1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
/* cgehd2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int cgehd2_(integer *n, integer *ilo, integer *ihi, complex *
a, integer *lda, complex *tau, complex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
complex q__1;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
integer i__;
complex alpha;
extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
, integer *, complex *, complex *, integer *, complex *),
clarfg_(integer *, complex *, complex *, integer *, complex *),
xerbla_(char *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CGEHD2 reduces a complex general matrix A to upper Hessenberg form H */
/* by a unitary similarity transformation: Q' * A * Q = H . */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* It is assumed that A is already upper triangular in rows */
/* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
/* set by a previous call to CGEBAL; otherwise they should be */
/* set to 1 and N respectively. See Further Details. */
/* 1 <= ILO <= IHI <= max(1,N). */
/* A (input/output) COMPLEX array, dimension (LDA,N) */
/* On entry, the n by n general matrix to be reduced. */
/* On exit, the upper triangle and the first subdiagonal of A */
/* are overwritten with the upper Hessenberg matrix H, and the */
/* elements below the first subdiagonal, with the array TAU, */
/* represent the unitary matrix Q as a product of elementary */
/* reflectors. See Further Details. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* TAU (output) COMPLEX array, dimension (N-1) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). */
/* WORK (workspace) COMPLEX array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of (ihi-ilo) elementary */
/* reflectors */
/* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a complex scalar, and v is a complex vector with */
/* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
/* exit in A(i+2:ihi,i), and tau in TAU(i). */
/* The contents of A are illustrated by the following example, with */
/* n = 7, ilo = 2 and ihi = 6: */
/* on entry, on exit, */
/* ( a a a a a a a ) ( a a h h h h a ) */
/* ( a a a a a a ) ( a h h h h a ) */
/* ( a a a a a a ) ( h h h h h h ) */
/* ( a a a a a a ) ( v2 h h h h h ) */
/* ( a a a a a a ) ( v2 v3 h h h h ) */
/* ( a a a a a a ) ( v2 v3 v4 h h h ) */
/* ( a ) ( a ) */
/* where a denotes an element of the original matrix A, h denotes a */
/* modified element of the upper Hessenberg matrix H, and vi denotes an */
/* element of the vector defining H(i). */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*ilo < 1 || *ilo > max(1,*n)) {
*info = -2;
} else if (*ihi < min(*ilo,*n) || *ihi > *n) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEHD2", &i__1);
return 0;
}
i__1 = *ihi - 1;
for (i__ = *ilo; i__ <= i__1; ++i__) {
/* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */
i__2 = i__ + 1 + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = *ihi - i__;
/* Computing MIN */
i__3 = i__ + 2;
clarfg_(&i__2, &alpha, &a[min(i__3, *n)+ i__ * a_dim1], &c__1, &tau[
i__]);
i__2 = i__ + 1 + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;
/* Apply H(i) to A(1:ihi,i+1:ihi) from the right */
i__2 = *ihi - i__;
clarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]);
/* Apply H(i)' to A(i+1:ihi,i+1:n) from the left */
i__2 = *ihi - i__;
i__3 = *n - i__;
r_cnjg(&q__1, &tau[i__]);
clarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &q__1,
&a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]);
i__2 = i__ + 1 + i__ * a_dim1;
a[i__2].r = alpha.r, a[i__2].i = alpha.i;
/* L10: */
}
return 0;
/* End of CGEHD2 */
} /* cgehd2_ */
|