1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
|
//===-- tsan_rtl.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Main file (entry points) for the TSan run-time.
//===----------------------------------------------------------------------===//
#include "tsan_rtl.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_file.h"
#include "sanitizer_common/sanitizer_interface_internal.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
#include "tsan_defs.h"
#include "tsan_interface.h"
#include "tsan_mman.h"
#include "tsan_platform.h"
#include "tsan_suppressions.h"
#include "tsan_symbolize.h"
#include "ubsan/ubsan_init.h"
volatile int __tsan_resumed = 0;
extern "C" void __tsan_resume() {
__tsan_resumed = 1;
}
SANITIZER_WEAK_DEFAULT_IMPL
void __tsan_test_only_on_fork() {}
namespace __tsan {
#if !SANITIZER_GO
void (*on_initialize)(void);
int (*on_finalize)(int);
#endif
#if !SANITIZER_GO && !SANITIZER_APPLE
__attribute__((tls_model("initial-exec")))
THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(
SANITIZER_CACHE_LINE_SIZE);
#endif
static char ctx_placeholder[sizeof(Context)] ALIGNED(SANITIZER_CACHE_LINE_SIZE);
Context *ctx;
// Can be overriden by a front-end.
#ifdef TSAN_EXTERNAL_HOOKS
bool OnFinalize(bool failed);
void OnInitialize();
#else
SANITIZER_WEAK_CXX_DEFAULT_IMPL
bool OnFinalize(bool failed) {
# if !SANITIZER_GO
if (on_finalize)
return on_finalize(failed);
# endif
return failed;
}
SANITIZER_WEAK_CXX_DEFAULT_IMPL
void OnInitialize() {
# if !SANITIZER_GO
if (on_initialize)
on_initialize();
# endif
}
#endif
static TracePart* TracePartAlloc(ThreadState* thr) {
TracePart* part = nullptr;
{
Lock lock(&ctx->slot_mtx);
uptr max_parts = Trace::kMinParts + flags()->history_size;
Trace* trace = &thr->tctx->trace;
if (trace->parts_allocated == max_parts ||
ctx->trace_part_finished_excess) {
part = ctx->trace_part_recycle.PopFront();
DPrintf("#%d: TracePartAlloc: part=%p\n", thr->tid, part);
if (part && part->trace) {
Trace* trace1 = part->trace;
Lock trace_lock(&trace1->mtx);
part->trace = nullptr;
TracePart* part1 = trace1->parts.PopFront();
CHECK_EQ(part, part1);
if (trace1->parts_allocated > trace1->parts.Size()) {
ctx->trace_part_finished_excess +=
trace1->parts_allocated - trace1->parts.Size();
trace1->parts_allocated = trace1->parts.Size();
}
}
}
if (trace->parts_allocated < max_parts) {
trace->parts_allocated++;
if (ctx->trace_part_finished_excess)
ctx->trace_part_finished_excess--;
}
if (!part)
ctx->trace_part_total_allocated++;
else if (ctx->trace_part_recycle_finished)
ctx->trace_part_recycle_finished--;
}
if (!part)
part = new (MmapOrDie(sizeof(*part), "TracePart")) TracePart();
return part;
}
static void TracePartFree(TracePart* part) SANITIZER_REQUIRES(ctx->slot_mtx) {
DCHECK(part->trace);
part->trace = nullptr;
ctx->trace_part_recycle.PushFront(part);
}
void TraceResetForTesting() {
Lock lock(&ctx->slot_mtx);
while (auto* part = ctx->trace_part_recycle.PopFront()) {
if (auto trace = part->trace)
CHECK_EQ(trace->parts.PopFront(), part);
UnmapOrDie(part, sizeof(*part));
}
ctx->trace_part_total_allocated = 0;
ctx->trace_part_recycle_finished = 0;
ctx->trace_part_finished_excess = 0;
}
static void DoResetImpl(uptr epoch) {
ThreadRegistryLock lock0(&ctx->thread_registry);
Lock lock1(&ctx->slot_mtx);
CHECK_EQ(ctx->global_epoch, epoch);
ctx->global_epoch++;
CHECK(!ctx->resetting);
ctx->resetting = true;
for (u32 i = ctx->thread_registry.NumThreadsLocked(); i--;) {
ThreadContext* tctx = (ThreadContext*)ctx->thread_registry.GetThreadLocked(
static_cast<Tid>(i));
// Potentially we could purge all ThreadStatusDead threads from the
// registry. Since we reset all shadow, they can't race with anything
// anymore. However, their tid's can still be stored in some aux places
// (e.g. tid of thread that created something).
auto trace = &tctx->trace;
Lock lock(&trace->mtx);
bool attached = tctx->thr && tctx->thr->slot;
auto parts = &trace->parts;
bool local = false;
while (!parts->Empty()) {
auto part = parts->Front();
local = local || part == trace->local_head;
if (local)
CHECK(!ctx->trace_part_recycle.Queued(part));
else
ctx->trace_part_recycle.Remove(part);
if (attached && parts->Size() == 1) {
// The thread is running and this is the last/current part.
