aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cla_syrpvgrw.c
blob: 9d0c91de9211a14c76fb8e688326e222f21463c6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/* cla_syrpvgrw.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

doublereal cla_syrpvgrw__(char *uplo, integer *n, integer *info, complex *a, 
	integer *lda, complex *af, integer *ldaf, integer *ipiv, real *work, 
	ftnlen uplo_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2, i__3;
    real ret_val, r__1, r__2, r__3, r__4;

    /* Builtin functions */
    double r_imag(complex *);

    /* Local variables */
    integer i__, j, k, kp;
    real tmp, amax, umax;
    extern logical lsame_(char *, char *);
    integer ncols;
    logical upper;
    real rpvgrw;


/*     -- LAPACK routine (version 3.2.1)                                 -- */
/*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
/*     -- April 2009                                                   -- */

/*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/*     -- Univ. of California Berkeley and NAG Ltd.                    -- */

/*     .. */
/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CLA_SYRPVGRW computes the reciprocal pivot growth factor */
/*  norm(A)/norm(U). The "max absolute element" norm is used. If this is */
/*  much less than 1, the stability of the LU factorization of the */
/*  (equilibrated) matrix A could be poor. This also means that the */
/*  solution X, estimated condition numbers, and error bounds could be */
/*  unreliable. */

/*  Arguments */
/*  ========= */

/*     UPLO    (input) CHARACTER*1 */
/*       = 'U':  Upper triangle of A is stored; */
/*       = 'L':  Lower triangle of A is stored. */

/*     N       (input) INTEGER */
/*     The number of linear equations, i.e., the order of the */
/*     matrix A.  N >= 0. */

/*     INFO    (input) INTEGER */
/*     The value of INFO returned from CSYTRF, .i.e., the pivot in */
/*     column INFO is exactly 0. */

/*     NCOLS   (input) INTEGER */
/*     The number of columns of the matrix A. NCOLS >= 0. */

/*     A       (input) COMPLEX array, dimension (LDA,N) */
/*     On entry, the N-by-N matrix A. */

/*     LDA     (input) INTEGER */
/*     The leading dimension of the array A.  LDA >= max(1,N). */

/*     AF      (input) COMPLEX array, dimension (LDAF,N) */
/*     The block diagonal matrix D and the multipliers used to */
/*     obtain the factor U or L as computed by CSYTRF. */

/*     LDAF    (input) INTEGER */
/*     The leading dimension of the array AF.  LDAF >= max(1,N). */

/*     IPIV    (input) INTEGER array, dimension (N) */
/*     Details of the interchanges and the block structure of D */
/*     as determined by CSYTRF. */

/*     WORK    (input) COMPLEX array, dimension (2*N) */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function Definitions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    af_dim1 = *ldaf;
    af_offset = 1 + af_dim1;
    af -= af_offset;
    --ipiv;
    --work;

    /* Function Body */
    upper = lsame_("Upper", uplo);
    if (*info == 0) {
	if (upper) {
	    ncols = 1;
	} else {
	    ncols = *n;
	}
    } else {
	ncols = *info;
    }
    rpvgrw = 1.f;
    i__1 = *n << 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	work[i__] = 0.f;
    }

/*     Find the max magnitude entry of each column of A.  Compute the max */
/*     for all N columns so we can apply the pivot permutation while */
/*     looping below.  Assume a full factorization is the common case. */

    if (upper) {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = j;
	    for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
		i__3 = i__ + j * a_dim1;
		r__3 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[i__ 
			+ j * a_dim1]), dabs(r__2)), r__4 = work[*n + i__];
		work[*n + i__] = dmax(r__3,r__4);
/* Computing MAX */
		i__3 = i__ + j * a_dim1;
		r__3 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[i__ 
			+ j * a_dim1]), dabs(r__2)), r__4 = work[*n + j];
		work[*n + j] = dmax(r__3,r__4);
	    }
	}
    } else {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = j; i__ <= i__2; ++i__) {
/* Computing MAX */
		i__3 = i__ + j * a_dim1;
		r__3 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[i__ 
			+ j * a_dim1]), dabs(r__2)), r__4 = work[*n + i__];
		work[*n + i__] = dmax(r__3,r__4);
/* Computing MAX */
		i__3 = i__ + j * a_dim1;
		r__3 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[i__ 
			+ j * a_dim1]), dabs(r__2)), r__4 = work[*n + j];
		work[*n + j] = dmax(r__3,r__4);
	    }
	}
    }

/*     Now find the max magnitude entry of each column of U or L.  Also */
/*     permute the magnitudes of A above so they're in the same order as */
/*     the factor. */

/*     The iteration orders and permutations were copied from csytrs. */
/*     Calls to SSWAP would be severe overkill. */

