aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang18-rt/lib/msan/msan_allocator.cpp
blob: b1bc5b9390f75b5a70e2ac34e6ad7988552f9b5d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
//===-- msan_allocator.cpp -------------------------- ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemorySanitizer.
//
// MemorySanitizer allocator.
//===----------------------------------------------------------------------===//

#include "msan_allocator.h"

#include "msan.h"
#include "msan_interface_internal.h"
#include "msan_origin.h"
#include "msan_poisoning.h"
#include "msan_thread.h"
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_allocator_report.h"
#include "sanitizer_common/sanitizer_errno.h"

namespace __msan {

struct Metadata {
  uptr requested_size;
};

struct MsanMapUnmapCallback {
  void OnMap(uptr p, uptr size) const {}
  void OnMapSecondary(uptr p, uptr size, uptr user_begin,
                      uptr user_size) const {}
  void OnUnmap(uptr p, uptr size) const {
    __msan_unpoison((void *)p, size);

    // We are about to unmap a chunk of user memory.
    // Mark the corresponding shadow memory as not needed.
    uptr shadow_p = MEM_TO_SHADOW(p);
    ReleaseMemoryPagesToOS(shadow_p, shadow_p + size);
    if (__msan_get_track_origins()) {
      uptr origin_p = MEM_TO_ORIGIN(p);
      ReleaseMemoryPagesToOS(origin_p, origin_p + size);
    }
  }
};

// Note: to ensure that the allocator is compatible with the application memory
// layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be
// duplicated as MappingDesc::ALLOCATOR in msan.h.
#if defined(__mips64)
static const uptr kMaxAllowedMallocSize = 2UL << 30;

struct AP32 {
  static const uptr kSpaceBeg = 0;
  static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
  static const uptr kMetadataSize = sizeof(Metadata);
  typedef __sanitizer::CompactSizeClassMap SizeClassMap;
  static const uptr kRegionSizeLog = 20;
  using AddressSpaceView = LocalAddressSpaceView;
  typedef MsanMapUnmapCallback MapUnmapCallback;
  static const uptr kFlags = 0;
};
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
#elif defined(__x86_64__)
#if SANITIZER_NETBSD || SANITIZER_LINUX
static const uptr kAllocatorSpace = 0x700000000000ULL;
#else
static const uptr kAllocatorSpace = 0x600000000000ULL;
#endif
static const uptr kMaxAllowedMallocSize = 8UL << 30;

struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
  static const uptr kSpaceBeg = kAllocatorSpace;
  static const uptr kSpaceSize = 0x40000000000;  // 4T.
  static const uptr kMetadataSize = sizeof(Metadata);
  typedef DefaultSizeClassMap SizeClassMap;
  typedef MsanMapUnmapCallback MapUnmapCallback;
  static const uptr kFlags = 0;
  using AddressSpaceView = LocalAddressSpaceView;
};

typedef SizeClassAllocator64<AP64> PrimaryAllocator;

#elif defined(__loongarch_lp64)
const uptr kAllocatorSpace = 0x700000000000ULL;
const uptr kMaxAllowedMallocSize = 8UL << 30;

struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
  static const uptr kSpaceBeg = kAllocatorSpace;
  static const uptr kSpaceSize = 0x40000000000;  // 4T.
  static const uptr kMetadataSize = sizeof(Metadata);
  typedef DefaultSizeClassMap SizeClassMap;
  typedef MsanMapUnmapCallback MapUnmapCallback;
  static const uptr kFlags = 0;
  using AddressSpaceView = LocalAddressSpaceView;
};

typedef SizeClassAllocator64<AP64> PrimaryAllocator;

#elif defined(__powerpc64__)
static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G

struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
  static const uptr kSpaceBeg = 0x300000000000;
  static const uptr kSpaceSize = 0x020000000000;  // 2T.
  static const uptr kMetadataSize = sizeof(Metadata);
  typedef DefaultSizeClassMap SizeClassMap;
  typedef MsanMapUnmapCallback MapUnmapCallback;
  static const uptr kFlags = 0;
  using AddressSpaceView = LocalAddressSpaceView;
};

typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#elif defined(__s390x__)
static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G

struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
  static const uptr kSpaceBeg = 0x440000000000;
  static const uptr kSpaceSize = 0x020000000000;  // 2T.
  static const uptr kMetadataSize = sizeof(Metadata);
  typedef DefaultSizeClassMap SizeClassMap;
  typedef MsanMapUnmapCallback MapUnmapCallback;
  static const uptr kFlags = 0;
  using AddressSpaceView = LocalAddressSpaceView;
};

typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#elif defined(__aarch64__)
static const uptr kMaxAllowedMallocSize = 8UL << 30;