// Set the trace position to the end of the current part
// to force the thread to call SwitchTracePart and re-attach
// to a new slot and allocate a new trace part.
// Note: the thread is concurrently modifying the position as well,
// so this is only best-effort. The thread can only modify position
// within this part, because switching parts is protected by
// slot/trace mutexes that we hold here.
atomic_store_relaxed(
&tctx->thr->trace_pos,
reinterpret_cast<uptr>(&part->events[TracePart::kSize]));
break;
}
parts->Remove(part);
TracePartFree(part);
}
CHECK_LE(parts->Size(), 1);
trace->local_head = parts->Front();
if (tctx->thr && !tctx->thr->slot) {
atomic_store_relaxed(&tctx->thr->trace_pos, 0);
tctx->thr->trace_prev_pc = 0;
}
if (trace->parts_allocated > trace->parts.Size()) {
ctx->trace_part_finished_excess +=
trace->parts_allocated - trace->parts.Size();
trace->parts_allocated = trace->parts.Size();
}
}
while (ctx->slot_queue.PopFront()) {
}
for (auto& slot : ctx->slots) {
slot.SetEpoch(kEpochZero);
slot.journal.Reset();
slot.thr = nullptr;
ctx->slot_queue.PushBack(&slot);
}
DPrintf("Resetting shadow...\n");
auto shadow_begin = ShadowBeg();
auto shadow_end = ShadowEnd();
#if SANITIZER_GO
CHECK_NE(0, ctx->mapped_shadow_begin);
shadow_begin = ctx->mapped_shadow_begin;
shadow_end = ctx->mapped_shadow_end;
VPrintf(2, "shadow_begin-shadow_end: (0x%zx-0x%zx)\n",
shadow_begin, shadow_end);
#endif
#if SANITIZER_WINDOWS
auto resetFailed =
!ZeroMmapFixedRegion(shadow_begin, shadow_end - shadow_begin);
#else
auto resetFailed =
!MmapFixedSuperNoReserve(shadow_begin, shadow_end-shadow_begin, "shadow");
# if !SANITIZER_GO
DontDumpShadow(shadow_begin, shadow_end - shadow_begin);
# endif
#endif
if (resetFailed) {
Printf("failed to reset shadow memory\n");
Die();
}
DPrintf("Resetting meta shadow...\n");
ctx->metamap.ResetClocks();
StoreShadow(&ctx->last_spurious_race, Shadow::kEmpty);
ctx->resetting = false;
}
// Clang does not understand locking all slots in the loop:
// error: expecting mutex 'slot.mtx' to be held at start of each loop
void DoReset(ThreadState* thr, uptr epoch) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
for (auto& slot : ctx->slots) {
slot.mtx.Lock();
if (UNLIKELY(epoch == 0))
epoch = ctx->global_epoch;
if (UNLIKELY(epoch != ctx->global_epoch)) {
// Epoch can't change once we've locked the first slot.
CHECK_EQ(slot.sid, 0);
slot.mtx.Unlock();
return;
}
}
DPrintf("#%d: DoReset epoch=%lu\n", thr ? thr->tid : -1, epoch);
DoResetImpl(epoch);
for (auto& slot : ctx->slots) slot.mtx.Unlock();
}
void FlushShadowMemory() { DoReset(nullptr, 0); }
static TidSlot* FindSlotAndLock(ThreadState* thr)
SANITIZER_ACQUIRE(thr->slot->mtx) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
CHECK(!thr->slot);
TidSlot* slot = nullptr;
for (;;) {
uptr epoch;
{
Lock lock(&ctx->slot_mtx);
epoch = ctx->global_epoch;
if (slot) {
// This is an exhausted slot from the previous iteration.