    if (upper) {
	k = *n;
	while(k < ncols && k > 0) {
	    if (ipiv[k] > 0) {
/*              1x1 pivot */
		kp = ipiv[k];
		if (kp != k) {
		    tmp = work[*n + k];
		    work[*n + k] = work[*n + kp];
		    work[*n + kp] = tmp;
		}
		i__1 = k;
		for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
		    i__2 = i__ + k * af_dim1;
		    r__3 = (r__1 = af[i__2].r, dabs(r__1)) + (r__2 = r_imag(&
			    af[i__ + k * af_dim1]), dabs(r__2)), r__4 = work[
			    k];
		    work[k] = dmax(r__3,r__4);
		}
		--k;
	    } else {
/*              2x2 pivot */
		kp = -ipiv[k];
		tmp = work[*n + k - 1];
		work[*n + k - 1] = work[*n + kp];
		work[*n + kp] = tmp;
		i__1 = k - 1;
		for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
		    i__2 = i__ + k * af_dim1;
		    r__3 = (r__1 = af[i__2].r, dabs(r__1)) + (r__2 = r_imag(&
			    af[i__ + k * af_dim1]), dabs(r__2)), r__4 = work[
			    k];
		    work[k] = dmax(r__3,r__4);
/* Computing MAX */
		    i__2 = i__ + (k - 1) * af_dim1;
		    r__3 = (r__1 = af[i__2].r, dabs(r__1)) + (r__2 = r_imag(&
			    af[i__ + (k - 1) * af_dim1]), dabs(r__2)), r__4 = 
			    work[k - 1];
		    work[k - 1] = dmax(r__3,r__4);
		}
/* Computing MAX */
		i__1 = k + k * af_dim1;
		r__3 = (r__1 = af[i__1].r, dabs(r__1)) + (r__2 = r_imag(&af[k 
			+ k * af_dim1]), dabs(r__2)), r__4 = work[k];
		work[k] = dmax(r__3,r__4);
		k += -2;
	    }
	}
	k = ncols;
	while(k <= *n) {
	    if (ipiv[k] > 0) {
		kp = ipiv[k];
		if (kp != k) {
		    tmp = work[*n + k];
		    work[*n + k] = work[*n + kp];
		    work[*n + kp] = tmp;
		}
		++k;
	    } else {
		kp = -ipiv[k];
		tmp = work[*n + k];
		work[*n + k] = work[*n + kp];
		work[*n + kp] = tmp;
		k += 2;
	    }
	}
    } else {
	k = 1;
	while(k <= ncols) {
	    if (ipiv[k] > 0) {
/*              1x1 pivot */
		kp = ipiv[k];
		if (kp != k) {
		    tmp = work[*n + k];
		    work[*n + k] = work[*n + kp];
		    work[*n + kp] = tmp;
		}
		i__1 = *n;
		for (i__ = k; i__ <= i__1; ++i__) {
/* Computing MAX */
		    i__2 = i__ + k * af_dim1;
		    r__3 = (r__1 = af[i__2].r, dabs(r__1)) + (r__2 = r_imag(&
			    af[i__ + k * af_dim1]), dabs(r__2)), r__4 = work[
			    k];
		    work[k] = dmax(r__3,r__4);
		}
		++k;
	    } else {
/*              2x2 pivot */
		kp = -ipiv[k];
		tmp = work[*n + k + 1];
		work[*n + k + 1] = work[*n + kp];
		work[*n + kp] = tmp;
		i__1 = *n;
		for (i__ = k + 1; i__ <= i__1; ++i__) {
/* Computing MAX */
		    i__2 = i__ + k * af_dim1;
		    r__3 = (r__1 = af[i__2].r, dabs(r__1)) + (r__2 = r_imag(&
			    af[i__ + k * af_dim1]), dabs(r__2)), r__4 = work[
			    k];
		    work[k] = dmax(r__3,r__4);
/* Computing MAX */
		    i__2 = i__ + (k + 1) * af_dim1;
		    r__3 = (r__1 = af[i__2].r, dabs(r__1)) + (r__2 = r_imag(&
			    af[i__ + (k + 1) * af_dim1]), dabs(r__2)), r__4 = 
			    work[k + 1];
		    work[k + 1] = dmax(r__3,r__4);
		}
/* Computing MAX */
		i__1 = k + k * af_dim1;
		r__3 = (r__1 = af[i__1].r, dabs(r__1)) + (r__2 = r_imag(&af[k 
			+ k * af_dim1]), dabs(r__2)), r__4 = work[k];
		work[k] = dmax(r__3,r__4);
		k += 2;
	    }
	}
	k = ncols;
	while(k >= 1) {
	    if (ipiv[k] > 0) {
		kp = ipiv[k];
		if (kp != k) {
		    tmp = work[*n + k];
		    work[*n + k] = work[*n + kp];
		    work[*n + kp] = tmp;
		}
		--k;
	    } else {
		kp = -ipiv[k];
		tmp = work[*n + k];
		work[*n + k] = work[*n + kp];
		work[*n + kp] = tmp;
		k += -2;
	    }
	}
    }

/*     Compute the *inverse* of the max element growth factor.  Dividing */
/*     by zero would imply the largest entry of the factor's column is */
/*     zero.  Than can happen when either the column of A is zero or */
/*     massive pivots made the factor underflow to zero.  Neither counts */
/*     as growth in itself, so simply ignore terms with zero */
/*     denominators. */

    if (upper) {
	i__1 = *n;
	for (i__ = ncols; i__ <= i__1; ++i__) {
	    umax = work[i__];
	    amax = work[*n + i__];
	    if (umax != 0.f) {
/* Computing MIN */
		r__1 = amax / umax;
		rpvgrw = dmin(r__1,rpvgrw);
	    }
	}
    } else {
	i__1 = ncols;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    umax = work[i__];
	    amax = work[*n + i__];
	    if (umax != 0.f) {
/* Computing MIN */
		r__1 = amax / umax;
		rpvgrw = dmin(r__1,rpvgrw);
	    }
	}
    }
    ret_val = rpvgrw;
    return ret_val;
} /* cla_syrpvgrw__ */