1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
//===--- UseNullptrCheck.cpp - clang-tidy----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "UseNullptrCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Lex/Lexer.h"
using namespace clang;
using namespace clang::ast_matchers;
using namespace llvm;
namespace clang::tidy::modernize {
namespace {
const char CastSequence[] = "sequence";
AST_MATCHER(Type, sugaredNullptrType) {
const Type *DesugaredType = Node.getUnqualifiedDesugaredType();
if (const auto *BT = dyn_cast<BuiltinType>(DesugaredType))
return BT->getKind() == BuiltinType::NullPtr;
return false;
}
/// Create a matcher that finds implicit casts as well as the head of a
/// sequence of zero or more nested explicit casts that have an implicit cast
/// to null within.
/// Finding sequences of explicit casts is necessary so that an entire sequence
/// can be replaced instead of just the inner-most implicit cast.
StatementMatcher makeCastSequenceMatcher() {
StatementMatcher ImplicitCastToNull = implicitCastExpr(
anyOf(hasCastKind(CK_NullToPointer), hasCastKind(CK_NullToMemberPointer)),
unless(hasImplicitDestinationType(qualType(substTemplateTypeParmType()))),
unless(hasSourceExpression(hasType(sugaredNullptrType()))));
auto IsOrHasDescendant = [](auto InnerMatcher) {
return anyOf(InnerMatcher, hasDescendant(InnerMatcher));
};
return traverse(
TK_AsIs,
anyOf(castExpr(anyOf(ImplicitCastToNull,
explicitCastExpr(hasDescendant(ImplicitCastToNull))),
unless(hasAncestor(explicitCastExpr())),
unless(hasAncestor(cxxRewrittenBinaryOperator())))
.bind(CastSequence),
cxxRewrittenBinaryOperator(
// Match rewritten operators, but verify (in the check method)
// that if an implicit cast is found, it is not from another
// nested rewritten operator.
expr().bind("matchBinopOperands"),
hasEitherOperand(IsOrHasDescendant(
implicitCastExpr(
ImplicitCastToNull,
hasAncestor(cxxRewrittenBinaryOperator().bind(
"checkBinopOperands")))
.bind(CastSequence))),
// Skip defaulted comparison operators.
unless(hasAncestor(functionDecl(isDefaulted()))))));
}
bool isReplaceableRange(SourceLocation StartLoc, SourceLocation EndLoc,
const SourceManager &SM) {
return SM.isWrittenInSameFile(StartLoc, EndLoc);
}
/// Replaces the provided range with the text "nullptr", but only if
/// the start and end location are both in main file.
/// Returns true if and only if a replacement was made.
void replaceWithNullptr(ClangTidyCheck &Check, SourceManager &SM,
SourceLocation StartLoc, SourceLocation EndLoc) {
CharSourceRange Range(SourceRange(StartLoc, EndLoc), true);
// Add a space if nullptr follows an alphanumeric character. This happens
// whenever there is an c-style explicit cast to nullptr not surrounded by
// parentheses and right beside a return statement.
SourceLocation PreviousLocation = StartLoc.getLocWithOffset(-1);
bool NeedsSpace = isAlphanumeric(*SM.getCharacterData(PreviousLocation));
Check.diag(Range.getBegin(), "use nullptr") << FixItHint::CreateReplacement(
Range, NeedsSpace ? " nullptr" : "nullptr");
}
/// Returns the name of the outermost macro.
///
/// Given
/// \code
/// #define MY_NULL NULL
/// \endcode
/// If \p Loc points to NULL, this function will return the name MY_NULL.
StringRef getOutermostMacroName(SourceLocation Loc, const SourceManager &SM,
const LangOptions &LO) {
assert(Loc.isMacroID());
SourceLocation OutermostMacroLoc;
while (Loc.isMacroID()) {
OutermostMacroLoc = Loc;
Loc = SM.getImmediateMacroCallerLoc(Loc);
}
return Lexer::getImmediateMacroName(OutermostMacroLoc, SM, LO);
}
/// RecursiveASTVisitor for ensuring all nodes rooted at a given AST
/// subtree that have file-level source locations corresponding to a macro
/// argument have implicit NullTo(Member)Pointer nodes as ancestors.