if (ctx->slot_queue.Queued(slot))
ctx->slot_queue.Remove(slot);
thr->slot_locked = false;
slot->mtx.Unlock();
}
for (;;) {
slot = ctx->slot_queue.PopFront();
if (!slot)
break;
if (slot->epoch() != kEpochLast) {
ctx->slot_queue.PushBack(slot);
break;
}
}
}
if (!slot) {
DoReset(thr, epoch);
continue;
}
slot->mtx.Lock();
CHECK(!thr->slot_locked);
thr->slot_locked = true;
if (slot->thr) {
DPrintf("#%d: preempting sid=%d tid=%d\n", thr->tid, (u32)slot->sid,
slot->thr->tid);
slot->SetEpoch(slot->thr->fast_state.epoch());
slot->thr = nullptr;
}
if (slot->epoch() != kEpochLast)
return slot;
}
}
void SlotAttachAndLock(ThreadState* thr) {
TidSlot* slot = FindSlotAndLock(thr);
DPrintf("#%d: SlotAttach: slot=%u\n", thr->tid, static_cast<int>(slot->sid));
CHECK(!slot->thr);
CHECK(!thr->slot);
slot->thr = thr;
thr->slot = slot;
Epoch epoch = EpochInc(slot->epoch());
CHECK(!EpochOverflow(epoch));
slot->SetEpoch(epoch);
thr->fast_state.SetSid(slot->sid);
thr->fast_state.SetEpoch(epoch);
if (thr->slot_epoch != ctx->global_epoch) {
thr->slot_epoch = ctx->global_epoch;
thr->clock.Reset();
#if !SANITIZER_GO
thr->last_sleep_stack_id = kInvalidStackID;
thr->last_sleep_clock.Reset();
#endif
}
thr->clock.Set(slot->sid, epoch);
slot->journal.PushBack({thr->tid, epoch});
}
static void SlotDetachImpl(ThreadState* thr, bool exiting) {
TidSlot* slot = thr->slot;
thr->slot = nullptr;
if (thr != slot->thr) {
slot = nullptr; // we don't own the slot anymore
if (thr->slot_epoch != ctx->global_epoch) {
TracePart* part = nullptr;
auto* trace = &thr->tctx->trace;
{
Lock l(&trace->mtx);
auto* parts = &trace->parts;
// The trace can be completely empty in an unlikely event
// the thread is preempted right after it acquired the slot
// in ThreadStart and did not trace any events yet.
CHECK_LE(parts->Size(), 1);
part = parts->PopFront();
thr->tctx->trace.local_head = nullptr;
atomic_store_relaxed(&thr->trace_pos, 0);
thr->trace_prev_pc = 0;
}
if (part) {
Lock l(&ctx->slot_mtx);
TracePartFree(part);
}
}
return;
}
CHECK(exiting || thr->fast_state.epoch() == kEpochLast);
slot->SetEpoch(thr->fast_state.epoch());
slot->thr = nullptr;
}
void SlotDetach(ThreadState* thr) {
Lock lock(&thr->slot->mtx);
SlotDetachImpl(thr, true);
}
void SlotLock(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
DCHECK(!thr->slot_locked);
#if SANITIZER_DEBUG
// Check these mutexes are not locked.
// We can call DoReset from SlotAttachAndLock, which will lock
// these mutexes, but it happens only every once in a while.
{ ThreadRegistryLock lock(&ctx->thread_registry); }
{ Lock lock(&ctx->slot_mtx); }
#endif
TidSlot* slot = thr->slot;
slot->mtx.Lock();
thr->slot_locked = true;
if (LIKELY(thr == slot->thr && thr->fast_state.epoch() != kEpochLast))
return;
SlotDetachImpl(thr, false);
thr->slot_locked = false;
slot->mtx.Unlock();
SlotAttachAndLock(thr);
}
void SlotUnlock(ThreadState* thr) {
DCHECK(thr->slot_locked);
thr->slot_locked = false;
thr->slot->mtx.Unlock();
}
Context::Context()
: initialized(),
report_mtx(MutexTypeReport),
nreported(),
thread_registry([](Tid tid) -> ThreadContextBase* {
return new (Alloc(sizeof(ThreadContext))) ThreadContext(tid);
}),
racy_mtx(MutexTypeRacy),
racy_stacks(),
fired_suppressions_mtx(MutexTypeFired),
slot_mtx(MutexTypeSlots),
resetting() {
fired_suppressions.reserve(8);
for (uptr i = 0; i < ARRAY_SIZE(slots); i++) {
TidSlot* slot = &slots[i];
slot->sid = static_cast<Sid>(i);
slot_queue.PushBack(slot);
}
global_epoch = 1;
}
TidSlot::TidSlot() : mtx(MutexTypeSlot) {}
// The objects are allocated in TLS, so one may rely on zero-initialization.
ThreadState::ThreadState(Tid tid)
// Do not touch these, rely on zero initialization,
// they may be accessed before the ctor.
