1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
/* claqhe.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int claqhe_(char *uplo, integer *n, complex *a, integer *lda,
real *s, real *scond, real *amax, char *equed)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
real r__1;
complex q__1;
/* Local variables */
integer i__, j;
real cj, large;
extern logical lsame_(char *, char *);
real small;
extern doublereal slamch_(char *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CLAQHE equilibrates a Hermitian matrix A using the scaling factors */
/* in the vector S. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies whether the upper or lower triangular part of the */
/* Hermitian matrix A is stored. */
/* = 'U': Upper triangular */
/* = 'L': Lower triangular */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) COMPLEX array, dimension (LDA,N) */
/* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
/* n by n upper triangular part of A contains the upper */
/* triangular part of the matrix A, and the strictly lower */
/* triangular part of A is not referenced. If UPLO = 'L', the */
/* leading n by n lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. */
/* On exit, if EQUED = 'Y', the equilibrated matrix: */
/* diag(S) * A * diag(S). */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(N,1). */
/* S (input) REAL array, dimension (N) */
/* The scale factors for A. */
/* SCOND (input) REAL */
/* Ratio of the smallest S(i) to the largest S(i). */
/* AMAX (input) REAL */
/* Absolute value of largest matrix entry. */
/* EQUED (output) CHARACTER*1 */
/* Specifies whether or not equilibration was done. */
/* = 'N': No equilibration. */
/* = 'Y': Equilibration was done, i.e., A has been replaced by */
/* diag(S) * A * diag(S). */
/* Internal Parameters */
/* =================== */
/* THRESH is a threshold value used to decide if scaling should be done */
/* based on the ratio of the scaling factors. If SCOND < THRESH, */
/* scaling is done. */
/* LARGE and SMALL are threshold values used to decide if scaling should */
/* be done based on the absolute size of the largest matrix element. */
/* If AMAX > LARGE or AMAX < SMALL, scaling is done. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Quick return if possible */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--s;
/* Function Body */
if (*n <= 0) {
*(unsigned char *)equed = 'N';
return 0;
}
/* Initialize LARGE and SMALL. */
small = slamch_("Safe minimum") / slamch_("Precision");
large = 1.f / small;
if (*scond >= .1f && *amax >= small && *amax <= large) {
/* No equilibration */
*(unsigned char *)equed = 'N';
} else {
/* Replace A by diag(S) * A * diag(S). */
if (lsame_(uplo, "U")) {
/* Upper triangle of A is stored. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
cj = s[j];
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
r__1 = cj * s[i__];
i__4 = i__ + j * a_dim1;
q__1.r = r__1 * a[i__4].r, q__1.i = r__1 * a[i__4].i;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L10: */
}
i__2 = j + j * a_dim1;
i__3 = j + j * a_dim1;
r__1 = cj * cj * a[i__3].r;
a[i__2].r = r__1, a[i__2].i = 0.f;
/* L20: */
}
} else {
/* Lower triangle of A is stored. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
cj = s[j];
i__2 = j + j * a_dim1;
i__3 = j + j * a_dim1;
r__1 = cj * cj * a[i__3].r;
a[i__2].r = r__1, a[i__2].i = 0.f;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
r__1 = cj * s[i__];
i__4 = i__ + j * a_dim1;
q__1.r = r__1 * a[i__4].r, q__1.i = r__1 * a[i__4].i;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L30: */
}
/* L40: */
}
}
*(unsigned char *)equed = 'Y';
}
return 0;
/* End of CLAQHE */
} /* claqhe_ */
|