1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
|
//===-- hwasan_report.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// Error reporting.
//===----------------------------------------------------------------------===//
#include "hwasan_report.h"
#include <dlfcn.h>
#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_globals.h"
#include "hwasan_mapping.h"
#include "hwasan_thread.h"
#include "hwasan_thread_list.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_array_ref.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace_printer.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
using namespace __sanitizer;
namespace __hwasan {
class ScopedReport {
public:
explicit ScopedReport(bool fatal) : fatal(fatal) {
Lock lock(&error_message_lock_);
error_message_ptr_ = fatal ? &error_message_ : nullptr;
++hwasan_report_count;
}
~ScopedReport() {
void (*report_cb)(const char *);
{
Lock lock(&error_message_lock_);
report_cb = error_report_callback_;
error_message_ptr_ = nullptr;
}
if (report_cb)
report_cb(error_message_.data());
if (fatal)
SetAbortMessage(error_message_.data());
if (common_flags()->print_module_map >= 2 ||
(fatal && common_flags()->print_module_map))
DumpProcessMap();
if (fatal)
Die();
}
static void MaybeAppendToErrorMessage(const char *msg) {
Lock lock(&error_message_lock_);
if (!error_message_ptr_)
return;
error_message_ptr_->Append(msg);
}
static void SetErrorReportCallback(void (*callback)(const char *)) {
Lock lock(&error_message_lock_);
error_report_callback_ = callback;
}
private:
InternalScopedString error_message_;
bool fatal;
static Mutex error_message_lock_;
static InternalScopedString *error_message_ptr_
SANITIZER_GUARDED_BY(error_message_lock_);
static void (*error_report_callback_)(const char *);
};
Mutex ScopedReport::error_message_lock_;
InternalScopedString *ScopedReport::error_message_ptr_;
void (*ScopedReport::error_report_callback_)(const char *);
// If there is an active ScopedReport, append to its error message.
void AppendToErrorMessageBuffer(const char *buffer) {
ScopedReport::MaybeAppendToErrorMessage(buffer);
}
static StackTrace GetStackTraceFromId(u32 id) {
CHECK(id);
StackTrace res = StackDepotGet(id);
CHECK(res.trace);
return res;
}
static void MaybePrintAndroidHelpUrl() {
#if SANITIZER_ANDROID
Printf(
"Learn more about HWASan reports: "
"https://source.android.com/docs/security/test/memory-safety/"
"hwasan-reports\n");
#endif
}
namespace {
// A RAII object that holds a copy of the current thread stack ring buffer.
// The actual stack buffer may change while we are iterating over it (for
// example, Printf may call syslog() which can itself be built with hwasan).
class SavedStackAllocations {
public:
SavedStackAllocations() = default;
explicit SavedStackAllocations(Thread *t) { CopyFrom(t); }
void CopyFrom(Thread *t) {
StackAllocationsRingBuffer *rb = t->stack_allocations();
uptr size = rb->size() * sizeof(uptr);
void *storage =
MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
new (&rb_) StackAllocationsRingBuffer(*rb, storage);
thread_id_ = t->unique_id();
}
~SavedStackAllocations() {
if (rb_) {
StackAllocationsRingBuffer *rb = get();
UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
}
}
const StackAllocationsRingBuffer *get() const {
return (const StackAllocationsRingBuffer *)&rb_;
}
StackAllocationsRingBuffer *get() {
return (StackAllocationsRingBuffer *)&rb_;
}
u32 thread_id() const { return thread_id_; }
private:
uptr rb_ = 0;
u32 thread_id_;
};
class Decorator: public __sanitizer::SanitizerCommonDecorator {
public:
Decorator() : SanitizerCommonDecorator() { }
const char *Access() { return Blue(); }
const char *Allocation() const { return Magenta(); }
const char *Origin() const { return Magenta(); }
const char *Name() const { return Green(); }
const char *Location() { return Green(); }
const char *Thread() { return Green(); }
};
} // namespace
static bool FindHeapAllocation(HeapAllocationsRingBuffer *rb, uptr tagged_addr,
HeapAllocationRecord *har, uptr *ring_index,
uptr *num_matching_addrs,
uptr *num_matching_addrs_4b) {
if (!rb) return false;
*num_matching_addrs = 0;
*num_matching_addrs_4b = 0;
for (uptr i = 0, size = rb->size(); i < size; i++) {
auto h = (*rb)[i];
if (h.tagged_addr <= tagged_addr &&
h.tagged_addr + h.requested_size > tagged_addr) {
*har = h;
*ring_index = i;
return true;
}
// Measure the number of heap ring buffer entries that would have matched
// if we had only one entry per address (e.g. if the ring buffer data was
// stored at the address itself). This will help us tune the allocator
// implementation for MTE.