// ignore_reads_and_writes()
// ignore_interceptors()
: tid(tid) {
CHECK_EQ(reinterpret_cast<uptr>(this) % SANITIZER_CACHE_LINE_SIZE, 0);
#if !SANITIZER_GO
// C/C++ uses fixed size shadow stack.
const int kInitStackSize = kShadowStackSize;
shadow_stack = static_cast<uptr*>(
MmapNoReserveOrDie(kInitStackSize * sizeof(uptr), "shadow stack"));
SetShadowRegionHugePageMode(reinterpret_cast<uptr>(shadow_stack),
kInitStackSize * sizeof(uptr));
#else
// Go uses malloc-allocated shadow stack with dynamic size.
const int kInitStackSize = 8;
shadow_stack = static_cast<uptr*>(Alloc(kInitStackSize * sizeof(uptr)));
#endif
shadow_stack_pos = shadow_stack;
shadow_stack_end = shadow_stack + kInitStackSize;
}
#if !SANITIZER_GO
void MemoryProfiler(u64 uptime) {
if (ctx->memprof_fd == kInvalidFd)
return;
InternalMmapVector<char> buf(4096);
WriteMemoryProfile(buf.data(), buf.size(), uptime);
WriteToFile(ctx->memprof_fd, buf.data(), internal_strlen(buf.data()));
}
static bool InitializeMemoryProfiler() {
ctx->memprof_fd = kInvalidFd;
const char *fname = flags()->profile_memory;
if (!fname || !fname[0])
return false;
if (internal_strcmp(fname, "stdout") == 0) {
ctx->memprof_fd = 1;
} else if (internal_strcmp(fname, "stderr") == 0) {
ctx->memprof_fd = 2;
} else {
InternalScopedString filename;
filename.AppendF("%s.%d", fname, (int)internal_getpid());
ctx->memprof_fd = OpenFile(filename.data(), WrOnly);
if (ctx->memprof_fd == kInvalidFd) {
Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
filename.data());
return false;
}
}
MemoryProfiler(0);
return true;
}
static void *BackgroundThread(void *arg) {
// This is a non-initialized non-user thread, nothing to see here.
// We don't use ScopedIgnoreInterceptors, because we want ignores to be
// enabled even when the thread function exits (e.g. during pthread thread
// shutdown code).
cur_thread_init()->ignore_interceptors++;
const u64 kMs2Ns = 1000 * 1000;
const u64 start = NanoTime();
u64 last_flush = start;
uptr last_rss = 0;
while (!atomic_load_relaxed(&ctx->stop_background_thread)) {
SleepForMillis(100);
u64 now = NanoTime();
// Flush memory if requested.
if (flags()->flush_memory_ms > 0) {
if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
VReport(1, "ThreadSanitizer: periodic memory flush\n");
FlushShadowMemory();
now = last_flush = NanoTime();
}
}
if (flags()->memory_limit_mb > 0) {
uptr rss = GetRSS();
uptr limit = uptr(flags()->memory_limit_mb) << 20;
VReport(1,
"ThreadSanitizer: memory flush check"
" RSS=%llu LAST=%llu LIMIT=%llu\n",
(u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
if (2 * rss > limit + last_rss) {
VReport(1, "ThreadSanitizer: flushing memory due to RSS\n");
FlushShadowMemory();
rss = GetRSS();
now = NanoTime();
VReport(1, "ThreadSanitizer: memory flushed RSS=%llu\n",
(u64)rss >> 20);
}
last_rss = rss;
}
MemoryProfiler(now - start);
// Flush symbolizer cache if requested.
if (flags()->flush_symbolizer_ms > 0) {
u64 last = atomic_load(&ctx->last_symbolize_time_ns,
memory_order_relaxed);
if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
Lock l(&ctx->report_mtx);
ScopedErrorReportLock l2;
SymbolizeFlush();
atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
}
}
}
return nullptr;
}
static void StartBackgroundThread() {
ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
}
#ifndef __mips__
static void StopBackgroundThread() {
atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
internal_join_thread(ctx->background_thread);
ctx->background_thread = 0;
}
#endif
#endif
void DontNeedShadowFor(uptr addr, uptr size) {
ReleaseMemoryPagesToOS(reinterpret_cast<uptr>(MemToShadow(addr)),
reinterpret_cast<uptr>(MemToShadow(addr + size)));
}
#if !SANITIZER_GO
// We call UnmapShadow before the actual munmap, at that point we don't yet
// know if the provided address/size are sane. We can't call UnmapShadow
// after the actual munmap becuase at that point the memory range can
// already be reused for something else, so we can't rely on the munmap
// return value to understand is the values are sane.
// While calling munmap with insane values (non-canonical address, negative
// size, etc) is an error, the kernel won't crash. We must also try to not
// crash as the failure mode is very confusing (paging fault inside of the
// runtime on some derived shadow address).
static bool IsValidMmapRange(uptr addr, uptr size) {
if (size == 0)
return true;
if (static_cast<sptr>(size) < 0)
return false;
if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
return false;
// Check that if the start of the region belongs to one of app ranges,
// end of the region belongs to the same region.
const uptr ranges[][2] = {
{LoAppMemBeg(), LoAppMemEnd()},
{MidAppMemBeg(), MidAppMemEnd()},
{HiAppMemBeg(), HiAppMemEnd()},
};
for (auto range : ranges) {
if (addr >= range[0] && addr < range[1])
return addr + size <= range[1];
}
return false;
}
void UnmapShadow(ThreadState *thr, uptr addr, uptr size) {
if (size == 0 || !IsValidMmapRange(addr, size))
return;
DontNeedShadowFor(addr, size);
ScopedGlobalProcessor sgp;
SlotLocker locker(thr, true);
ctx->metamap.ResetRange(thr->proc(), addr, size, true);
}
#endif
void MapShadow(uptr addr, uptr size) {
// Ensure thead registry lock held, so as to synchronize
// with DoReset, which also access the mapped_shadow_* ctxt fields.
