1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
/* clar2v.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int clar2v_(integer *n, complex *x, complex *y, complex *z__,
integer *incx, real *c__, complex *s, integer *incc)
{
/* System generated locals */
integer i__1, i__2;
real r__1;
complex q__1, q__2, q__3, q__4, q__5;
/* Builtin functions */
double r_imag(complex *);
void r_cnjg(complex *, complex *);
/* Local variables */
integer i__;
complex t2, t3, t4;
real t5, t6;
integer ic;
real ci;
complex si;
integer ix;
real xi, yi;
complex zi;
real t1i, t1r, sii, zii, sir, zir;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CLAR2V applies a vector of complex plane rotations with real cosines */
/* from both sides to a sequence of 2-by-2 complex Hermitian matrices, */
/* defined by the elements of the vectors x, y and z. For i = 1,2,...,n */
/* ( x(i) z(i) ) := */
/* ( conjg(z(i)) y(i) ) */
/* ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) ) */
/* ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) ) */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The number of plane rotations to be applied. */
/* X (input/output) COMPLEX array, dimension (1+(N-1)*INCX) */
/* The vector x; the elements of x are assumed to be real. */
/* Y (input/output) COMPLEX array, dimension (1+(N-1)*INCX) */
/* The vector y; the elements of y are assumed to be real. */
/* Z (input/output) COMPLEX array, dimension (1+(N-1)*INCX) */
/* The vector z. */
/* INCX (input) INTEGER */
/* The increment between elements of X, Y and Z. INCX > 0. */
/* C (input) REAL array, dimension (1+(N-1)*INCC) */
/* The cosines of the plane rotations. */
/* S (input) COMPLEX array, dimension (1+(N-1)*INCC) */
/* The sines of the plane rotations. */
/* INCC (input) INTEGER */
/* The increment between elements of C and S. INCC > 0. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--s;
--c__;
--z__;
--y;
--x;
/* Function Body */
ix = 1;
ic = 1;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = ix;
xi = x[i__2].r;
i__2 = ix;
yi = y[i__2].r;
i__2 = ix;
zi.r = z__[i__2].r, zi.i = z__[i__2].i;
zir = zi.r;
zii = r_imag(&zi);
ci = c__[ic];
i__2 = ic;
si.r = s[i__2].r, si.i = s[i__2].i;
sir = si.r;
sii = r_imag(&si);
t1r = sir * zir - sii * zii;
t1i = sir * zii + sii * zir;
q__1.r = ci * zi.r, q__1.i = ci * zi.i;
t2.r = q__1.r, t2.i = q__1.i;
r_cnjg(&q__3, &si);
q__2.r = xi * q__3.r, q__2.i = xi * q__3.i;
q__1.r = t2.r - q__2.r, q__1.i = t2.i - q__2.i;
t3.r = q__1.r, t3.i = q__1.i;
r_cnjg(&q__2, &t2);
q__3.r = yi * si.r, q__3.i = yi * si.i;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
t4.r = q__1.r, t4.i = q__1.i;
t5 = ci * xi + t1r;
t6 = ci * yi - t1r;
i__2 = ix;
r__1 = ci * t5 + (sir * t4.r + sii * r_imag(&t4));
x[i__2].r = r__1, x[i__2].i = 0.f;
i__2 = ix;
r__1 = ci * t6 - (sir * t3.r - sii * r_imag(&t3));
y[i__2].r = r__1, y[i__2].i = 0.f;
i__2 = ix;
q__2.r = ci * t3.r, q__2.i = ci * t3.i;
r_cnjg(&q__4, &si);
q__5.r = t6, q__5.i = t1i;
q__3.r = q__4.r * q__5.r - q__4.i * q__5.i, q__3.i = q__4.r * q__5.i
+ q__4.i * q__5.r;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
ix += *incx;
ic += *incc;
/* L10: */
}
return 0;
/* End of CLAR2V */
} /* clar2v_ */
|