if (UntagAddr(h.tagged_addr) <= UntagAddr(tagged_addr) &&
UntagAddr(h.tagged_addr) + h.requested_size > UntagAddr(tagged_addr)) {
++*num_matching_addrs;
}
// Measure the number of heap ring buffer entries that would have matched
// if we only had 4 tag bits, which is the case for MTE.
auto untag_4b = [](uptr p) {
return p & ((1ULL << 60) - 1);
};
if (untag_4b(h.tagged_addr) <= untag_4b(tagged_addr) &&
untag_4b(h.tagged_addr) + h.requested_size > untag_4b(tagged_addr)) {
++*num_matching_addrs_4b;
}
}
return false;
}
static void PrintStackAllocations(const StackAllocationsRingBuffer *sa,
tag_t addr_tag, uptr untagged_addr) {
uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
bool found_local = false;
InternalScopedString location;
for (uptr i = 0; i < frames; i++) {
const uptr *record_addr = &(*sa)[i];
uptr record = *record_addr;
if (!record)
break;
tag_t base_tag =
reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
uptr pc_mask = (1ULL << kRecordFPShift) - 1;
uptr pc = record & pc_mask;
FrameInfo frame;
if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
for (LocalInfo &local : frame.locals) {
if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
continue;
if (!(local.name && internal_strlen(local.name)) &&
!(local.function_name && internal_strlen(local.function_name)) &&
!(local.decl_file && internal_strlen(local.decl_file)))
continue;
tag_t obj_tag = base_tag ^ local.tag_offset;
if (obj_tag != addr_tag)
continue;
// Guess top bits of local variable from the faulting address, because
// we only store bits 4-19 of FP (bits 0-3 are guaranteed to be zero).
uptr local_beg = (fp + local.frame_offset) |
(untagged_addr & ~(uptr(kRecordFPModulus) - 1));
uptr local_end = local_beg + local.size;
if (!found_local) {
Printf("\nPotentially referenced stack objects:\n");
found_local = true;
}
uptr offset;
const char *whence;
const char *cause;
if (local_beg <= untagged_addr && untagged_addr < local_end) {
offset = untagged_addr - local_beg;
whence = "inside";
cause = "use-after-scope";
} else if (untagged_addr >= local_end) {
offset = untagged_addr - local_end;
whence = "after";
cause = "stack-buffer-overflow";
} else {
offset = local_beg - untagged_addr;
whence = "before";
cause = "stack-buffer-overflow";
}
Decorator d;
Printf("%s", d.Error());
Printf("Cause: %s\n", cause);
Printf("%s", d.Default());
Printf("%s", d.Location());
StackTracePrinter::GetOrInit()->RenderSourceLocation(
&location, local.decl_file, local.decl_line, /* column= */ 0,
common_flags()->symbolize_vs_style,
common_flags()->strip_path_prefix);
Printf(
"%p is located %zd bytes %s a %zd-byte local variable %s [%p,%p) "
"in %s %s\n",
untagged_addr, offset, whence, local_end - local_beg, local.name,
local_beg, local_end, local.function_name, location.data());
location.clear();
Printf("%s\n", d.Default());
}
frame.Clear();
}
}
if (found_local)
return;
// We didn't find any locals. Most likely we don't have symbols, so dump
// the information that we have for offline analysis.
InternalScopedString frame_desc;
Printf("Previously allocated frames:\n");
for (uptr i = 0; i < frames; i++) {
const uptr *record_addr = &(*sa)[i];
uptr record = *record_addr;
if (!record)
break;
uptr pc_mask = (1ULL << 48) - 1;
uptr pc = record & pc_mask;
frame_desc.AppendF(" record_addr:0x%zx record:0x%zx",
reinterpret_cast<uptr>(record_addr), record);
SymbolizedStackHolder symbolized_stack(
Symbolizer::GetOrInit()->SymbolizePC(pc));
const SymbolizedStack *frame = symbolized_stack.get();
if (frame) {
StackTracePrinter::GetOrInit()->RenderFrame(
&frame_desc, " %F %L", 0, frame->info.address, &frame->info,
common_flags()->symbolize_vs_style,
common_flags()->strip_path_prefix);
}
Printf("%s\n", frame_desc.data());
frame_desc.clear();
}
}
// Returns true if tag == *tag_ptr, reading tags from short granules if
// necessary. This may return a false positive if tags 1-15 are used as a
// regular tag rather than a short granule marker.
static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
if (tag == *tag_ptr)
return true;
if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
return false;
uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
return tag == inline_tag;
}
// HWASan globals store the size of the global in the descriptor. In cases where
// we don't have a binary with symbols, we can't grab the size of the global
// from the debug info - but we might be able to retrieve it from the
// descriptor. Returns zero if the lookup failed.
static uptr GetGlobalSizeFromDescriptor(uptr ptr) {
// Find the ELF object that this global resides in.
