1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
/* chbev.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static real c_b11 = 1.f;
static integer c__1 = 1;
/* Subroutine */ int chbev_(char *jobz, char *uplo, integer *n, integer *kd,
complex *ab, integer *ldab, real *w, complex *z__, integer *ldz,
complex *work, real *rwork, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, z_dim1, z_offset, i__1;
real r__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
real eps;
integer inde;
real anrm;
integer imax;
real rmin, rmax, sigma;
extern logical lsame_(char *, char *);
integer iinfo;
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
logical lower, wantz;
extern doublereal clanhb_(char *, char *, integer *, integer *, complex *,
integer *, real *);
integer iscale;
extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, complex *, integer *, integer *), chbtrd_(char *, char *, integer *, integer *, complex *,
integer *, real *, real *, complex *, integer *, complex *,
integer *);
extern doublereal slamch_(char *);
real safmin;
extern /* Subroutine */ int xerbla_(char *, integer *);
real bignum;
integer indrwk;
extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *,
complex *, integer *, real *, integer *), ssterf_(integer
*, real *, real *, integer *);
real smlnum;
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CHBEV computes all the eigenvalues and, optionally, eigenvectors of */
/* a complex Hermitian band matrix A. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* KD (input) INTEGER */
/* The number of superdiagonals of the matrix A if UPLO = 'U', */
/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
/* AB (input/output) COMPLEX array, dimension (LDAB, N) */
/* On entry, the upper or lower triangle of the Hermitian band */
/* matrix A, stored in the first KD+1 rows of the array. The */
/* j-th column of A is stored in the j-th column of the array AB */
/* as follows: */
/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
/* On exit, AB is overwritten by values generated during the */
/* reduction to tridiagonal form. If UPLO = 'U', the first */
/* superdiagonal and the diagonal of the tridiagonal matrix T */
/* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
/* the diagonal and first subdiagonal of T are returned in the */
/* first two rows of AB. */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KD + 1. */
/* W (output) REAL array, dimension (N) */
/* If INFO = 0, the eigenvalues in ascending order. */
/* Z (output) COMPLEX array, dimension (LDZ, N) */
/* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/* eigenvectors of the matrix A, with the i-th column of Z */
/* holding the eigenvector associated with W(i). */
/* If JOBZ = 'N', then Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= max(1,N). */
/* WORK (workspace) COMPLEX array, dimension (N) */
/* RWORK (workspace) REAL array, dimension (max(1,3*N-2)) */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = i, the algorithm failed to converge; i */
/* off-diagonal elements of an intermediate tridiagonal */
/* form did not converge to zero. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
--rwork;
/* Function Body */
wantz = lsame_(jobz, "V");
lower = lsame_(uplo, "L");
*info = 0;
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (! (lower || lsame_(uplo, "U"))) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*kd < 0) {
*info = -4;
} else if (*ldab < *kd + 1) {
*info = -6;
} else if (*ldz < 1 || wantz && *ldz < *n) {
*info = -9;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CHBEV ", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (lower) {
i__1 = ab_dim1 + 1;
w[1] = ab[i__1].r;
} else {
i__1 = *kd + 1 + ab_dim1;
w[1] = ab[i__1].r;
}
if (wantz) {
i__1 = z_dim1 + 1;
z__[i__1].r = 1.f, z__[i__1].i = 0.f;
}
return 0;
}
/* Get machine constants. */
safmin = slamch_("Safe minimum");
eps = slamch_("Precision");
smlnum = safmin / eps;
bignum = 1.f / smlnum;
rmin = sqrt(smlnum);
rmax = sqrt(bignum);
/* Scale matrix to allowable range, if necessary. */
anrm = clanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]);
iscale = 0;
if (anrm > 0.f && anrm < rmin) {
iscale = 1;
sigma = rmin / anrm;
} else if (anrm > rmax) {
iscale = 1;
sigma = rmax / anrm;
}
if (iscale == 1) {
if (lower) {
clascl_("B", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab,
info);
} else {
clascl_("Q", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab,
info);
}
}
/* Call CHBTRD to reduce Hermitian band matrix to tridiagonal form. */
inde = 1;
chbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &rwork[inde], &
z__[z_offset], ldz, &work[1], &iinfo);
/* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEQR. */
if (! wantz) {
ssterf_(n, &w[1], &rwork[inde], info);
} else {
indrwk = inde + *n;
csteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[
indrwk], info);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
if (iscale == 1) {
if (*info == 0) {
imax = *n;
} else {
imax = *info - 1;
}
r__1 = 1.f / sigma;
sscal_(&imax, &r__1, &w[1], &c__1);
}
return 0;
/* End of CHBEV */
} /* chbev_ */
|