1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
/* chesvx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
/* Subroutine */ int chesvx_(char *fact, char *uplo, integer *n, integer *
nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer *
ipiv, complex *b, integer *ldb, complex *x, integer *ldx, real *rcond,
real *ferr, real *berr, complex *work, integer *lwork, real *rwork,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
x_offset, i__1, i__2;
/* Local variables */
integer nb;
extern logical lsame_(char *, char *);
real anorm;
extern doublereal clanhe_(char *, char *, integer *, complex *, integer *,
real *);
extern /* Subroutine */ int checon_(char *, integer *, complex *, integer
*, integer *, real *, real *, complex *, integer *);
extern doublereal slamch_(char *);
logical nofact;
extern /* Subroutine */ int cherfs_(char *, integer *, integer *, complex
*, integer *, complex *, integer *, integer *, complex *, integer
*, complex *, integer *, real *, real *, complex *, real *,
integer *), chetrf_(char *, integer *, complex *, integer
*, integer *, complex *, integer *, integer *), clacpy_(
char *, integer *, integer *, complex *, integer *, complex *,
integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *), chetrs_(
char *, integer *, integer *, complex *, integer *, integer *,
complex *, integer *, integer *);
integer lwkopt;
logical lquery;
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CHESVX uses the diagonal pivoting factorization to compute the */
/* solution to a complex system of linear equations A * X = B, */
/* where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS */
/* matrices. */
/* Error bounds on the solution and a condition estimate are also */
/* provided. */
/* Description */
/* =========== */
/* The following steps are performed: */
/* 1. If FACT = 'N', the diagonal pivoting method is used to factor A. */
/* The form of the factorization is */
/* A = U * D * U**H, if UPLO = 'U', or */
/* A = L * D * L**H, if UPLO = 'L', */
/* where U (or L) is a product of permutation and unit upper (lower) */
/* triangular matrices, and D is Hermitian and block diagonal with */
/* 1-by-1 and 2-by-2 diagonal blocks. */
/* 2. If some D(i,i)=0, so that D is exactly singular, then the routine */
/* returns with INFO = i. Otherwise, the factored form of A is used */
/* to estimate the condition number of the matrix A. If the */
/* reciprocal of the condition number is less than machine precision, */
/* INFO = N+1 is returned as a warning, but the routine still goes on */
/* to solve for X and compute error bounds as described below. */
/* 3. The system of equations is solved for X using the factored form */
/* of A. */
/* 4. Iterative refinement is applied to improve the computed solution */
/* matrix and calculate error bounds and backward error estimates */
/* for it. */
/* Arguments */
/* ========= */
/* FACT (input) CHARACTER*1 */
/* Specifies whether or not the factored form of A has been */
/* supplied on entry. */
/* = 'F': On entry, AF and IPIV contain the factored form */
/* of A. A, AF and IPIV will not be modified. */
/* = 'N': The matrix A will be copied to AF and factored. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrices B and X. NRHS >= 0. */
/* A (input) COMPLEX array, dimension (LDA,N) */
/* The Hermitian matrix A. If UPLO = 'U', the leading N-by-N */
/* upper triangular part of A contains the upper triangular part */
/* of the matrix A, and the strictly lower triangular part of A */
/* is not referenced. If UPLO = 'L', the leading N-by-N lower */
/* triangular part of A contains the lower triangular part of */
/* the matrix A, and the strictly upper triangular part of A is */
/* not referenced. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* AF (input or output) COMPLEX array, dimension (LDAF,N) */
/* If FACT = 'F', then AF is an input argument and on entry */
/* contains the block diagonal matrix D and the multipliers used */
/* to obtain the factor U or L from the factorization */
/* A = U*D*U**H or A = L*D*L**H as computed by CHETRF. */
/* If FACT = 'N', then AF is an output argument and on exit */
/* returns the block diagonal matrix D and the multipliers used */
/* to obtain the factor U or L from the factorization */
/* A = U*D*U**H or A = L*D*L**H. */
/* LDAF (input) INTEGER */
/* The leading dimension of the array AF. LDAF >= max(1,N). */
/* IPIV (input or output) INTEGER array, dimension (N) */
/* If FACT = 'F', then IPIV is an input argument and on entry */
/* contains details of the interchanges and the block structure */
/* of D, as determined by CHETRF. */
/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
/* If FACT = 'N', then IPIV is an output argument and on exit */