Dl_info info;
if (dladdr(reinterpret_cast<void *>(ptr), &info) == 0)
return 0;
auto *ehdr = reinterpret_cast<const ElfW(Ehdr) *>(info.dli_fbase);
auto *phdr_begin = reinterpret_cast<const ElfW(Phdr) *>(
reinterpret_cast<const u8 *>(ehdr) + ehdr->e_phoff);
// Get the load bias. This is normally the same as the dli_fbase address on
// position-independent code, but can be different on non-PIE executables,
// binaries using LLD's partitioning feature, or binaries compiled with a
// linker script.
ElfW(Addr) load_bias = 0;
for (const auto &phdr :
ArrayRef<const ElfW(Phdr)>(phdr_begin, phdr_begin + ehdr->e_phnum)) {
if (phdr.p_type != PT_LOAD || phdr.p_offset != 0)
continue;
load_bias = reinterpret_cast<ElfW(Addr)>(ehdr) - phdr.p_vaddr;
break;
}
// Walk all globals in this ELF object, looking for the one we're interested
// in. Once we find it, we can stop iterating and return the size of the
// global we're interested in.
for (const hwasan_global &global :
HwasanGlobalsFor(load_bias, phdr_begin, ehdr->e_phnum))
if (global.addr() <= ptr && ptr < global.addr() + global.size())
return global.size();
return 0;
}
void ReportStats() {}
constexpr uptr kDumpWidth = 16;
constexpr uptr kShadowLines = 17;
constexpr uptr kShadowDumpSize = kShadowLines * kDumpWidth;
constexpr uptr kShortLines = 3;
constexpr uptr kShortDumpSize = kShortLines * kDumpWidth;
constexpr uptr kShortDumpOffset = (kShadowLines - kShortLines) / 2 * kDumpWidth;
static uptr GetPrintTagStart(uptr addr) {
addr = MemToShadow(addr);
addr = RoundDownTo(addr, kDumpWidth);
addr -= kDumpWidth * (kShadowLines / 2);
return addr;
}
template <typename PrintTag>
static void PrintTagInfoAroundAddr(uptr addr, uptr num_rows,
InternalScopedString &s,
PrintTag print_tag) {
uptr center_row_beg = RoundDownTo(addr, kDumpWidth);
uptr beg_row = center_row_beg - kDumpWidth * (num_rows / 2);
uptr end_row = center_row_beg + kDumpWidth * ((num_rows + 1) / 2);
for (uptr row = beg_row; row < end_row; row += kDumpWidth) {
s.Append(row == center_row_beg ? "=>" : " ");
s.AppendF("%p:", (void *)ShadowToMem(row));
for (uptr i = 0; i < kDumpWidth; i++) {
s.Append(row + i == addr ? "[" : " ");
print_tag(s, row + i);
s.Append(row + i == addr ? "]" : " ");
}
s.AppendF("\n");
}
}
template <typename GetTag, typename GetShortTag>
static void PrintTagsAroundAddr(uptr addr, GetTag get_tag,
GetShortTag get_short_tag) {
InternalScopedString s;
addr = MemToShadow(addr);
s.AppendF(
"\nMemory tags around the buggy address (one tag corresponds to %zd "
"bytes):\n",
kShadowAlignment);
PrintTagInfoAroundAddr(addr, kShadowLines, s,
[&](InternalScopedString &s, uptr tag_addr) {
tag_t tag = get_tag(tag_addr);
s.AppendF("%02x", tag);
});
s.AppendF(
"Tags for short granules around the buggy address (one tag corresponds "
"to %zd bytes):\n",
kShadowAlignment);
PrintTagInfoAroundAddr(addr, kShortLines, s,
[&](InternalScopedString &s, uptr tag_addr) {
tag_t tag = get_tag(tag_addr);
if (tag >= 1 && tag <= kShadowAlignment) {
tag_t short_tag = get_short_tag(tag_addr);
s.AppendF("%02x", short_tag);
} else {
s.AppendF("..");
}
});
s.AppendF(
"See "
"https://clang.llvm.org/docs/"
"HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
"description of short granule tags\n");
Printf("%s", s.data());
}
static uptr GetTopPc(const StackTrace *stack) {
return stack->size ? StackTrace::GetPreviousInstructionPc(stack->trace[0])
: 0;
}
namespace {
class BaseReport {
public:
BaseReport(StackTrace *stack, bool fatal, uptr tagged_addr, uptr access_size)
: scoped_report(fatal),
stack(stack),
tagged_addr(tagged_addr),
access_size(access_size),
untagged_addr(UntagAddr(tagged_addr)),
ptr_tag(GetTagFromPointer(tagged_addr)),
mismatch_offset(FindMismatchOffset()),
heap(CopyHeapChunk()),
allocations(CopyAllocations()),
candidate(FindBufferOverflowCandidate()),
shadow(CopyShadow()) {}
protected:
struct OverflowCandidate {
uptr untagged_addr = 0;
bool after = false;
bool is_close = false;
struct {
uptr begin = 0;
uptr end = 0;
u32 thread_id = 0;
u32 stack_id = 0;
bool is_allocated = false;
} heap;
};
struct HeapAllocation {
HeapAllocationRecord har = {};
uptr ring_index = 0;
uptr num_matching_addrs = 0;
uptr num_matching_addrs_4b = 0;
u32 free_thread_id = 0;
};
struct Allocations {
ArrayRef<SavedStackAllocations> stack;
ArrayRef<HeapAllocation> heap;
