1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
/* clatzm.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;
/* Subroutine */ int clatzm_(char *side, integer *m, integer *n, complex *v,
integer *incv, complex *tau, complex *c1, complex *c2, integer *ldc,
complex *work)
{
/* System generated locals */
integer c1_dim1, c1_offset, c2_dim1, c2_offset, i__1;
complex q__1;
/* Local variables */
extern /* Subroutine */ int cgerc_(integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, integer *),
cgemv_(char *, integer *, integer *, complex *, complex *,
integer *, complex *, integer *, complex *, complex *, integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int cgeru_(integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, integer *),
ccopy_(integer *, complex *, integer *, complex *, integer *),
caxpy_(integer *, complex *, complex *, integer *, complex *,
integer *), clacgv_(integer *, complex *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* This routine is deprecated and has been replaced by routine CUNMRZ. */
/* CLATZM applies a Householder matrix generated by CTZRQF to a matrix. */
/* Let P = I - tau*u*u', u = ( 1 ), */
/* ( v ) */
/* where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if */
/* SIDE = 'R'. */
/* If SIDE equals 'L', let */
/* C = [ C1 ] 1 */
/* [ C2 ] m-1 */
/* n */
/* Then C is overwritten by P*C. */
/* If SIDE equals 'R', let */
/* C = [ C1, C2 ] m */
/* 1 n-1 */
/* Then C is overwritten by C*P. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': form P * C */
/* = 'R': form C * P */
/* M (input) INTEGER */
/* The number of rows of the matrix C. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. */
/* V (input) COMPLEX array, dimension */
/* (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
/* (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
/* The vector v in the representation of P. V is not used */
/* if TAU = 0. */
/* INCV (input) INTEGER */
/* The increment between elements of v. INCV <> 0 */
/* TAU (input) COMPLEX */
/* The value tau in the representation of P. */
/* C1 (input/output) COMPLEX array, dimension */
/* (LDC,N) if SIDE = 'L' */
/* (M,1) if SIDE = 'R' */
/* On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 */
/* if SIDE = 'R'. */
/* On exit, the first row of P*C if SIDE = 'L', or the first */
/* column of C*P if SIDE = 'R'. */
/* C2 (input/output) COMPLEX array, dimension */
/* (LDC, N) if SIDE = 'L' */
/* (LDC, N-1) if SIDE = 'R' */
/* On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the */
/* m x (n - 1) matrix C2 if SIDE = 'R'. */
/* On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P */
/* if SIDE = 'R'. */
/* LDC (input) INTEGER */
/* The leading dimension of the arrays C1 and C2. */
/* LDC >= max(1,M). */
/* WORK (workspace) COMPLEX array, dimension */
/* (N) if SIDE = 'L' */
/* (M) if SIDE = 'R' */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--v;
c2_dim1 = *ldc;
c2_offset = 1 + c2_dim1;
c2 -= c2_offset;
c1_dim1 = *ldc;
c1_offset = 1 + c1_dim1;
c1 -= c1_offset;
--work;
/* Function Body */
if (min(*m,*n) == 0 || tau->r == 0.f && tau->i == 0.f) {
return 0;
}
if (lsame_(side, "L")) {
/* w := conjg( C1 + v' * C2 ) */
ccopy_(n, &c1[c1_offset], ldc, &work[1], &c__1);
clacgv_(n, &work[1], &c__1);
i__1 = *m - 1;
cgemv_("Conjugate transpose", &i__1, n, &c_b1, &c2[c2_offset], ldc, &
v[1], incv, &c_b1, &work[1], &c__1);
/* [ C1 ] := [ C1 ] - tau* [ 1 ] * w' */
/* [ C2 ] [ C2 ] [ v ] */
clacgv_(n, &work[1], &c__1);
q__1.r = -tau->r, q__1.i = -tau->i;
caxpy_(n, &q__1, &work[1], &c__1, &c1[c1_offset], ldc);
i__1 = *m - 1;
q__1.r = -tau->r, q__1.i = -tau->i;
cgeru_(&i__1, n, &q__1, &v[1], incv, &work[1], &c__1, &c2[c2_offset],
ldc);
} else if (lsame_(side, "R")) {
/* w := C1 + C2 * v */
ccopy_(m, &c1[c1_offset], &c__1, &work[1], &c__1);
i__1 = *n - 1;
cgemv_("No transpose", m, &i__1, &c_b1, &c2[c2_offset], ldc, &v[1],
incv, &c_b1, &work[1], &c__1);
/* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v'] */
q__1.r = -tau->r, q__1.i = -tau->i;
caxpy_(m, &q__1, &work[1], &c__1, &c1[c1_offset], &c__1);
i__1 = *n - 1;
q__1.r = -tau->r, q__1.i = -tau->i;
cgerc_(m, &i__1, &q__1, &work[1], &c__1, &v[1], incv, &c2[c2_offset],
ldc);
}
return 0;
/* End of CLATZM */
} /* clatzm_ */
|