aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cgeql2.c
blob: e26141146f027e9a36bbeb0d845d1348a828195c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/* cgeql2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int cgeql2_(integer *m, integer *n, complex *a, integer *lda, 
	 complex *tau, complex *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    complex q__1;

    /* Builtin functions */
    void r_cnjg(complex *, complex *);

    /* Local variables */
    integer i__, k;
    complex alpha;
    extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
, integer *, complex *, complex *, integer *, complex *), 
	    clarfp_(integer *, complex *, complex *, integer *, complex *), 
	    xerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CGEQL2 computes a QL factorization of a complex m by n matrix A: */
/*  A = Q * L. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA,N) */
/*          On entry, the m by n matrix A. */
/*          On exit, if m >= n, the lower triangle of the subarray */
/*          A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; */
/*          if m <= n, the elements on and below the (n-m)-th */
/*          superdiagonal contain the m by n lower trapezoidal matrix L; */
/*          the remaining elements, with the array TAU, represent the */
/*          unitary matrix Q as a product of elementary reflectors */
/*          (see Further Details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  TAU     (output) COMPLEX array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors (see Further */
/*          Details). */

/*  WORK    (workspace) COMPLEX array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(k) . . . H(2) H(1), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a complex scalar, and v is a complex vector with */
/*  v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in */
/*  A(1:m-k+i-1,n-k+i), and tau in TAU(i). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGEQL2", &i__1);
	return 0;
    }

    k = min(*m,*n);

    for (i__ = k; i__ >= 1; --i__) {

/*        Generate elementary reflector H(i) to annihilate */
/*        A(1:m-k+i-1,n-k+i) */

	i__1 = *m - k + i__ + (*n - k + i__) * a_dim1;
	alpha.r = a[i__1].r, alpha.i = a[i__1].i;
	i__1 = *m - k + i__;
	clarfp_(&i__1, &alpha, &a[(*n - k + i__) * a_dim1 + 1], &c__1, &tau[
		i__]);

/*        Apply H(i)' to A(1:m-k+i,1:n-k+i-1) from the left */

	i__1 = *m - k + i__ + (*n - k + i__) * a_dim1;
	a[i__1].r = 1.f, a[i__1].i = 0.f;
	i__1 = *m - k + i__;
	i__2 = *n - k + i__ - 1;
	r_cnjg(&q__1, &tau[i__]);
	clarf_("Left", &i__1, &i__2, &a[(*n - k + i__) * a_dim1 + 1], &c__1, &
		q__1, &a[a_offset], lda, &work[1]);
	i__1 = *m - k + i__ + (*n - k + i__) * a_dim1;
	a[i__1].r = alpha.r, a[i__1].i = alpha.i;
/* L10: */
    }
    return 0;

/*     End of CGEQL2 */

} /* cgeql2_ */