};
struct HeapChunk {
uptr begin = 0;
uptr size = 0;
u32 stack_id = 0;
bool from_small_heap = false;
bool is_allocated = false;
};
struct Shadow {
uptr addr = 0;
tag_t tags[kShadowDumpSize] = {};
tag_t short_tags[kShortDumpSize] = {};
};
sptr FindMismatchOffset() const;
Shadow CopyShadow() const;
tag_t GetTagCopy(uptr addr) const;
tag_t GetShortTagCopy(uptr addr) const;
HeapChunk CopyHeapChunk() const;
Allocations CopyAllocations();
OverflowCandidate FindBufferOverflowCandidate() const;
void PrintAddressDescription() const;
void PrintHeapOrGlobalCandidate() const;
void PrintTags(uptr addr) const;
SavedStackAllocations stack_allocations_storage[16];
HeapAllocation heap_allocations_storage[256];
const ScopedReport scoped_report;
const StackTrace *stack = nullptr;
const uptr tagged_addr = 0;
const uptr access_size = 0;
const uptr untagged_addr = 0;
const tag_t ptr_tag = 0;
const sptr mismatch_offset = 0;
const HeapChunk heap;
const Allocations allocations;
const OverflowCandidate candidate;
const Shadow shadow;
};
sptr BaseReport::FindMismatchOffset() const {
if (!access_size)
return 0;
sptr offset =
__hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
CHECK_GE(offset, 0);
CHECK_LT(offset, static_cast<sptr>(access_size));
tag_t *tag_ptr =
reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
tag_t mem_tag = *tag_ptr;
if (mem_tag && mem_tag < kShadowAlignment) {
tag_t *granule_ptr = reinterpret_cast<tag_t *>((untagged_addr + offset) &
~(kShadowAlignment - 1));
// If offset is 0, (untagged_addr + offset) is not aligned to granules.
// This is the offset of the leftmost accessed byte within the bad granule.
u8 in_granule_offset = (untagged_addr + offset) & (kShadowAlignment - 1);
tag_t short_tag = granule_ptr[kShadowAlignment - 1];
// The first mismatch was a short granule that matched the ptr_tag.
if (short_tag == ptr_tag) {
// If the access starts after the end of the short granule, then the first
// bad byte is the first byte of the access; otherwise it is the first
// byte past the end of the short granule
if (mem_tag > in_granule_offset) {
offset += mem_tag - in_granule_offset;
}
}
}
return offset;
}
BaseReport::Shadow BaseReport::CopyShadow() const {
Shadow result;
if (!MemIsApp(untagged_addr))
return result;
result.addr = GetPrintTagStart(untagged_addr + mismatch_offset);
uptr tag_addr = result.addr;
uptr short_end = kShortDumpOffset + ARRAY_SIZE(shadow.short_tags);
for (uptr i = 0; i < ARRAY_SIZE(result.tags); ++i, ++tag_addr) {
if (!MemIsShadow(tag_addr))
continue;
result.tags[i] = *reinterpret_cast<tag_t *>(tag_addr);
if (i < kShortDumpOffset || i >= short_end)
continue;
uptr granule_addr = ShadowToMem(tag_addr);
if (1 <= result.tags[i] && result.tags[i] <= kShadowAlignment &&
IsAccessibleMemoryRange(granule_addr, kShadowAlignment)) {
result.short_tags[i - kShortDumpOffset] =
*reinterpret_cast<tag_t *>(granule_addr + kShadowAlignment - 1);
}
}
return result;
}
tag_t BaseReport::GetTagCopy(uptr addr) const {
CHECK_GE(addr, shadow.addr);
uptr idx = addr - shadow.addr;
CHECK_LT(idx, ARRAY_SIZE(shadow.tags));
return shadow.tags[idx];
}
tag_t BaseReport::GetShortTagCopy(uptr addr) const {
CHECK_GE(addr, shadow.addr + kShortDumpOffset);
uptr idx = addr - shadow.addr - kShortDumpOffset;
CHECK_LT(idx, ARRAY_SIZE(shadow.short_tags));
return shadow.short_tags[idx];
}
BaseReport::HeapChunk BaseReport::CopyHeapChunk() const {
HeapChunk result = {};
if (MemIsShadow(untagged_addr))
return result;
HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
result.begin = chunk.Beg();
if (result.begin) {
result.size = chunk.ActualSize();
result.from_small_heap = chunk.FromSmallHeap();
result.is_allocated = chunk.IsAllocated();
result.stack_id = chunk.GetAllocStackId();
}
return result;
}
BaseReport::Allocations BaseReport::CopyAllocations() {
if (MemIsShadow(untagged_addr))
return {};
uptr stack_allocations_count = 0;
uptr heap_allocations_count = 0;
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
if (stack_allocations_count < ARRAY_SIZE(stack_allocations_storage) &&
t->AddrIsInStack(untagged_addr)) {
stack_allocations_storage[stack_allocations_count++].CopyFrom(t);
}
if (heap_allocations_count < ARRAY_SIZE(heap_allocations_storage)) {
// Scan all threads' ring buffers to find if it's a heap-use-after-free.
