aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cptsvx.c
blob: 2e31446ab941882846857f008ceca87c8c5cf3d4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/* cptsvx.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int cptsvx_(char *fact, integer *n, integer *nrhs, real *d__, 
	 complex *e, real *df, complex *ef, complex *b, integer *ldb, complex 
	*x, integer *ldx, real *rcond, real *ferr, real *berr, complex *work, 
	real *rwork, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1;

    /* Local variables */
    extern logical lsame_(char *, char *);
    real anorm;
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), scopy_(integer *, real *, integer *, real *
, integer *);
    extern doublereal slamch_(char *), clanht_(char *, integer *, 
	    real *, complex *);
    logical nofact;
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), xerbla_(char *, 
	    integer *), cptcon_(integer *, real *, complex *, real *, 
	    real *, real *, integer *), cptrfs_(char *, integer *, integer *, 
	    real *, complex *, real *, complex *, complex *, integer *, 
	    complex *, integer *, real *, real *, complex *, real *, integer *
), cpttrf_(integer *, real *, complex *, integer *), 
	    cpttrs_(char *, integer *, integer *, real *, complex *, complex *
, integer *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CPTSVX uses the factorization A = L*D*L**H to compute the solution */
/*  to a complex system of linear equations A*X = B, where A is an */
/*  N-by-N Hermitian positive definite tridiagonal matrix and X and B */
/*  are N-by-NRHS matrices. */

/*  Error bounds on the solution and a condition estimate are also */
/*  provided. */

/*  Description */
/*  =========== */

/*  The following steps are performed: */

/*  1. If FACT = 'N', the matrix A is factored as A = L*D*L**H, where L */
/*     is a unit lower bidiagonal matrix and D is diagonal.  The */
/*     factorization can also be regarded as having the form */
/*     A = U**H*D*U. */

/*  2. If the leading i-by-i principal minor is not positive definite, */
/*     then the routine returns with INFO = i. Otherwise, the factored */
/*     form of A is used to estimate the condition number of the matrix */
/*     A.  If the reciprocal of the condition number is less than machine */
/*     precision, INFO = N+1 is returned as a warning, but the routine */
/*     still goes on to solve for X and compute error bounds as */
/*     described below. */

/*  3. The system of equations is solved for X using the factored form */
/*     of A. */

/*  4. Iterative refinement is applied to improve the computed solution */
/*     matrix and calculate error bounds and backward error estimates */
/*     for it. */

/*  Arguments */
/*  ========= */

/*  FACT    (input) CHARACTER*1 */
/*          Specifies whether or not the factored form of the matrix */
/*          A is supplied on entry. */
/*          = 'F':  On entry, DF and EF contain the factored form of A. */
/*                  D, E, DF, and EF will not be modified. */
/*          = 'N':  The matrix A will be copied to DF and EF and */
/*                  factored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  D       (input) REAL array, dimension (N) */
/*          The n diagonal elements of the tridiagonal matrix A. */

/*  E       (input) COMPLEX array, dimension (N-1) */
/*          The (n-1) subdiagonal elements of the tridiagonal matrix A. */

/*  DF      (input or output) REAL array, dimension (N) */
/*          If FACT = 'F', then DF is an input argument and on entry */
/*          contains the n diagonal elements of the diagonal matrix D */
/*          from the L*D*L**H factorization of A. */
/*          If FACT = 'N', then DF is an output argument and on exit */
/*          contains the n diagonal elements of the diagonal matrix D */
/*          from the L*D*L**H factorization of A. */

/*  EF      (input or output) COMPLEX array, dimension (N-1) */
/*          If FACT = 'F', then EF is an input argument and on entry */
/*          contains the (n-1) subdiagonal elements of the unit */
/*          bidiagonal factor L from the L*D*L**H factorization of A. */
/*          If FACT = 'N', then EF is an output argument and on exit */
/*          contains the (n-1) subdiagonal elements of the unit */
/*          bidiagonal factor L from the L*D*L**H factorization of A. */

/*  B       (input) COMPLEX array, dimension (LDB,NRHS) */
/*          The N-by-NRHS right hand side matrix B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (output) COMPLEX array, dimension (LDX,NRHS) */
/*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  RCOND   (output) REAL */
/*          The reciprocal condition number of the matrix A.  If RCOND */
/*          is less than the machine precision (in particular, if */
/*          RCOND = 0), the matrix is singular to working precision. */
/*          This condition is indicated by a return code of INFO > 0. */

/*  FERR    (output) REAL array, dimension (NRHS) */
/*          The forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j). */

/*  BERR    (output) REAL array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in any */
/*          element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) COMPLEX array, dimension (N) */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is */
/*                <= N:  the leading minor of order i of A is */
/*                       not positive definite, so the factorization */
/*                       could not be completed, and the solution has not */
/*                       been computed. RCOND = 0 is returned. */
/*                = N+1: U is nonsingular, but RCOND is less than machine */
/*                       precision, meaning that the matrix is singular */
/*                       to working precision.  Nevertheless, the */
/*                       solution and error bounds are computed because */
/*                       there are a number of situations where the */
/*                       computed solution can be more accurate than the */
/*                       value of RCOND would suggest. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    --df;
    --ef;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    if (! nofact && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -9;
    } else if (*ldx < max(1,*n)) {
	*info = -11;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPTSVX", &i__1);
	return 0;
    }

    if (nofact) {

/*        Compute the L*D*L' (or U'*D*U) factorization of A. */

	scopy_(n, &d__[1], &c__1, &df[1], &c__1);
	if (*n > 1) {
	    i__1 = *n - 1;
	    ccopy_(&i__1, &e[1], &c__1, &ef[1], &c__1);
	}
	cpttrf_(n, &df[1], &ef[1], info);

/*        Return if INFO is non-zero. */

	if (*info > 0) {
	    *rcond = 0.f;
	    return 0;
	}
    }

/*     Compute the norm of the matrix A. */

    anorm = clanht_("1", n, &d__[1], &e[1]);

/*     Compute the reciprocal of the condition number of A. */

    cptcon_(n, &df[1], &ef[1], &anorm, rcond, &rwork[1], info);

/*     Compute the solution vectors X. */

    clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    cpttrs_("Lower", n, nrhs, &df[1], &ef[1], &x[x_offset], ldx, info);

/*     Use iterative refinement to improve the computed solutions and */
/*     compute error bounds and backward error estimates for them. */

    cptrfs_("Lower", n, nrhs, &d__[1], &e[1], &df[1], &ef[1], &b[b_offset], 
	    ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1], &rwork[1], 
	    info);

/*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < slamch_("Epsilon")) {
	*info = *n + 1;
    }

    return 0;

/*     End of CPTSVX */

} /* cptsvx_ */