/* contains details of the interchanges and the block structure */
/* of D, as determined by CHETRF. */
/* B (input) COMPLEX array, dimension (LDB,NRHS) */
/* The N-by-NRHS right hand side matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* X (output) COMPLEX array, dimension (LDX,NRHS) */
/* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X. LDX >= max(1,N). */
/* RCOND (output) REAL */
/* The estimate of the reciprocal condition number of the matrix */
/* A. If RCOND is less than the machine precision (in */
/* particular, if RCOND = 0), the matrix is singular to working */
/* precision. This condition is indicated by a return code of */
/* INFO > 0. */
/* FERR (output) REAL array, dimension (NRHS) */
/* The estimated forward error bound for each solution vector */
/* X(j) (the j-th column of the solution matrix X). */
/* If XTRUE is the true solution corresponding to X(j), FERR(j) */
/* is an estimated upper bound for the magnitude of the largest */
/* element in (X(j) - XTRUE) divided by the magnitude of the */
/* largest element in X(j). The estimate is as reliable as */
/* the estimate for RCOND, and is almost always a slight */
/* overestimate of the true error. */
/* BERR (output) REAL array, dimension (NRHS) */
/* The componentwise relative backward error of each solution */
/* vector X(j) (i.e., the smallest relative change in */
/* any element of A or B that makes X(j) an exact solution). */
/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The length of WORK. LWORK >= max(1,2*N), and for best */
/* performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where */
/* NB is the optimal blocksize for CHETRF. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* RWORK (workspace) REAL array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, and i is */
/* <= N: D(i,i) is exactly zero. The factorization */
/* has been completed but the factor D is exactly */
/* singular, so the solution and error bounds could */
/* not be computed. RCOND = 0 is returned. */
/* = N+1: D is nonsingular, but RCOND is less than machine */
/* precision, meaning that the matrix is singular */
/* to working precision. Nevertheless, the */
/* solution and error bounds are computed because */
/* there are a number of situations where the */
/* computed solution can be more accurate than the */
/* value of RCOND would suggest. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
af_dim1 = *ldaf;
af_offset = 1 + af_dim1;
af -= af_offset;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--ferr;
--berr;
--work;
--rwork;
/* Function Body */
*info = 0;
nofact = lsame_(fact, "N");
lquery = *lwork == -1;
if (! nofact && ! lsame_(fact, "F")) {
*info = -1;
} else if (! lsame_(uplo, "U") && ! lsame_(uplo,
"L")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*nrhs < 0) {
*info = -4;
} else if (*lda < max(1,*n)) {
*info = -6;
} else if (*ldaf < max(1,*n)) {
*info = -8;
} else if (*ldb < max(1,*n)) {
*info = -11;
} else if (*ldx < max(1,*n)) {
*info = -13;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *n << 1;
if (*lwork < max(i__1,i__2) && ! lquery) {
*info = -18;
}
}
if (*info == 0) {
/* Computing MAX */
i__1 = 1, i__2 = *n << 1;
lwkopt = max(i__1,i__2);
if (nofact) {
nb = ilaenv_(&c__1, "CHETRF", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
i__1 = lwkopt, i__2 = *n * nb;
lwkopt = max(i__1,i__2);
}
work[1].r = (real) lwkopt, work[1].i = 0.f;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CHESVX", &i__1);
return 0;
} else if (lquery) {
return 0;
}
if (nofact) {
/* Compute the factorization A = U*D*U' or A = L*D*L'. */
clacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf);
chetrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], lwork,
info);
/* Return if INFO is non-zero. */
if (*info > 0) {
*rcond = 0.f;
return 0;
}
}
/* Compute the norm of the matrix A. */
anorm = clanhe_("I", uplo, n, &a[a_offset], lda, &rwork[1]);
/* Compute the reciprocal of the condition number of A. */
checon_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &anorm, rcond, &work[1],
info);
/* Compute the solution vectors X. */
clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
chetrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx,
info);
/* Use iterative refinement to improve the computed solutions and */
/* compute error bounds and backward error estimates for them. */
cherfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1],
&b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1]
, &rwork[1], info);
/* Set INFO = N+1 if the matrix is singular to working precision. */
if (*rcond < slamch_("Epsilon")) {
*info = *n + 1;
}
work[1].r = (real) lwkopt, work[1].i = 0.f;
return 0;
/* End of CHESVX */
} /* chesvx_ */
|