HeapAllocationRecord har;
uptr ring_index, num_matching_addrs, num_matching_addrs_4b;
if (FindHeapAllocation(t->heap_allocations(), tagged_addr, &har,
&ring_index, &num_matching_addrs,
&num_matching_addrs_4b)) {
auto &ha = heap_allocations_storage[heap_allocations_count++];
ha.har = har;
ha.ring_index = ring_index;
ha.num_matching_addrs = num_matching_addrs;
ha.num_matching_addrs_4b = num_matching_addrs_4b;
ha.free_thread_id = t->unique_id();
}
}
});
return {{stack_allocations_storage, stack_allocations_count},
{heap_allocations_storage, heap_allocations_count}};
}
BaseReport::OverflowCandidate BaseReport::FindBufferOverflowCandidate() const {
OverflowCandidate result = {};
if (MemIsShadow(untagged_addr))
return result;
// Check if this looks like a heap buffer overflow by scanning
// the shadow left and right and looking for the first adjacent
// object with a different memory tag. If that tag matches ptr_tag,
// check the allocator if it has a live chunk there.
tag_t *tag_ptr = reinterpret_cast<tag_t *>(MemToShadow(untagged_addr));
tag_t *candidate_tag_ptr = nullptr, *left = tag_ptr, *right = tag_ptr;
uptr candidate_distance = 0;
for (; candidate_distance < 1000; candidate_distance++) {
if (MemIsShadow(reinterpret_cast<uptr>(left)) && TagsEqual(ptr_tag, left)) {
candidate_tag_ptr = left;
break;
}
--left;
if (MemIsShadow(reinterpret_cast<uptr>(right)) &&
TagsEqual(ptr_tag, right)) {
candidate_tag_ptr = right;
break;
}
++right;
}
constexpr auto kCloseCandidateDistance = 1;
result.is_close = candidate_distance <= kCloseCandidateDistance;
result.after = candidate_tag_ptr == left;
result.untagged_addr = ShadowToMem(reinterpret_cast<uptr>(candidate_tag_ptr));
HwasanChunkView chunk = FindHeapChunkByAddress(result.untagged_addr);
if (chunk.IsAllocated()) {
result.heap.is_allocated = true;
result.heap.begin = chunk.Beg();
result.heap.end = chunk.End();
result.heap.thread_id = chunk.GetAllocThreadId();
result.heap.stack_id = chunk.GetAllocStackId();
}
return result;
}
void BaseReport::PrintHeapOrGlobalCandidate() const {
Decorator d;
if (candidate.heap.is_allocated) {
uptr offset;
const char *whence;
if (candidate.heap.begin <= untagged_addr &&
untagged_addr < candidate.heap.end) {
offset = untagged_addr - candidate.heap.begin;
whence = "inside";
} else if (candidate.after) {
offset = untagged_addr - candidate.heap.end;
whence = "after";
} else {
offset = candidate.heap.begin - untagged_addr;
whence = "before";
}
Printf("%s", d.Error());
Printf("\nCause: heap-buffer-overflow\n");
Printf("%s", d.Default());
Printf("%s", d.Location());
Printf("%p is located %zd bytes %s a %zd-byte region [%p,%p)\n",
untagged_addr, offset, whence,
candidate.heap.end - candidate.heap.begin, candidate.heap.begin,
candidate.heap.end);
Printf("%s", d.Allocation());
Printf("allocated by thread T%u here:\n", candidate.heap.thread_id);
Printf("%s", d.Default());
GetStackTraceFromId(candidate.heap.stack_id).Print();
return;
}
// Check whether the address points into a loaded library. If so, this is
// most likely a global variable.