struct AP64 {
  static const uptr kSpaceBeg = 0xE00000000000ULL;
  static const uptr kSpaceSize = 0x40000000000;  // 4T.
  static const uptr kMetadataSize = sizeof(Metadata);
  typedef DefaultSizeClassMap SizeClassMap;
  typedef MsanMapUnmapCallback MapUnmapCallback;
  static const uptr kFlags = 0;
  using AddressSpaceView = LocalAddressSpaceView;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#endif
typedef CombinedAllocator<PrimaryAllocator> Allocator;
typedef Allocator::AllocatorCache AllocatorCache;

static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static StaticSpinMutex fallback_mutex;

static uptr max_malloc_size;

void MsanAllocatorInit() {
  SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
  allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
  if (common_flags()->max_allocation_size_mb)
    max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
                          kMaxAllowedMallocSize);
  else
    max_malloc_size = kMaxAllowedMallocSize;
}

void LockAllocator() { allocator.ForceLock(); }

void UnlockAllocator() { allocator.ForceUnlock(); }

AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) {
  CHECK(ms);
  CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
  return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
}

void MsanThreadLocalMallocStorage::Init() {
  allocator.InitCache(GetAllocatorCache(this));
}

void MsanThreadLocalMallocStorage::CommitBack() {
  allocator.SwallowCache(GetAllocatorCache(this));
  allocator.DestroyCache(GetAllocatorCache(this));
}

static void *MsanAllocate(BufferedStackTrace *stack, uptr size, uptr alignment,
                          bool zeroise) {
  if (UNLIKELY(size > max_malloc_size)) {
    if (AllocatorMayReturnNull()) {
      Report("WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size);
      return nullptr;
    }
    GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
    ReportAllocationSizeTooBig(size, max_malloc_size, stack);
  }
  if (UNLIKELY(IsRssLimitExceeded())) {
    if (AllocatorMayReturnNull())
      return nullptr;
    GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
    ReportRssLimitExceeded(stack);
  }
  MsanThread *t = GetCurrentThread();
  void *allocated;
  if (t) {
    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
    allocated = allocator.Allocate(cache, size, alignment);
  } else {
    SpinMutexLock l(&fallback_mutex);
    AllocatorCache *cache = &fallback_allocator_cache;
    allocated = allocator.Allocate(cache, size, alignment);
  }
  if (UNLIKELY(!allocated)) {
    SetAllocatorOutOfMemory();
    if (AllocatorMayReturnNull())
      return nullptr;
    GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
    ReportOutOfMemory(size, stack);
  }
  Metadata *meta =
      reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
  meta->requested_size = size;
  if (zeroise) {
    if (allocator.FromPrimary(allocated))
      __msan_clear_and_unpoison(allocated, size);
    else
      __msan_unpoison(allocated, size);  // Mem is already zeroed.
  } else if (flags()->poison_in_malloc) {
    __msan_poison(allocated, size);
    if (__msan_get_track_origins()) {
      stack->tag = StackTrace::TAG_ALLOC;
      Origin o = Origin::CreateHeapOrigin(stack);
      __msan_set_origin(allocated, size, o.raw_id());
    }
  }
  UnpoisonParam(2);
  RunMallocHooks(allocated, size);
  return allocated;
}

void MsanDeallocate(BufferedStackTrace *stack, void *p) {
  CHECK(p);
  UnpoisonParam(1);
  RunFreeHooks(p);

  Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
  uptr size = meta->requested_size;
  meta->requested_size = 0;
  // This memory will not be reused by anyone else, so we are free to keep it
  // poisoned. The secondary allocator will unmap and unpoison by
  // MsanMapUnmapCallback, no need to poison it here.
  if (flags()->poison_in_free && allocator.FromPrimary(p)) {
    __msan_poison(p, size);
    if (__msan_get_track_origins()) {
      stack->tag = StackTrace::TAG_DEALLOC;
      Origin o = Origin::CreateHeapOrigin(stack);
      __msan_set_origin(p, size, o.raw_id());
    }
  }
  MsanThread *t = GetCurrentThread();
  if (t) {
    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
    allocator.Deallocate(cache, p);
  } else {
    SpinMutexLock l(&fallback_mutex);
    AllocatorCache *cache = &fallback_allocator_cache;
    allocator.Deallocate(cache, p);
  }
}

static void *MsanReallocate(BufferedStackTrace *stack, void *old_p,
                            uptr new_size, uptr alignment) {
  Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
  uptr old_size = meta->requested_size;
  uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
  if (new_size <= actually_allocated_size) {
    // We are not reallocating here.
    meta->requested_size = new_size;
    if (new_size > old_size) {
      if (flags()->poison_in_malloc) {
        stack->tag = StackTrace::TAG_ALLOC;
        PoisonMemory((char *)old_p + old_size, new_size - old_size, stack);
      }
    }
    return old_p;
  }
  uptr memcpy_size = Min(new_size, old_size);
  void *new_p = MsanAllocate(stack, new_size, alignment, false /*zeroise*/);
  if (new_p) {
    CopyMemory(new_p, old_p, memcpy_size, stack);
    MsanDeallocate(stack, old_p);
  }
  return new_p;
}