class MacroArgUsageVisitor : public RecursiveASTVisitor<MacroArgUsageVisitor> {
public:
MacroArgUsageVisitor(SourceLocation CastLoc, const SourceManager &SM)
: CastLoc(CastLoc), SM(SM), Visited(false), CastFound(false),
InvalidFound(false) {
assert(CastLoc.isFileID());
}
bool TraverseStmt(Stmt *S) {
bool VisitedPreviously = Visited;
if (!RecursiveASTVisitor<MacroArgUsageVisitor>::TraverseStmt(S))
return false;
// The point at which VisitedPreviously is false and Visited is true is the
// root of a subtree containing nodes whose locations match CastLoc. It's
// at this point we test that the Implicit NullTo(Member)Pointer cast was
// found or not.
if (!VisitedPreviously) {
if (Visited && !CastFound) {
// Found nodes with matching SourceLocations but didn't come across a
// cast. This is an invalid macro arg use. Can stop traversal
// completely now.
InvalidFound = true;
return false;
}
// Reset state as we unwind back up the tree.
CastFound = false;
Visited = false;
}
return true;
}
bool VisitStmt(Stmt *S) {
if (SM.getFileLoc(S->getBeginLoc()) != CastLoc)
return true;
Visited = true;
const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(S);
if (Cast && (Cast->getCastKind() == CK_NullToPointer ||
Cast->getCastKind() == CK_NullToMemberPointer))
CastFound = true;
return true;
}
bool TraverseInitListExpr(InitListExpr *S) {
// Only go through the semantic form of the InitListExpr, because
// ImplicitCast might not appear in the syntactic form, and this results in
// finding usages of the macro argument that don't have a ImplicitCast as an
// ancestor (thus invalidating the replacement) when they actually have.
return RecursiveASTVisitor<MacroArgUsageVisitor>::
TraverseSynOrSemInitListExpr(
S->isSemanticForm() ? S : S->getSemanticForm());
}
bool foundInvalid() const { return InvalidFound; }
private:
SourceLocation CastLoc;
const SourceManager &SM;
bool Visited;
bool CastFound;
bool InvalidFound;
};
/// Looks for implicit casts as well as sequences of 0 or more explicit
/// casts with an implicit null-to-pointer cast within.
///
/// The matcher this visitor is used with will find a single implicit cast or a
/// top-most explicit cast (i.e. it has no explicit casts as an ancestor) where
/// an implicit cast is nested within. However, there is no guarantee that only
/// explicit casts exist between the found top-most explicit cast and the
/// possibly more than one nested implicit cast. This visitor finds all cast
/// sequences with an implicit cast to null within and creates a replacement
/// leaving the outermost explicit cast unchanged to avoid introducing
/// ambiguities.
class CastSequenceVisitor : public RecursiveASTVisitor<CastSequenceVisitor> {
public:
CastSequenceVisitor(ASTContext &Context, ArrayRef<StringRef> NullMacros,
ClangTidyCheck &Check)
: SM(Context.getSourceManager()), Context(Context),
NullMacros(NullMacros), Check(Check), FirstSubExpr(nullptr),
PruneSubtree(false) {}
bool TraverseStmt(Stmt *S) {
// Stop traversing down the tree if requested.
if (PruneSubtree) {
PruneSubtree = false;
return true;
}
return RecursiveASTVisitor<CastSequenceVisitor>::TraverseStmt(S);
}
// Only VisitStmt is overridden as we shouldn't find other base AST types
// within a cast expression.
bool VisitStmt(Stmt *S) {
auto *C = dyn_cast<CastExpr>(S);
// Catch the castExpr inside cxxDefaultArgExpr.
if (auto *E = dyn_cast<CXXDefaultArgExpr>(S)) {
C = dyn_cast<CastExpr>(E->getExpr());
FirstSubExpr = nullptr;
}
if (!C) {
FirstSubExpr = nullptr;
return true;
}
auto* CastSubExpr = C->getSubExpr()->IgnoreParens();
// Ignore cast expressions which cast nullptr literal.
if (isa<CXXNullPtrLiteralExpr>(CastSubExpr)) {
return true;
}
if (!FirstSubExpr)
FirstSubExpr = CastSubExpr;
if (C->getCastKind() != CK_NullToPointer &&
C->getCastKind() != CK_NullToMemberPointer) {
return true;
}
SourceLocation StartLoc = FirstSubExpr->getBeginLoc();
SourceLocation EndLoc = FirstSubExpr->getEndLoc();
// If the location comes from a macro arg expansion, *all* uses of that
// arg must be checked to result in NullTo(Member)Pointer casts.
