1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
//===-- local_cache.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_LOCAL_CACHE_H_
#define SCUDO_LOCAL_CACHE_H_
#include "internal_defs.h"
#include "list.h"
#include "platform.h"
#include "report.h"
#include "stats.h"
#include "string_utils.h"
namespace scudo {
template <class SizeClassAllocator> struct SizeClassAllocatorLocalCache {
typedef typename SizeClassAllocator::SizeClassMap SizeClassMap;
typedef typename SizeClassAllocator::CompactPtrT CompactPtrT;
void init(GlobalStats *S, SizeClassAllocator *A) {
DCHECK(isEmpty());
Stats.init();
if (LIKELY(S))
S->link(&Stats);
Allocator = A;
initCache();
}
void destroy(GlobalStats *S) {
drain();
if (LIKELY(S))
S->unlink(&Stats);
}
void *allocate(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
PerClass *C = &PerClassArray[ClassId];
if (C->Count == 0) {
// Refill half of the number of max cached.
DCHECK_GT(C->MaxCount / 2, 0U);
if (UNLIKELY(!refill(C, ClassId, C->MaxCount / 2)))
return nullptr;
DCHECK_GT(C->Count, 0);
}
// We read ClassSize first before accessing Chunks because it's adjacent to
// Count, while Chunks might be further off (depending on Count). That keeps
// the memory accesses in close quarters.
const uptr ClassSize = C->ClassSize;
CompactPtrT CompactP = C->Chunks[--C->Count];
Stats.add(StatAllocated, ClassSize);
Stats.sub(StatFree, ClassSize);
return Allocator->decompactPtr(ClassId, CompactP);
}
bool deallocate(uptr ClassId, void *P) {
CHECK_LT(ClassId, NumClasses);
PerClass *C = &PerClassArray[ClassId];
// If the cache is full, drain half of blocks back to the main allocator.
const bool NeedToDrainCache = C->Count == C->MaxCount;
if (NeedToDrainCache)
drain(C, ClassId);
// See comment in allocate() about memory accesses.
const uptr ClassSize = C->ClassSize;
C->Chunks[C->Count++] =
Allocator->compactPtr(ClassId, reinterpret_cast<uptr>(P));
Stats.sub(StatAllocated, ClassSize);
Stats.add(StatFree, ClassSize);
return NeedToDrainCache;
}
bool isEmpty() const {
for (uptr I = 0; I < NumClasses; ++I)
if (PerClassArray[I].Count)
return false;
return true;
}
void drain() {
// Drain BatchClassId last as it may be needed while draining normal blocks.
for (uptr I = 0; I < NumClasses; ++I) {
if (I == BatchClassId)
continue;
while (PerClassArray[I].Count > 0)
drain(&PerClassArray[I], I);
}
while (PerClassArray[BatchClassId].Count > 0)
drain(&PerClassArray[BatchClassId], BatchClassId);
DCHECK(isEmpty());
}
void *getBatchClassBlock() {
void *B = allocate(BatchClassId);
if (UNLIKELY(!B))
reportOutOfMemory(SizeClassAllocator::getSizeByClassId(BatchClassId));
return B;
}
LocalStats &getStats() { return Stats; }
void getStats(ScopedString *Str) {
bool EmptyCache = true;
for (uptr I = 0; I < NumClasses; ++I) {
if (PerClassArray[I].Count == 0)
continue;
EmptyCache = false;
// The size of BatchClass is set to 0 intentionally. See the comment in
// initCache() for more details.
const uptr ClassSize = I == BatchClassId
? SizeClassAllocator::getSizeByClassId(I)
: PerClassArray[I].ClassSize;
// Note that the string utils don't support printing u16 thus we cast it
// to a common use type uptr.
Str->append(" %02zu (%6zu): cached: %4zu max: %4zu\n", I, ClassSize,
static_cast<uptr>(PerClassArray[I].Count),
static_cast<uptr>(PerClassArray[I].MaxCount));
}
if (EmptyCache)
Str->append(" No block is cached.\n");
}
static u16 getMaxCached(uptr Size) {
return Min(SizeClassMap::MaxNumCachedHint,
SizeClassMap::getMaxCachedHint(Size));
}
private:
static const uptr NumClasses = SizeClassMap::NumClasses;
static const uptr BatchClassId = SizeClassMap::BatchClassId;
struct alignas(SCUDO_CACHE_LINE_SIZE) PerClass {
u16 Count;
u16 MaxCount;
// Note: ClassSize is zero for the transfer batch.
uptr ClassSize;
CompactPtrT Chunks[2 * SizeClassMap::MaxNumCachedHint];
};
PerClass PerClassArray[NumClasses] = {};
LocalStats Stats;
SizeClassAllocator *Allocator = nullptr;
NOINLINE void initCache() {
for (uptr I = 0; I < NumClasses; I++) {
PerClass *P = &PerClassArray[I];
const uptr Size = SizeClassAllocator::getSizeByClassId(I);
P->MaxCount = static_cast<u16>(2 * getMaxCached(Size));
if (I != BatchClassId) {
P->ClassSize = Size;
} else {
// ClassSize in this struct is only used for malloc/free stats, which
// should only track user allocations, not internal movements.
P->ClassSize = 0;
}
}
}
void destroyBatch(uptr ClassId, void *B) {
if (ClassId != BatchClassId)
deallocate(BatchClassId, B);
}
NOINLINE bool refill(PerClass *C, uptr ClassId, u16 MaxRefill) {
const u16 NumBlocksRefilled =
Allocator->popBlocks(this, ClassId, C->Chunks, MaxRefill);
DCHECK_LE(NumBlocksRefilled, MaxRefill);
C->Count = static_cast<u16>(C->Count + NumBlocksRefilled);
return NumBlocksRefilled != 0;
}
NOINLINE void drain(PerClass *C, uptr ClassId) {
const u16 Count = Min(static_cast<u16>(C->MaxCount / 2), C->Count);
Allocator->pushBlocks(this, ClassId, &C->Chunks[0], Count);
// u16 will be promoted to int by arithmetic type conversion.
C->Count = static_cast<u16>(C->Count - Count);
for (u16 I = 0; I < C->Count; I++)
C->Chunks[I] = C->Chunks[I + Count];
}
};
} // namespace scudo
#endif // SCUDO_LOCAL_CACHE_H_
|