ThreadRegistryLock lock0(&ctx->thread_registry);
static bool data_mapped = false;
#if !SANITIZER_GO
// Global data is not 64K aligned, but there are no adjacent mappings,
// so we can get away with unaligned mapping.
// CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
const uptr kPageSize = GetPageSizeCached();
uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
Die();
#else
uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), (64 << 10));
uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), (64 << 10));
VPrintf(2, "MapShadow for (0x%zx-0x%zx), begin/end: (0x%zx-0x%zx)\n",
addr, addr + size, shadow_begin, shadow_end);
if (!data_mapped) {
// First call maps data+bss.
if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
Die();
} else {
VPrintf(2, "ctx->mapped_shadow_{begin,end} = (0x%zx-0x%zx)\n",
ctx->mapped_shadow_begin, ctx->mapped_shadow_end);
// Second and subsequent calls map heap.
if (shadow_end <= ctx->mapped_shadow_end)
return;
if (!ctx->mapped_shadow_begin || ctx->mapped_shadow_begin > shadow_begin)
ctx->mapped_shadow_begin = shadow_begin;
if (shadow_begin < ctx->mapped_shadow_end)
shadow_begin = ctx->mapped_shadow_end;
VPrintf(2, "MapShadow begin/end = (0x%zx-0x%zx)\n",
shadow_begin, shadow_end);
if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin,
"shadow"))
Die();
ctx->mapped_shadow_end = shadow_end;
}
#endif
// Meta shadow is 2:1, so tread carefully.
static uptr mapped_meta_end = 0;
uptr meta_begin = (uptr)MemToMeta(addr);
uptr meta_end = (uptr)MemToMeta(addr + size);
meta_begin = RoundDownTo(meta_begin, 64 << 10);
meta_end = RoundUpTo(meta_end, 64 << 10);
if (!data_mapped) {
// First call maps data+bss.
data_mapped = true;
if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
"meta shadow"))
Die();
} else {
// Mapping continuous heap.
// Windows wants 64K alignment.
meta_begin = RoundDownTo(meta_begin, 64 << 10);
meta_end = RoundUpTo(meta_end, 64 << 10);
CHECK_GT(meta_end, mapped_meta_end);
if (meta_begin < mapped_meta_end)
meta_begin = mapped_meta_end;
if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
"meta shadow"))
Die();
mapped_meta_end = meta_end;
}
VPrintf(2, "mapped meta shadow for (0x%zx-0x%zx) at (0x%zx-0x%zx)\n", addr,
addr + size, meta_begin, meta_end);
}
#if !SANITIZER_GO
static void OnStackUnwind(const SignalContext &sig, const void *,
BufferedStackTrace *stack) {
stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
common_flags()->fast_unwind_on_fatal);
}
static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
}
#endif
void CheckUnwind() {
// There is high probability that interceptors will check-fail as well,
// on the other hand there is no sense in processing interceptors
// since we are going to die soon.
ScopedIgnoreInterceptors ignore;
#if !SANITIZER_GO
ThreadState* thr = cur_thread();
thr->nomalloc = false;
thr->ignore_sync++;
thr->ignore_reads_and_writes++;
atomic_store_relaxed(&thr->in_signal_handler, 0);
#endif
PrintCurrentStackSlow(StackTrace::GetCurrentPc());
}
bool is_initialized;
void Initialize(ThreadState *thr) {
// Thread safe because done before all threads exist.
if (is_initialized)
return;
is_initialized = true;
// We are not ready to handle interceptors yet.
ScopedIgnoreInterceptors ignore;
SanitizerToolName = "ThreadSanitizer";
// Install tool-specific callbacks in sanitizer_common.
SetCheckUnwindCallback(CheckUnwind);
ctx = new(ctx_placeholder) Context;
const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS";
const char *options = GetEnv(env_name);
CacheBinaryName();
CheckASLR();
InitializeFlags(&ctx->flags, options, env_name);
AvoidCVE_2016_2143();
__sanitizer::InitializePlatformEarly();
__tsan::InitializePlatformEarly();
#if !SANITIZER_GO
InitializeAllocator();
ReplaceSystemMalloc();
#endif
if (common_flags()->detect_deadlocks)
ctx->dd = DDetector::Create(flags());
Processor *proc = ProcCreate();
ProcWire(proc, thr);
InitializeInterceptors();
InitializePlatform();
InitializeDynamicAnnotations();
#if !SANITIZER_GO
InitializeShadowMemory();
InitializeAllocatorLate();
InstallDeadlySignalHandlers(TsanOnDeadlySignal);
#endif
// Setup correct file descriptor for error reports.
