aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/clarzt.c
blob: 8287e70d0d9b5a0365935176403dcf3bb171c0e2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/* clarzt.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static complex c_b1 = {0.f,0.f};
static integer c__1 = 1;

/* Subroutine */ int clarzt_(char *direct, char *storev, integer *n, integer *
	k, complex *v, integer *ldv, complex *tau, complex *t, integer *ldt)
{
    /* System generated locals */
    integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2;
    complex q__1;

    /* Local variables */
    integer i__, j, info;
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int ctrmv_(char *, char *, char *, integer *, 
	    complex *, integer *, complex *, integer *), clacgv_(integer *, complex *, integer *), xerbla_(char *, 
	     integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CLARZT forms the triangular factor T of a complex block reflector */
/*  H of order > n, which is defined as a product of k elementary */
/*  reflectors. */

/*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; */

/*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. */

/*  If STOREV = 'C', the vector which defines the elementary reflector */
/*  H(i) is stored in the i-th column of the array V, and */

/*     H  =  I - V * T * V' */

/*  If STOREV = 'R', the vector which defines the elementary reflector */
/*  H(i) is stored in the i-th row of the array V, and */

/*     H  =  I - V' * T * V */

/*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported. */

/*  Arguments */
/*  ========= */

/*  DIRECT  (input) CHARACTER*1 */
/*          Specifies the order in which the elementary reflectors are */
/*          multiplied to form the block reflector: */
/*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) */
/*          = 'B': H = H(k) . . . H(2) H(1) (Backward) */

/*  STOREV  (input) CHARACTER*1 */
/*          Specifies how the vectors which define the elementary */
/*          reflectors are stored (see also Further Details): */
/*          = 'C': columnwise                        (not supported yet) */
/*          = 'R': rowwise */

/*  N       (input) INTEGER */
/*          The order of the block reflector H. N >= 0. */

/*  K       (input) INTEGER */
/*          The order of the triangular factor T (= the number of */
/*          elementary reflectors). K >= 1. */

/*  V       (input/output) COMPLEX array, dimension */
/*                               (LDV,K) if STOREV = 'C' */
/*                               (LDV,N) if STOREV = 'R' */
/*          The matrix V. See further details. */

/*  LDV     (input) INTEGER */
/*          The leading dimension of the array V. */
/*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. */

/*  TAU     (input) COMPLEX array, dimension (K) */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i). */

/*  T       (output) COMPLEX array, dimension (LDT,K) */
/*          The k by k triangular factor T of the block reflector. */
/*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is */
/*          lower triangular. The rest of the array is not used. */

/*  LDT     (input) INTEGER */
/*          The leading dimension of the array T. LDT >= K. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */

/*  The shape of the matrix V and the storage of the vectors which define */
/*  the H(i) is best illustrated by the following example with n = 5 and */
/*  k = 3. The elements equal to 1 are not stored; the corresponding */
/*  array elements are modified but restored on exit. The rest of the */
/*  array is not used. */

/*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R': */

/*                                              ______V_____ */
/*         ( v1 v2 v3 )                        /            \ */
/*         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 ) */
/*     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   ) */
/*         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     ) */
/*         ( v1 v2 v3 ) */
/*            .  .  . */
/*            .  .  . */
/*            1  .  . */
/*               1  . */
/*                  1 */

/*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R': */

/*                                                        ______V_____ */
/*            1                                          /            \ */
/*            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 ) */
/*            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 ) */
/*            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 ) */
/*            .  .  . */
/*         ( v1 v2 v3 ) */
/*         ( v1 v2 v3 ) */
/*     V = ( v1 v2 v3 ) */
/*         ( v1 v2 v3 ) */
/*         ( v1 v2 v3 ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Check for currently supported options */

    /* Parameter adjustments */
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --tau;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;

    /* Function Body */
    info = 0;
    if (! lsame_(direct, "B")) {
	info = -1;
    } else if (! lsame_(storev, "R")) {
	info = -2;
    }
    if (info != 0) {
	i__1 = -info;
	xerbla_("CLARZT", &i__1);
	return 0;
    }

    for (i__ = *k; i__ >= 1; --i__) {
	i__1 = i__;
	if (tau[i__1].r == 0.f && tau[i__1].i == 0.f) {

/*           H(i)  =  I */

	    i__1 = *k;
	    for (j = i__; j <= i__1; ++j) {
		i__2 = j + i__ * t_dim1;
		t[i__2].r = 0.f, t[i__2].i = 0.f;
/* L10: */
	    }
	} else {

/*           general case */

	    if (i__ < *k) {

/*              T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)' */

		clacgv_(n, &v[i__ + v_dim1], ldv);
		i__1 = *k - i__;
		i__2 = i__;
		q__1.r = -tau[i__2].r, q__1.i = -tau[i__2].i;
		cgemv_("No transpose", &i__1, n, &q__1, &v[i__ + 1 + v_dim1], 
			ldv, &v[i__ + v_dim1], ldv, &c_b1, &t[i__ + 1 + i__ * 
			t_dim1], &c__1);
		clacgv_(n, &v[i__ + v_dim1], ldv);

/*              T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i) */

		i__1 = *k - i__;
		ctrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__ + 1 
			+ (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ * t_dim1]
, &c__1);
	    }
	    i__1 = i__ + i__ * t_dim1;
	    i__2 = i__;
	    t[i__1].r = tau[i__2].r, t[i__1].i = tau[i__2].i;
	}
/* L20: */
    }
    return 0;

/*     End of CLARZT */

} /* clarzt_ */