//
// If the location comes from a macro body expansion, check to see if its
// coming from one of the allowed 'NULL' macros.
if (SM.isMacroArgExpansion(StartLoc) && SM.isMacroArgExpansion(EndLoc)) {
SourceLocation FileLocStart = SM.getFileLoc(StartLoc),
FileLocEnd = SM.getFileLoc(EndLoc);
SourceLocation ImmediateMacroArgLoc, MacroLoc;
// Skip NULL macros used in macro.
if (!getMacroAndArgLocations(StartLoc, ImmediateMacroArgLoc, MacroLoc) ||
ImmediateMacroArgLoc != FileLocStart)
return skipSubTree();
if (isReplaceableRange(FileLocStart, FileLocEnd, SM) &&
allArgUsesValid(C)) {
replaceWithNullptr(Check, SM, FileLocStart, FileLocEnd);
}
return true;
}
if (SM.isMacroBodyExpansion(StartLoc) && SM.isMacroBodyExpansion(EndLoc)) {
StringRef OutermostMacroName =
getOutermostMacroName(StartLoc, SM, Context.getLangOpts());
// Check to see if the user wants to replace the macro being expanded.
if (!llvm::is_contained(NullMacros, OutermostMacroName))
return skipSubTree();
StartLoc = SM.getFileLoc(StartLoc);
EndLoc = SM.getFileLoc(EndLoc);
}
if (!isReplaceableRange(StartLoc, EndLoc, SM)) {
return skipSubTree();
}
replaceWithNullptr(Check, SM, StartLoc, EndLoc);
return true;
}
private:
bool skipSubTree() {
PruneSubtree = true;
return true;
}
/// Tests that all expansions of a macro arg, one of which expands to
/// result in \p CE, yield NullTo(Member)Pointer casts.
bool allArgUsesValid(const CastExpr *CE) {
SourceLocation CastLoc = CE->getBeginLoc();
// Step 1: Get location of macro arg and location of the macro the arg was
// provided to.
SourceLocation ArgLoc, MacroLoc;
if (!getMacroAndArgLocations(CastLoc, ArgLoc, MacroLoc))
return false;
// Step 2: Find the first ancestor that doesn't expand from this macro.
DynTypedNode ContainingAncestor;
if (!findContainingAncestor(DynTypedNode::create<Stmt>(*CE), MacroLoc,
ContainingAncestor))
return false;
// Step 3:
// Visit children of this containing parent looking for the least-descended
// nodes of the containing parent which are macro arg expansions that expand
// from the given arg location.
// Visitor needs: arg loc.
MacroArgUsageVisitor ArgUsageVisitor(SM.getFileLoc(CastLoc), SM);
if (const auto *D = ContainingAncestor.get<Decl>())
ArgUsageVisitor.TraverseDecl(const_cast<Decl *>(D));
else if (const auto *S = ContainingAncestor.get<Stmt>())
ArgUsageVisitor.TraverseStmt(const_cast<Stmt *>(S));
else
llvm_unreachable("Unhandled ContainingAncestor node type");
return !ArgUsageVisitor.foundInvalid();
}
/// Given the SourceLocation for a macro arg expansion, finds the
/// non-macro SourceLocation of the macro the arg was passed to and the
/// non-macro SourceLocation of the argument in the arg list to that macro.
/// These results are returned via \c MacroLoc and \c ArgLoc respectively.
/// These values are undefined if the return value is false.
///
/// \returns false if one of the returned SourceLocations would be a
/// SourceLocation pointing within the definition of another macro.
bool getMacroAndArgLocations(SourceLocation Loc, SourceLocation &ArgLoc,
SourceLocation &MacroLoc) {
assert(Loc.isMacroID() && "Only reasonable to call this on macros");
ArgLoc = Loc;
// Find the location of the immediate macro expansion.
while (true) {
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(ArgLoc);
const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
SourceLocation OldArgLoc = ArgLoc;
ArgLoc = Expansion.getExpansionLocStart();
if (!Expansion.isMacroArgExpansion()) {
if (!MacroLoc.isFileID())
return false;
StringRef Name =
Lexer::getImmediateMacroName(OldArgLoc, SM, Context.getLangOpts());
return llvm::is_contained(NullMacros, Name);
}
MacroLoc = SM.getExpansionRange(ArgLoc).getBegin();
ArgLoc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
if (ArgLoc.isFileID())
return true;
// If spelling location resides in the same FileID as macro expansion
// location, it means there is no inner macro.
