aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cptcon.c
blob: a09b17de0bc7cc2d7204783d191722712fb195d5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/* cptcon.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int cptcon_(integer *n, real *d__, complex *e, real *anorm, 
	real *rcond, real *rwork, integer *info)
{
    /* System generated locals */
    integer i__1;
    real r__1;

    /* Builtin functions */
    double c_abs(complex *);

    /* Local variables */
    integer i__, ix;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    real ainvnm;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CPTCON computes the reciprocal of the condition number (in the */
/*  1-norm) of a complex Hermitian positive definite tridiagonal matrix */
/*  using the factorization A = L*D*L**H or A = U**H*D*U computed by */
/*  CPTTRF. */

/*  Norm(inv(A)) is computed by a direct method, and the reciprocal of */
/*  the condition number is computed as */
/*                   RCOND = 1 / (ANORM * norm(inv(A))). */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  D       (input) REAL array, dimension (N) */
/*          The n diagonal elements of the diagonal matrix D from the */
/*          factorization of A, as computed by CPTTRF. */

/*  E       (input) COMPLEX array, dimension (N-1) */
/*          The (n-1) off-diagonal elements of the unit bidiagonal factor */
/*          U or L from the factorization of A, as computed by CPTTRF. */

/*  ANORM   (input) REAL */
/*          The 1-norm of the original matrix A. */

/*  RCOND   (output) REAL */
/*          The reciprocal of the condition number of the matrix A, */
/*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the */
/*          1-norm of inv(A) computed in this routine. */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The method used is described in Nicholas J. Higham, "Efficient */
/*  Algorithms for Computing the Condition Number of a Tridiagonal */
/*  Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments. */

    /* Parameter adjustments */
    --rwork;
    --e;
    --d__;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -1;
    } else if (*anorm < 0.f) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPTCON", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *rcond = 0.f;
    if (*n == 0) {
	*rcond = 1.f;
	return 0;
    } else if (*anorm == 0.f) {
	return 0;
    }

/*     Check that D(1:N) is positive. */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (d__[i__] <= 0.f) {
	    return 0;
	}
/* L10: */
    }

/*     Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */

/*        m(i,j) =  abs(A(i,j)), i = j, */
/*        m(i,j) = -abs(A(i,j)), i .ne. j, */

/*     and e = [ 1, 1, ..., 1 ]'.  Note M(A) = M(L)*D*M(L)'. */

/*     Solve M(L) * x = e. */

    rwork[1] = 1.f;
    i__1 = *n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	rwork[i__] = rwork[i__ - 1] * c_abs(&e[i__ - 1]) + 1.f;
/* L20: */
    }

/*     Solve D * M(L)' * x = b. */

    rwork[*n] /= d__[*n];
    for (i__ = *n - 1; i__ >= 1; --i__) {
	rwork[i__] = rwork[i__] / d__[i__] + rwork[i__ + 1] * c_abs(&e[i__]);
/* L30: */
    }

/*     Compute AINVNM = max(x(i)), 1<=i<=n. */

    ix = isamax_(n, &rwork[1], &c__1);
    ainvnm = (r__1 = rwork[ix], dabs(r__1));

/*     Compute the reciprocal condition number. */

    if (ainvnm != 0.f) {
	*rcond = 1.f / ainvnm / *anorm;
    }

    return 0;

/*     End of CPTCON */

} /* cptcon_ */