__sanitizer_set_report_path(common_flags()->log_path);
InitializeSuppressions();
#if !SANITIZER_GO
InitializeLibIgnore();
Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
#endif
VPrintf(1, "***** Running under ThreadSanitizer v3 (pid %d) *****\n",
(int)internal_getpid());
// Initialize thread 0.
Tid tid = ThreadCreate(nullptr, 0, 0, true);
CHECK_EQ(tid, kMainTid);
ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
#if TSAN_CONTAINS_UBSAN
__ubsan::InitAsPlugin();
#endif
#if !SANITIZER_GO
Symbolizer::LateInitialize();
if (InitializeMemoryProfiler() || flags()->force_background_thread)
MaybeSpawnBackgroundThread();
#endif
ctx->initialized = true;
if (flags()->stop_on_start) {
Printf("ThreadSanitizer is suspended at startup (pid %d)."
" Call __tsan_resume().\n",
(int)internal_getpid());
while (__tsan_resumed == 0) {}
}
OnInitialize();
}
void MaybeSpawnBackgroundThread() {
// On MIPS, TSan initialization is run before
// __pthread_initialize_minimal_internal() is finished, so we can not spawn
// new threads.
#if !SANITIZER_GO && !defined(__mips__)
static atomic_uint32_t bg_thread = {};
if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
StartBackgroundThread();
SetSandboxingCallback(StopBackgroundThread);
}
#endif
}
int Finalize(ThreadState *thr) {
bool failed = false;
#if !SANITIZER_GO
if (common_flags()->print_module_map == 1)
DumpProcessMap();
#endif
if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
internal_usleep(u64(flags()->atexit_sleep_ms) * 1000);
{
// Wait for pending reports.
ScopedErrorReportLock lock;
}
#if !SANITIZER_GO
if (Verbosity()) AllocatorPrintStats();
#endif
ThreadFinalize(thr);
if (ctx->nreported) {
failed = true;
#if !SANITIZER_GO
Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
#else
Printf("Found %d data race(s)\n", ctx->nreported);
#endif
}
if (common_flags()->print_suppressions)
PrintMatchedSuppressions();
failed = OnFinalize(failed);
return failed ? common_flags()->exitcode : 0;
}
#if !SANITIZER_GO
void ForkBefore(ThreadState* thr, uptr pc) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
GlobalProcessorLock();
// Detaching from the slot makes OnUserFree skip writing to the shadow.
// The slot will be locked so any attempts to use it will deadlock anyway.
SlotDetach(thr);
for (auto& slot : ctx->slots) slot.mtx.Lock();
ctx->thread_registry.Lock();
ctx->slot_mtx.Lock();
ScopedErrorReportLock::Lock();
AllocatorLock();
// Suppress all reports in the pthread_atfork callbacks.
// Reports will deadlock on the report_mtx.
// We could ignore sync operations as well,
// but so far it's unclear if it will do more good or harm.
// Unnecessarily ignoring things can lead to false positives later.
thr->suppress_reports++;
// On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
// we'll assert in CheckNoLocks() unless we ignore interceptors.
// On OS X libSystem_atfork_prepare/parent/child callbacks are called
// after/before our callbacks and they call free.
thr->ignore_interceptors++;
// Disables memory write in OnUserAlloc/Free.
thr->ignore_reads_and_writes++;
__tsan_test_only_on_fork();
}
static void ForkAfter(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
thr->suppress_reports--; // Enabled in ForkBefore.
thr->ignore_interceptors--;
thr->ignore_reads_and_writes--;
AllocatorUnlock();
ScopedErrorReportLock::Unlock();
ctx->slot_mtx.Unlock();
ctx->thread_registry.Unlock();
for (auto& slot : ctx->slots) slot.mtx.Unlock();
SlotAttachAndLock(thr);
SlotUnlock(thr);
GlobalProcessorUnlock();
}
void ForkParentAfter(ThreadState* thr, uptr pc) { ForkAfter(thr); }
void ForkChildAfter(ThreadState* thr, uptr pc, bool start_thread) {
ForkAfter(thr);
u32 nthread = ctx->thread_registry.OnFork(thr->tid);
VPrintf(1,
"ThreadSanitizer: forked new process with pid %d,"
" parent had %d threads\n",
(int)internal_getpid(), (int)nthread);
if (nthread == 1) {
if (start_thread)
StartBackgroundThread();
} else {
// We've just forked a multi-threaded process. We cannot reasonably function
// after that (some mutexes may be locked before fork). So just enable
// ignores for everything in the hope that we will exec soon.