const char *module_name;
uptr module_address;
Symbolizer *sym = Symbolizer::GetOrInit();
if (sym->GetModuleNameAndOffsetForPC(candidate.untagged_addr, &module_name,
&module_address)) {
Printf("%s", d.Error());
Printf("\nCause: global-overflow\n");
Printf("%s", d.Default());
DataInfo info;
Printf("%s", d.Location());
if (sym->SymbolizeData(candidate.untagged_addr, &info) && info.start) {
Printf(
"%p is located %zd bytes %s a %zd-byte global variable "
"%s [%p,%p) in %s\n",
untagged_addr,
candidate.after ? untagged_addr - (info.start + info.size)
: info.start - untagged_addr,
candidate.after ? "after" : "before", info.size, info.name,
info.start, info.start + info.size, module_name);
} else {
uptr size = GetGlobalSizeFromDescriptor(candidate.untagged_addr);
if (size == 0)
// We couldn't find the size of the global from the descriptors.
Printf(
"%p is located %s a global variable in "
"\n #0 0x%x (%s+0x%x)\n",
untagged_addr, candidate.after ? "after" : "before",
candidate.untagged_addr, module_name, module_address);
else
Printf(
"%p is located %s a %zd-byte global variable in "
"\n #0 0x%x (%s+0x%x)\n",
untagged_addr, candidate.after ? "after" : "before", size,
candidate.untagged_addr, module_name, module_address);
}
Printf("%s", d.Default());
}
}
void BaseReport::PrintAddressDescription() const {
Decorator d;
int num_descriptions_printed = 0;
if (MemIsShadow(untagged_addr)) {
Printf("%s%p is HWAsan shadow memory.\n%s", d.Location(), untagged_addr,
d.Default());
return;
}
// Print some very basic information about the address, if it's a heap.
if (heap.begin) {
Printf(
"%s[%p,%p) is a %s %s heap chunk; "
"size: %zd offset: %zd\n%s",
d.Location(), heap.begin, heap.begin + heap.size,
heap.from_small_heap ? "small" : "large",
heap.is_allocated ? "allocated" : "unallocated", heap.size,
untagged_addr - heap.begin, d.Default());
}
auto announce_by_id = [](u32 thread_id) {
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
if (thread_id == t->unique_id())
t->Announce();
});
};
// Check stack first. If the address is on the stack of a live thread, we
// know it cannot be a heap / global overflow.
for (const auto &sa : allocations.stack) {
Printf("%s", d.Error());
Printf("\nCause: stack tag-mismatch\n");
Printf("%s", d.Location());
Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
sa.thread_id());
Printf("%s", d.Default());
announce_by_id(sa.thread_id());
PrintStackAllocations(sa.get(), ptr_tag, untagged_addr);
num_descriptions_printed++;
}
if (allocations.stack.empty() && candidate.untagged_addr &&
candidate.is_close) {
PrintHeapOrGlobalCandidate();
num_descriptions_printed++;
}
for (const auto &ha : allocations.heap) {
const HeapAllocationRecord har = ha.har;
Printf("%s", d.Error());
Printf("\nCause: use-after-free\n");
Printf("%s", d.Location());
Printf("%p is located %zd bytes inside a %zd-byte region [%p,%p)\n",
untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
har.requested_size, UntagAddr(har.tagged_addr),
UntagAddr(har.tagged_addr) + har.requested_size);
Printf("%s", d.Allocation());
Printf("freed by thread T%u here:\n", ha.free_thread_id);
Printf("%s", d.Default());
GetStackTraceFromId(har.free_context_id).Print();
Printf("%s", d.Allocation());
Printf("previously allocated by thread T%u here:\n", har.alloc_thread_id);
Printf("%s", d.Default());
GetStackTraceFromId(har.alloc_context_id).Print();
// Print a developer note: the index of this heap object
// in the thread's deallocation ring buffer.
Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", ha.ring_index + 1,
flags()->heap_history_size);
Printf("hwasan_dev_note_num_matching_addrs: %zd\n", ha.num_matching_addrs);
Printf("hwasan_dev_note_num_matching_addrs_4b: %zd\n",
ha.num_matching_addrs_4b);
announce_by_id(ha.free_thread_id);
// TODO: announce_by_id(har.alloc_thread_id);
num_descriptions_printed++;
}
if (candidate.untagged_addr && num_descriptions_printed == 0) {
PrintHeapOrGlobalCandidate();
num_descriptions_printed++;
}
// Print the remaining threads, as an extra information, 1 line per thread.
if (flags()->print_live_threads_info) {
Printf("\n");
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });
}
if (!num_descriptions_printed)
// We exhausted our possibilities. Bail out.
