
return 0;
}
if (*iuplo == 1) {
/* Solve A * X = B using the factorization A = U'*D*U, */
/* overwriting each right hand side vector with its solution. */
if (*nrhs <= 2) {
j = 1;
L5:
/* Solve U' * x = b. */
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
i__2 = i__ + j * b_dim1;
i__3 = i__ + j * b_dim1;
i__4 = i__ - 1 + j * b_dim1;
r_cnjg(&q__3, &e[i__ - 1]);
q__2.r = b[i__4].r * q__3.r - b[i__4].i * q__3.i, q__2.i = b[
i__4].r * q__3.i + b[i__4].i * q__3.r;
q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i - q__2.i;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
/* L10: */
}
/* Solve D * U * x = b. */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__ + j * b_dim1;
i__3 = i__ + j * b_dim1;
i__4 = i__;
q__1.r = b[i__3].r / d__[i__4], q__1.i = b[i__3].i / d__[i__4]
;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
/* L20: */
}
for (i__ = *n - 1; i__ >= 1; --i__) {
i__1 = i__ + j * b_dim1;
i__2 = i__ + j * b_dim1;
i__3 = i__ + 1 + j * b_dim1;
i__4 = i__;
q__2.r = b[i__3].r * e[i__4].r - b[i__3].i * e[i__4].i,
q__2.i = b[i__3].r * e[i__4].i + b[i__3].i * e[i__4]
.r;
q__1.r = b[i__2].r - q__2.r, q__1.i = b[i__2].i - q__2.i;
b[i__1].r = q__1.r, b[i__1].i = q__1.i;
/* L30: */
}
if (j < *nrhs) {
++j;
goto L5;
}
} else {
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
/* Solve U' * x = b. */
i__2 = *n;
for (i__ = 2; i__ <= i__2; ++i__) {
i__3 = i__ + j * b_dim1;
i__4 = i__ + j * b_dim1;
i__5 = i__ - 1 + j * b_dim1;
r_cnjg(&q__3, &e[i__ - 1]);
q__2.r = b[i__5].r * q__3.r - b[i__5].i * q__3.i, q__2.i =
b[i__5].r * q__3.i + b[i__5].i * q__3.r;
q__1.r = b[i__4].r - q__2.r, q__1.i = b[i__4].i - q__2.i;
b[i__3].r = q__1.r, b[i__3].i = q__1.i;
/* L40: */
}
/* Solve D * U * x = b. */
i__2 = *n + j * b_dim1;
i__3 = *n + j * b_dim1;
i__4 = *n;
q__1.r = b[i__3].r / d__[i__4], q__1.i = b[i__3].i / d__[i__4]
;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
for (i__ = *n - 1; i__ >= 1; --i__) {
i__2 = i__ + j * b_dim1;
i__3 = i__ + j * b_dim1;
i__4 = i__;
q__2.r = b[i__3].r / d__[i__4], q__2.i = b[i__3].i / d__[
i__4];
i__5 = i__ + 1 + j * b_dim1;
i__6 = i__;
q__3.r = b[i__5].r * e[i__6].r - b[i__5].i * e[i__6].i,
q__3.i = b[i__5].r * e[i__6].i + b[i__5].i * e[
i__6].r;
q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
/* L50: */
}
/* L60: */
}
}
} else {
/* Solve A * X = B using the factorization A = L*D*L', */
/* overwriting each right hand side vector with its solution. */
if (*nrhs <= 2) {
j = 1;
L65:
/* Solve L * x = b. */
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
i__2 = i__ + j * b_dim1;
i__3 = i__ + j * b_dim1;
i__4 = i__ - 1 + j * b_dim1;
i__5 = i__ - 1;
q__2.r = b[i__4].r * e[i__5].r - b[i__4].i * e[i__5].i,
q__2.i = b[i__4].r * e[i__5].i + b[i__4].i * e[i__5]
.r;
q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i - q__2.i;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
/* L70: */
}
/* Solve D * L' * x = b. */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__ + j * b_dim1;
i__3 = i__ + j * b_dim1;
i__4 = i__;
q__1.r = b[i__3].r / d__[i__4], q__1.i = b[i__3].i / d__[i__4]
;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
/* L80: */
}
for (i__ = *n - 1; i__ >= 1; --i__) {
i__1 = i__ + j * b_dim1;
i__2 = i__ + j * b_dim1;
i__3 = i__ + 1 + j * b_dim1;
r_cnjg(&q__3, &e[i__]);
q__2.r = b[i__3].r * q__3.r - b[i__3].i * q__3.i, q__2.i = b[
i__3].r * q__3.i + b[i__3].i * q__3.r;
q__1.r = b[i__2].r - q__2.r, q__1.i = b[i__2].i - q__2.i;
b[i__1].r = q__1.r, b[i__1].i = q__1.i;
/* L90: */
}
if (j < *nrhs) {
++j;
goto L65;
}
} else {
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
/* Solve L * x = b. */
i__2 = *n;
for (i__ = 2; i__ <= i__2; ++i__) {
i__3 = i__ + j * b_dim1;
i__4 = i__ + j * b_dim1;
i__5 = i__ - 1 + j * b_dim1;
i__6 = i__ - 1;
q__2.r = b[i__5].r * e[i__6].r - b[i__5].i * e[i__6].i,
q__2.i = b[i__5].r * e[i__6].i + b[i__5].i * e[
i__6].r;
q__1.r = b[i__4].r - q__2.r, q__1.i = b[i__4].i - q__2.i;
b[i__3].r = q__1.r, b[i__3].i = q__1.i;
/* L100: */
}
/* Solve D * L' * x = b. */
i__2 = *n + j * b_dim1;
i__3 = *n + j * b_dim1;
i__4 = *n;
q__1.r = b[i__3].r / d__[i__4], q__1.i = b[i__3].i / d__[i__4]
;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
for (i__ = *n - 1; i__ >= 1; --i__) {
i__2 = i__ + j * b_dim1;
i__3 = i__ + j * b_dim1;
i__4 = i__;
q__2.r = b[i__3].r / d__[i__4], q__2.i = b[i__3].i / d__[
i__4];
i__5 = i__ + 1 + j * b_dim1;
r_cnjg(&q__4, &e[i__]);
q__3.r = b[i__5].r * q__4.r - b[i__5].i * q__4.i, q__3.i =
b[i__5].r * q__4.i + b[i__5].i * q__4.r;
q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
b[i__2].r = q__1.r, b[i__2].i = q__1.i;
/* L110: */
}
/* L120: */
}
}
}
return 0;
/* End of CPTTS2 */
} /* cptts2_ */
|