1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/* cppequ.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int cppequ_(char *uplo, integer *n, complex *ap, real *s,
real *scond, real *amax, integer *info)
{
/* System generated locals */
integer i__1, i__2;
real r__1, r__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, jj;
real smin;
extern logical lsame_(char *, char *);
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CPPEQU computes row and column scalings intended to equilibrate a */
/* Hermitian positive definite matrix A in packed storage and reduce */
/* its condition number (with respect to the two-norm). S contains the */
/* scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix */
/* B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal. */
/* This choice of S puts the condition number of B within a factor N of */
/* the smallest possible condition number over all possible diagonal */
/* scalings. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* AP (input) COMPLEX array, dimension (N*(N+1)/2) */
/* The upper or lower triangle of the Hermitian matrix A, packed */
/* columnwise in a linear array. The j-th column of A is stored */
/* in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/* S (output) REAL array, dimension (N) */
/* If INFO = 0, S contains the scale factors for A. */
/* SCOND (output) REAL */
/* If INFO = 0, S contains the ratio of the smallest S(i) to */
/* the largest S(i). If SCOND >= 0.1 and AMAX is neither too */
/* large nor too small, it is not worth scaling by S. */
/* AMAX (output) REAL */
/* Absolute value of largest matrix element. If AMAX is very */
/* close to overflow or very close to underflow, the matrix */
/* should be scaled. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, the i-th diagonal element is nonpositive. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--s;
--ap;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CPPEQU", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
*scond = 1.f;
*amax = 0.f;
return 0;
}
/* Initialize SMIN and AMAX. */
s[1] = ap[1].r;
smin = s[1];
*amax = s[1];
if (upper) {
/* UPLO = 'U': Upper triangle of A is stored. */
/* Find the minimum and maximum diagonal elements. */
jj = 1;
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
jj += i__;
i__2 = jj;
s[i__] = ap[i__2].r;
/* Computing MIN */
r__1 = smin, r__2 = s[i__];
smin = dmin(r__1,r__2);
/* Computing MAX */
r__1 = *amax, r__2 = s[i__];
*amax = dmax(r__1,r__2);
/* L10: */
}
} else {
/* UPLO = 'L': Lower triangle of A is stored. */
/* Find the minimum and maximum diagonal elements. */
jj = 1;
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
jj = jj + *n - i__ + 2;
i__2 = jj;
s[i__] = ap[i__2].r;
/* Computing MIN */
r__1 = smin, r__2 = s[i__];
smin = dmin(r__1,r__2);
/* Computing MAX */
r__1 = *amax, r__2 = s[i__];
*amax = dmax(r__1,r__2);
/* L20: */
}
}
if (smin <= 0.f) {
/* Find the first non-positive diagonal element and return. */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (s[i__] <= 0.f) {
*info = i__;
return 0;
}
/* L30: */
}
} else {
/* Set the scale factors to the reciprocals */
/* of the diagonal elements. */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
s[i__] = 1.f / sqrt(s[i__]);
/* L40: */
}
/* Compute SCOND = min(S(I)) / max(S(I)) */
*scond = sqrt(smin) / sqrt(*amax);
}
return 0;
/* End of CPPEQU */
} /* cppequ_ */
|