Printf("HWAddressSanitizer can not describe address in more detail.\n");
if (num_descriptions_printed > 1) {
Printf(
"There are %d potential causes, printed above in order "
"of likeliness.\n",
num_descriptions_printed);
}
}
void BaseReport::PrintTags(uptr addr) const {
if (shadow.addr) {
PrintTagsAroundAddr(
addr, [&](uptr addr) { return GetTagCopy(addr); },
[&](uptr addr) { return GetShortTagCopy(addr); });
}
}
class InvalidFreeReport : public BaseReport {
public:
InvalidFreeReport(StackTrace *stack, uptr tagged_addr)
: BaseReport(stack, flags()->halt_on_error, tagged_addr, 0) {}
~InvalidFreeReport();
private:
};
InvalidFreeReport::~InvalidFreeReport() {
Decorator d;
Printf("%s", d.Error());
uptr pc = GetTopPc(stack);
const char *bug_type = "invalid-free";
const Thread *thread = GetCurrentThread();
if (thread) {
Report("ERROR: %s: %s on address %p at pc %p on thread T%zd\n",
SanitizerToolName, bug_type, untagged_addr, pc, thread->unique_id());
} else {
Report("ERROR: %s: %s on address %p at pc %p on unknown thread\n",
SanitizerToolName, bug_type, untagged_addr, pc);
}
Printf("%s", d.Access());
if (shadow.addr) {
Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag,
GetTagCopy(MemToShadow(untagged_addr)));
}
Printf("%s", d.Default());
stack->Print();
PrintAddressDescription();
PrintTags(untagged_addr);
MaybePrintAndroidHelpUrl();
ReportErrorSummary(bug_type, stack);
}
class TailOverwrittenReport : public BaseReport {
public:
explicit TailOverwrittenReport(StackTrace *stack, uptr tagged_addr,
uptr orig_size, const u8 *expected)
: BaseReport(stack, flags()->halt_on_error, tagged_addr, 0),
orig_size(orig_size),
tail_size(kShadowAlignment - (orig_size % kShadowAlignment)) {
CHECK_GT(tail_size, 0U);
CHECK_LT(tail_size, kShadowAlignment);
internal_memcpy(tail_copy,
reinterpret_cast<u8 *>(untagged_addr + orig_size),
tail_size);
internal_memcpy(actual_expected, expected, tail_size);
// Short granule is stashed in the last byte of the magic string. To avoid
// confusion, make the expected magic string contain the short granule tag.
if (orig_size % kShadowAlignment != 0)
actual_expected[tail_size - 1] = ptr_tag;
}
~TailOverwrittenReport();
private:
const uptr orig_size = 0;
const uptr tail_size = 0;
u8 actual_expected[kShadowAlignment] = {};
u8 tail_copy[kShadowAlignment] = {};
};
TailOverwrittenReport::~TailOverwrittenReport() {
Decorator d;
Printf("%s", d.Error());
const char *bug_type = "allocation-tail-overwritten";
Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
Printf("\n%s", d.Default());
Printf(
"Stack of invalid access unknown. Issue detected at deallocation "
"time.\n");
Printf("%s", d.Allocation());
Printf("deallocated here:\n");
Printf("%s", d.Default());
stack->Print();
if (heap.begin) {
Printf("%s", d.Allocation());
Printf("allocated here:\n");
Printf("%s", d.Default());
GetStackTraceFromId(heap.stack_id).Print();
}
InternalScopedString s;
u8 *tail = tail_copy;
s.AppendF("Tail contains: ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.AppendF(".. ");
for (uptr i = 0; i < tail_size; i++) s.AppendF("%02x ", tail[i]);
s.AppendF("\n");
s.AppendF("Expected: ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.AppendF(".. ");
for (uptr i = 0; i < tail_size; i++) s.AppendF("%02x ", actual_expected[i]);
s.AppendF("\n");
s.AppendF(" ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.AppendF(" ");
for (uptr i = 0; i < tail_size; i++)
s.AppendF("%s ", actual_expected[i] != tail[i] ? "^^" : " ");
s.AppendF(
"\nThis error occurs when a buffer overflow overwrites memory\n"
"after a heap object, but within the %zd-byte granule, e.g.\n"
" char *x = new char[20];\n"
" x[25] = 42;\n"
"%s does not detect such bugs in uninstrumented code at the time of "
"write,"
"\nbut can detect them at the time of free/delete.\n"
"To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
kShadowAlignment, SanitizerToolName);
Printf("%s", s.data());
GetCurrentThread()->Announce();
PrintTags(untagged_addr);
MaybePrintAndroidHelpUrl();
ReportErrorSummary(bug_type, stack);
}
class TagMismatchReport : public BaseReport {
public:
explicit TagMismatchReport(StackTrace *stack, uptr tagged_addr,
uptr access_size, bool is_store, bool fatal,
uptr *registers_frame)
: BaseReport(stack, fatal, tagged_addr, access_size),
is_store(is_store),
registers_frame(registers_frame) {}
~TagMismatchReport();
private:
const bool is_store;
const uptr *registers_frame;
};
TagMismatchReport::~TagMismatchReport() {
Decorator d;
// TODO: when possible, try to print heap-use-after-free, etc.
