1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
/* cpotf2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;
/* Subroutine */ int cpotf2_(char *uplo, integer *n, complex *a, integer *lda,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
real r__1;
complex q__1, q__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer j;
real ajj;
extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
*, complex *, integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *);
logical upper;
extern /* Subroutine */ int clacgv_(integer *, complex *, integer *),
csscal_(integer *, real *, complex *, integer *), xerbla_(char *,
integer *);
extern logical sisnan_(real *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CPOTF2 computes the Cholesky factorization of a complex Hermitian */
/* positive definite matrix A. */
/* The factorization has the form */
/* A = U' * U , if UPLO = 'U', or */
/* A = L * L', if UPLO = 'L', */
/* where U is an upper triangular matrix and L is lower triangular. */
/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies whether the upper or lower triangular part of the */
/* Hermitian matrix A is stored. */
/* = 'U': Upper triangular */
/* = 'L': Lower triangular */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) COMPLEX array, dimension (LDA,N) */
/* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
/* n by n upper triangular part of A contains the upper */
/* triangular part of the matrix A, and the strictly lower */
/* triangular part of A is not referenced. If UPLO = 'L', the */
/* leading n by n lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. */
/* On exit, if INFO = 0, the factor U or L from the Cholesky */
/* factorization A = U'*U or A = L*L'. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -k, the k-th argument had an illegal value */
/* > 0: if INFO = k, the leading minor of order k is not */
/* positive definite, and the factorization could not be */
/* completed. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CPOTF2", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (upper) {
/* Compute the Cholesky factorization A = U'*U. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Compute U(J,J) and test for non-positive-definiteness. */
i__2 = j + j * a_dim1;
r__1 = a[i__2].r;
i__3 = j - 1;
cdotc_(&q__2, &i__3, &a[j * a_dim1 + 1], &c__1, &a[j * a_dim1 + 1]
, &c__1);
q__1.r = r__1 - q__2.r, q__1.i = -q__2.i;
ajj = q__1.r;
if (ajj <= 0.f || sisnan_(&ajj)) {
i__2 = j + j * a_dim1;
a[i__2].r = ajj, a[i__2].i = 0.f;
goto L30;
}
ajj = sqrt(ajj);
i__2 = j + j * a_dim1;
a[i__2].r = ajj, a[i__2].i = 0.f;
/* Compute elements J+1:N of row J. */
if (j < *n) {
i__2 = j - 1;
clacgv_(&i__2, &a[j * a_dim1 + 1], &c__1);
i__2 = j - 1;
i__3 = *n - j;
q__1.r = -1.f, q__1.i = -0.f;
cgemv_("Transpose", &i__2, &i__3, &q__1, &a[(j + 1) * a_dim1
+ 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b1, &a[j + (
j + 1) * a_dim1], lda);
i__2 = j - 1;
clacgv_(&i__2, &a[j * a_dim1 + 1], &c__1);
i__2 = *n - j;
r__1 = 1.f / ajj;
csscal_(&i__2, &r__1, &a[j + (j + 1) * a_dim1], lda);
}
/* L10: */
}
} else {
/* Compute the Cholesky factorization A = L*L'. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Compute L(J,J) and test for non-positive-definiteness. */
i__2 = j + j * a_dim1;
r__1 = a[i__2].r;
i__3 = j - 1;
cdotc_(&q__2, &i__3, &a[j + a_dim1], lda, &a[j + a_dim1], lda);
q__1.r = r__1 - q__2.r, q__1.i = -q__2.i;
ajj = q__1.r;
if (ajj <= 0.f || sisnan_(&ajj)) {
i__2 = j + j * a_dim1;
a[i__2].r = ajj, a[i__2].i = 0.f;
goto L30;
}
ajj = sqrt(ajj);
i__2 = j + j * a_dim1;
a[i__2].r = ajj, a[i__2].i = 0.f;
/* Compute elements J+1:N of column J. */
if (j < *n) {
i__2 = j - 1;
clacgv_(&i__2, &a[j + a_dim1], lda);
i__2 = *n - j;
i__3 = j - 1;
q__1.r = -1.f, q__1.i = -0.f;
cgemv_("No transpose", &i__2, &i__3, &q__1, &a[j + 1 + a_dim1]
, lda, &a[j + a_dim1], lda, &c_b1, &a[j + 1 + j *
a_dim1], &c__1);
i__2 = j - 1;
clacgv_(&i__2, &a[j + a_dim1], lda);
i__2 = *n - j;
r__1 = 1.f / ajj;
csscal_(&i__2, &r__1, &a[j + 1 + j * a_dim1], &c__1);
}
/* L20: */
}
}
goto L40;
L30:
*info = j;
L40:
return 0;
/* End of CPOTF2 */
} /* cpotf2_ */
|