aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cpoequ.c
blob: a6c8498b8e4c2d760fe756cfa997222a94c55424 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/* cpoequ.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int cpoequ_(integer *n, complex *a, integer *lda, real *s, 
	real *scond, real *amax, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__;
    real smin;
    extern /* Subroutine */ int xerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CPOEQU computes row and column scalings intended to equilibrate a */
/*  Hermitian positive definite matrix A and reduce its condition number */
/*  (with respect to the two-norm).  S contains the scale factors, */
/*  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with */
/*  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This */
/*  choice of S puts the condition number of B within a factor N of the */
/*  smallest possible condition number over all possible diagonal */
/*  scalings. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input) COMPLEX array, dimension (LDA,N) */
/*          The N-by-N Hermitian positive definite matrix whose scaling */
/*          factors are to be computed.  Only the diagonal elements of A */
/*          are referenced. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  S       (output) REAL array, dimension (N) */
/*          If INFO = 0, S contains the scale factors for A. */

/*  SCOND   (output) REAL */
/*          If INFO = 0, S contains the ratio of the smallest S(i) to */
/*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too */
/*          large nor too small, it is not worth scaling by S. */

/*  AMAX    (output) REAL */
/*          Absolute value of largest matrix element.  If AMAX is very */
/*          close to overflow or very close to underflow, the matrix */
/*          should be scaled. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the i-th diagonal element is nonpositive. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --s;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -1;
    } else if (*lda < max(1,*n)) {
	*info = -3;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPOEQU", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	*scond = 1.f;
	*amax = 0.f;
	return 0;
    }

/*     Find the minimum and maximum diagonal elements. */

    i__1 = a_dim1 + 1;
    s[1] = a[i__1].r;
    smin = s[1];
    *amax = s[1];
    i__1 = *n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	i__2 = i__ + i__ * a_dim1;
	s[i__] = a[i__2].r;
/* Computing MIN */
	r__1 = smin, r__2 = s[i__];
	smin = dmin(r__1,r__2);
/* Computing MAX */
	r__1 = *amax, r__2 = s[i__];
	*amax = dmax(r__1,r__2);
/* L10: */
    }

    if (smin <= 0.f) {

/*        Find the first non-positive diagonal element and return. */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (s[i__] <= 0.f) {
		*info = i__;
		return 0;
	    }
/* L20: */
	}
    } else {

/*        Set the scale factors to the reciprocals */
/*        of the diagonal elements. */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    s[i__] = 1.f / sqrt(s[i__]);
/* L30: */
	}

/*        Compute SCOND = min(S(I)) / max(S(I)) */

	*scond = sqrt(smin) / sqrt(*amax);
    }
    return 0;

/*     End of CPOEQU */

} /* cpoequ_ */