ctx->after_multithreaded_fork = true;
thr->ignore_interceptors++;
thr->suppress_reports++;
ThreadIgnoreBegin(thr, pc);
ThreadIgnoreSyncBegin(thr, pc);
}
}
#endif
#if SANITIZER_GO
NOINLINE
void GrowShadowStack(ThreadState *thr) {
const int sz = thr->shadow_stack_end - thr->shadow_stack;
const int newsz = 2 * sz;
auto *newstack = (uptr *)Alloc(newsz * sizeof(uptr));
internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
Free(thr->shadow_stack);
thr->shadow_stack = newstack;
thr->shadow_stack_pos = newstack + sz;
thr->shadow_stack_end = newstack + newsz;
}
#endif
StackID CurrentStackId(ThreadState *thr, uptr pc) {
#if !SANITIZER_GO
if (!thr->is_inited) // May happen during bootstrap.
return kInvalidStackID;
#endif
if (pc != 0) {
#if !SANITIZER_GO
DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
#else
if (thr->shadow_stack_pos == thr->shadow_stack_end)
GrowShadowStack(thr);
#endif
thr->shadow_stack_pos[0] = pc;
thr->shadow_stack_pos++;
}
StackID id = StackDepotPut(
StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
if (pc != 0)
thr->shadow_stack_pos--;
return id;
}
static bool TraceSkipGap(ThreadState* thr) {
Trace *trace = &thr->tctx->trace;
Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
DCHECK_EQ(reinterpret_cast<uptr>(pos + 1) & TracePart::kAlignment, 0);
auto *part = trace->parts.Back();
DPrintf("#%d: TraceSwitchPart enter trace=%p parts=%p-%p pos=%p\n", thr->tid,
trace, trace->parts.Front(), part, pos);
if (!part)
return false;
// We can get here when we still have space in the current trace part.
// The fast-path check in TraceAcquire has false positives in the middle of
// the part. Check if we are indeed at the end of the current part or not,
// and fill any gaps with NopEvent's.
Event* end = &part->events[TracePart::kSize];
DCHECK_GE(pos, &part->events[0]);
DCHECK_LE(pos, end);
if (pos + 1 < end) {
if ((reinterpret_cast<uptr>(pos) & TracePart::kAlignment) ==
TracePart::kAlignment)
*pos++ = NopEvent;
*pos++ = NopEvent;
DCHECK_LE(pos + 2, end);
atomic_store_relaxed(&thr->trace_pos, reinterpret_cast<uptr>(pos));
return true;
}
// We are indeed at the end.
for (; pos < end; pos++) *pos = NopEvent;
return false;
}
NOINLINE
void TraceSwitchPart(ThreadState* thr) {
if (TraceSkipGap(thr))
return;
#if !SANITIZER_GO
if (ctx->after_multithreaded_fork) {
// We just need to survive till exec.
TracePart* part = thr->tctx->trace.parts.Back();
if (part) {
atomic_store_relaxed(&thr->trace_pos,
reinterpret_cast<uptr>(&part->events[0]));
return;
}
}
#endif
TraceSwitchPartImpl(thr);
}
void TraceSwitchPartImpl(ThreadState* thr) {
SlotLocker locker(thr, true);
Trace* trace = &thr->tctx->trace;
TracePart* part = TracePartAlloc(thr);
part->trace = trace;
thr->trace_prev_pc = 0;
TracePart* recycle = nullptr;
// Keep roughly half of parts local to the thread
// (not queued into the recycle queue).
uptr local_parts = (Trace::kMinParts + flags()->history_size + 1) / 2;
{
Lock lock(&trace->mtx);
if (trace->parts.Empty())
trace->local_head = part;
if (trace->parts.Size() >= local_parts) {
recycle = trace->local_head;
trace->local_head = trace->parts.Next(recycle);
}
trace->parts.PushBack(part);
atomic_store_relaxed(&thr->trace_pos,
reinterpret_cast<uptr>(&part->events[0]));
}
// Make this part self-sufficient by restoring the current stack
// and mutex set in the beginning of the trace.
TraceTime(thr);
{
// Pathologically large stacks may not fit into the part.
// In these cases we log only fixed number of top frames.
const uptr kMaxFrames = 1000;
// Check that kMaxFrames won't consume the whole part.
static_assert(kMaxFrames < TracePart::kSize / 2, "kMaxFrames is too big");
uptr* pos = Max(&thr->shadow_stack[0], thr->shadow_stack_pos - kMaxFrames);
for (; pos < thr->shadow_stack_pos; pos++) {
if (TryTraceFunc(thr, *pos))
continue;
CHECK(TraceSkipGap(thr));
CHECK(TryTraceFunc(thr, *pos));
}
}
for (uptr i = 0; i < thr->mset.Size(); i++) {
MutexSet::Desc d = thr->mset.Get(i);
for (uptr i = 0; i < d.count; i++)
TraceMutexLock(thr, d.write ? EventType::kLock : EventType::kRLock, 0,
d.addr, d.stack_id);
}
// Callers of TraceSwitchPart expect that TraceAcquire will always succeed
// after the call. It's possible that TryTraceFunc/TraceMutexLock above
// filled the trace part exactly up to the TracePart::kAlignment gap
// and the next TraceAcquire won't succeed. Skip the gap to avoid that.