static void *MsanCalloc(BufferedStackTrace *stack, uptr nmemb, uptr size) {
  if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
    if (AllocatorMayReturnNull())
      return nullptr;
    GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
    ReportCallocOverflow(nmemb, size, stack);
  }
  return MsanAllocate(stack, nmemb * size, sizeof(u64), true);
}

static const void *AllocationBegin(const void *p) {
  if (!p)
    return nullptr;
  void *beg = allocator.GetBlockBegin(p);
  if (!beg)
    return nullptr;
  Metadata *b = (Metadata *)allocator.GetMetaData(beg);
  if (!b)
    return nullptr;
  if (b->requested_size == 0)
    return nullptr;

  return (const void *)beg;
}

static uptr AllocationSize(const void *p) {
  if (!p) return 0;
  const void *beg = allocator.GetBlockBegin(p);
  if (beg != p) return 0;
  Metadata *b = (Metadata *)allocator.GetMetaData(p);
  return b->requested_size;
}

static uptr AllocationSizeFast(const void *p) {
  return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size;
}

void *msan_malloc(uptr size, BufferedStackTrace *stack) {
  return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
}

void *msan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
  return SetErrnoOnNull(MsanCalloc(stack, nmemb, size));
}

void *msan_realloc(void *ptr, uptr size, BufferedStackTrace *stack) {
  if (!ptr)
    return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
  if (size == 0) {
    MsanDeallocate(stack, ptr);
    return nullptr;
  }
  return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64)));
}

void *msan_reallocarray(void *ptr, uptr nmemb, uptr size,
                        BufferedStackTrace *stack) {
  if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
    errno = errno_ENOMEM;
    if (AllocatorMayReturnNull())
      return nullptr;
    GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
    ReportReallocArrayOverflow(nmemb, size, stack);
  }
  return msan_realloc(ptr, nmemb * size, stack);
}

void *msan_valloc(uptr size, BufferedStackTrace *stack) {
  return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false));
}

void *msan_pvalloc(uptr size, BufferedStackTrace *stack) {
  uptr PageSize = GetPageSizeCached();
  if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
    errno = errno_ENOMEM;
    if (AllocatorMayReturnNull())
      return nullptr;
    GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
    ReportPvallocOverflow(size, stack);
  }
  // pvalloc(0) should allocate one page.
  size = size ? RoundUpTo(size, PageSize) : PageSize;
  return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false));
}

void *msan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
  if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
    errno = errno_EINVAL;
    if (AllocatorMayReturnNull())
      return nullptr;
    GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
    ReportInvalidAlignedAllocAlignment(size, alignment, stack);
  }
  return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
}

void *msan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack) {
  if (UNLIKELY(!IsPowerOfTwo(alignment))) {
    errno = errno_EINVAL;
    if (AllocatorMayReturnNull())
      return nullptr;
    GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
    ReportInvalidAllocationAlignment(alignment, stack);
  }
  return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
}

int msan_posix_memalign(void **memptr, uptr alignment, uptr size,
                        BufferedStackTrace *stack) {
  if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
    if (AllocatorMayReturnNull())
      return errno_EINVAL;
    GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
    ReportInvalidPosixMemalignAlignment(alignment, stack);
  }
  void *ptr = MsanAllocate(stack, size, alignment, false);
  if (UNLIKELY(!ptr))
    // OOM error is already taken care of by MsanAllocate.
    return errno_ENOMEM;
  CHECK(IsAligned((uptr)ptr, alignment));
  *memptr = ptr;
  return 0;
}

} // namespace __msan

using namespace __msan;

uptr __sanitizer_get_current_allocated_bytes() {
  uptr stats[AllocatorStatCount];
  allocator.GetStats(stats);
  return stats[AllocatorStatAllocated];
}

uptr __sanitizer_get_heap_size() {
  uptr stats[AllocatorStatCount];
  allocator.GetStats(stats);
  return stats[AllocatorStatMapped];
}

uptr __sanitizer_get_free_bytes() { return 1; }

uptr __sanitizer_get_unmapped_bytes() { return 1; }

uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }

int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }

const void *__sanitizer_get_allocated_begin(const void *p) {
  return AllocationBegin(p);
}

uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }

uptr __sanitizer_get_allocated_size_fast(const void *p) {
  DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
  uptr ret = AllocationSizeFast(p);
  DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
  return ret;
}

void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); }