const char *bug_type = "tag-mismatch";
uptr pc = GetTopPc(stack);
Printf("%s", d.Error());
Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
untagged_addr, pc);
Thread *t = GetCurrentThread();
tag_t mem_tag = GetTagCopy(MemToShadow(untagged_addr + mismatch_offset));
Printf("%s", d.Access());
if (mem_tag && mem_tag < kShadowAlignment) {
tag_t short_tag =
GetShortTagCopy(MemToShadow(untagged_addr + mismatch_offset));
Printf(
"%s of size %zu at %p tags: %02x/%02x(%02x) (ptr/mem) in thread T%zd\n",
is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
mem_tag, short_tag, t->unique_id());
} else {
Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
mem_tag, t->unique_id());
}
if (mismatch_offset)
Printf("Invalid access starting at offset %zu\n", mismatch_offset);
Printf("%s", d.Default());
stack->Print();
PrintAddressDescription();
t->Announce();
PrintTags(untagged_addr + mismatch_offset);
if (registers_frame)
ReportRegisters(registers_frame, pc);
MaybePrintAndroidHelpUrl();
ReportErrorSummary(bug_type, stack);
}
} // namespace
void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
InvalidFreeReport R(stack, tagged_addr);
}
void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
const u8 *expected) {
TailOverwrittenReport R(stack, tagged_addr, orig_size, expected);
}
void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
bool is_store, bool fatal, uptr *registers_frame) {
TagMismatchReport R(stack, tagged_addr, access_size, is_store, fatal,
registers_frame);
}
// See the frame breakdown defined in __hwasan_tag_mismatch (from
// hwasan_tag_mismatch_{aarch64,riscv64}.S).
void ReportRegisters(const uptr *frame, uptr pc) {
Printf("\nRegisters where the failure occurred (pc %p):\n", pc);
// We explicitly print a single line (4 registers/line) each iteration to
// reduce the amount of logcat error messages printed. Each Printf() will
// result in a new logcat line, irrespective of whether a newline is present,
// and so we wish to reduce the number of Printf() calls we have to make.
#if defined(__aarch64__)
Printf(" x0 %016llx x1 %016llx x2 %016llx x3 %016llx\n",
frame[0], frame[1], frame[2], frame[3]);
#elif SANITIZER_RISCV64
Printf(" sp %016llx x1 %016llx x2 %016llx x3 %016llx\n",
reinterpret_cast<const u8 *>(frame) + 256, frame[1], frame[2],
frame[3]);
#endif
Printf(" x4 %016llx x5 %016llx x6 %016llx x7 %016llx\n",
frame[4], frame[5], frame[6], frame[7]);
Printf(" x8 %016llx x9 %016llx x10 %016llx x11 %016llx\n",
frame[8], frame[9], frame[10], frame[11]);
Printf(" x12 %016llx x13 %016llx x14 %016llx x15 %016llx\n",
frame[12], frame[13], frame[14], frame[15]);
Printf(" x16 %016llx x17 %016llx x18 %016llx x19 %016llx\n",
frame[16], frame[17], frame[18], frame[19]);
Printf(" x20 %016llx x21 %016llx x22 %016llx x23 %016llx\n",
frame[20], frame[21], frame[22], frame[23]);
Printf(" x24 %016llx x25 %016llx x26 %016llx x27 %016llx\n",
frame[24], frame[25], frame[26], frame[27]);
// hwasan_check* reduces the stack pointer by 256, then __hwasan_tag_mismatch
// passes it to this function.
#if defined(__aarch64__)
Printf(" x28 %016llx x29 %016llx x30 %016llx sp %016llx\n", frame[28],
frame[29], frame[30], reinterpret_cast<const u8 *>(frame) + 256);
#elif SANITIZER_RISCV64
Printf(" x28 %016llx x29 %016llx x30 %016llx x31 %016llx\n", frame[28],
frame[29], frame[30], frame[31]);
#else
#endif
}
} // namespace __hwasan
void __hwasan_set_error_report_callback(void (*callback)(const char *)) {
__hwasan::ScopedReport::SetErrorReportCallback(callback);
}
|