EventFunc *ev;
if (!TraceAcquire(thr, &ev)) {
CHECK(TraceSkipGap(thr));
CHECK(TraceAcquire(thr, &ev));
}
{
Lock lock(&ctx->slot_mtx);
// There is a small chance that the slot may be not queued at this point.
// This can happen if the slot has kEpochLast epoch and another thread
// in FindSlotAndLock discovered that it's exhausted and removed it from
// the slot queue. kEpochLast can happen in 2 cases: (1) if TraceSwitchPart
// was called with the slot locked and epoch already at kEpochLast,
// or (2) if we've acquired a new slot in SlotLock in the beginning
// of the function and the slot was at kEpochLast - 1, so after increment
// in SlotAttachAndLock it become kEpochLast.
if (ctx->slot_queue.Queued(thr->slot)) {
ctx->slot_queue.Remove(thr->slot);
ctx->slot_queue.PushBack(thr->slot);
}
if (recycle)
ctx->trace_part_recycle.PushBack(recycle);
}
DPrintf("#%d: TraceSwitchPart exit parts=%p-%p pos=0x%zx\n", thr->tid,
trace->parts.Front(), trace->parts.Back(),
atomic_load_relaxed(&thr->trace_pos));
}
void ThreadIgnoreBegin(ThreadState* thr, uptr pc) {
DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
thr->ignore_reads_and_writes++;
CHECK_GT(thr->ignore_reads_and_writes, 0);
thr->fast_state.SetIgnoreBit();
#if !SANITIZER_GO
if (pc && !ctx->after_multithreaded_fork)
thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
#endif
}
void ThreadIgnoreEnd(ThreadState *thr) {
DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
CHECK_GT(thr->ignore_reads_and_writes, 0);
thr->ignore_reads_and_writes--;
if (thr->ignore_reads_and_writes == 0) {
thr->fast_state.ClearIgnoreBit();
#if !SANITIZER_GO
thr->mop_ignore_set.Reset();
#endif
}
}
#if !SANITIZER_GO
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
uptr __tsan_testonly_shadow_stack_current_size() {
ThreadState *thr = cur_thread();
return thr->shadow_stack_pos - thr->shadow_stack;
}
#endif
void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
thr->ignore_sync++;
CHECK_GT(thr->ignore_sync, 0);
#if !SANITIZER_GO
if (pc && !ctx->after_multithreaded_fork)
thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
#endif
}
void ThreadIgnoreSyncEnd(ThreadState *thr) {
DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
CHECK_GT(thr->ignore_sync, 0);
thr->ignore_sync--;
#if !SANITIZER_GO
if (thr->ignore_sync == 0)
thr->sync_ignore_set.Reset();
#endif
}
bool MD5Hash::operator==(const MD5Hash &other) const {
return hash[0] == other.hash[0] && hash[1] == other.hash[1];
}
#if SANITIZER_DEBUG
void build_consistency_debug() {}
#else
void build_consistency_release() {}
#endif
} // namespace __tsan
#if SANITIZER_CHECK_DEADLOCKS
namespace __sanitizer {
using namespace __tsan;
MutexMeta mutex_meta[] = {
{MutexInvalid, "Invalid", {}},
{MutexThreadRegistry,
"ThreadRegistry",
{MutexTypeSlots, MutexTypeTrace, MutexTypeReport}},
{MutexTypeReport, "Report", {MutexTypeTrace}},
{MutexTypeSyncVar, "SyncVar", {MutexTypeReport, MutexTypeTrace}},
{MutexTypeAnnotations, "Annotations", {}},
{MutexTypeAtExit, "AtExit", {}},
{MutexTypeFired, "Fired", {MutexLeaf}},
{MutexTypeRacy, "Racy", {MutexLeaf}},
{MutexTypeGlobalProc, "GlobalProc", {MutexTypeSlot, MutexTypeSlots}},
{MutexTypeInternalAlloc, "InternalAlloc", {MutexLeaf}},
{MutexTypeTrace, "Trace", {}},
{MutexTypeSlot,
"Slot",
{MutexMulti, MutexTypeTrace, MutexTypeSyncVar, MutexThreadRegistry,
MutexTypeSlots}},
{MutexTypeSlots, "Slots", {MutexTypeTrace, MutexTypeReport}},
{},
};
void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); }
} // namespace __sanitizer
#endif
|