FileID MacroFID = SM.getFileID(MacroLoc);
if (SM.isInFileID(ArgLoc, MacroFID)) {
// Don't transform this case. If the characters that caused the
// null-conversion come from within a macro, they can't be changed.
return false;
}
}
llvm_unreachable("getMacroAndArgLocations");
}
/// Tests if TestMacroLoc is found while recursively unravelling
/// expansions starting at TestLoc. TestMacroLoc.isFileID() must be true.
/// Implementation is very similar to getMacroAndArgLocations() except in this
/// case, it's not assumed that TestLoc is expanded from a macro argument.
/// While unravelling expansions macro arguments are handled as with
/// getMacroAndArgLocations() but in this function macro body expansions are
/// also handled.
///
/// False means either:
/// - TestLoc is not from a macro expansion.
/// - TestLoc is from a different macro expansion.
bool expandsFrom(SourceLocation TestLoc, SourceLocation TestMacroLoc) {
if (TestLoc.isFileID()) {
return false;
}
SourceLocation Loc = TestLoc, MacroLoc;
while (true) {
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
Loc = Expansion.getExpansionLocStart();
if (!Expansion.isMacroArgExpansion()) {
if (Loc.isFileID()) {
return Loc == TestMacroLoc;
}
// Since Loc is still a macro ID and it's not an argument expansion, we
// don't need to do the work of handling an argument expansion. Simply
// keep recursively expanding until we hit a FileID or a macro arg
// expansion or a macro arg expansion.
continue;
}
MacroLoc = SM.getImmediateExpansionRange(Loc).getBegin();
if (MacroLoc.isFileID() && MacroLoc == TestMacroLoc) {
// Match made.
return true;
}
Loc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
if (Loc.isFileID()) {
// If we made it this far without finding a match, there is no match to
// be made.
return false;
}
}
llvm_unreachable("expandsFrom");
}
/// Given a starting point \c Start in the AST, find an ancestor that
/// doesn't expand from the macro called at file location \c MacroLoc.
///
/// \pre MacroLoc.isFileID()
/// \returns true if such an ancestor was found, false otherwise.
bool findContainingAncestor(DynTypedNode Start, SourceLocation MacroLoc,
DynTypedNode &Result) {
// Below we're only following the first parent back up the AST. This should
// be fine since for the statements we care about there should only be one
// parent, except for the case specified below.
assert(MacroLoc.isFileID());
while (true) {
const auto &Parents = Context.getParents(Start);
if (Parents.empty())
return false;
if (Parents.size() > 1) {
// If there are more than one parents, don't do the replacement unless
// they are InitListsExpr (semantic and syntactic form). In this case we
// can choose any one here, and the ASTVisitor will take care of
// traversing the right one.
for (const auto &Parent : Parents) {
if (!Parent.get<InitListExpr>())
return false;
}
}
const DynTypedNode &Parent = Parents[0];
SourceLocation Loc;
if (const auto *D = Parent.get<Decl>())
Loc = D->getBeginLoc();
else if (const auto *S = Parent.get<Stmt>())
Loc = S->getBeginLoc();
// TypeLoc and NestedNameSpecifierLoc are members of the parent map. Skip
// them and keep going up.
if (Loc.isValid()) {
if (!expandsFrom(Loc, MacroLoc)) {
Result = Parent;
return true;
}
}
Start = Parent;
}
llvm_unreachable("findContainingAncestor");
}
private:
SourceManager &SM;
ASTContext &Context;
ArrayRef<StringRef> NullMacros;
ClangTidyCheck &Check;
Expr *FirstSubExpr;
bool PruneSubtree;
};
} // namespace
UseNullptrCheck::UseNullptrCheck(StringRef Name, ClangTidyContext *Context)
: ClangTidyCheck(Name, Context),
NullMacrosStr(Options.get("NullMacros", "")) {
StringRef(NullMacrosStr).split(NullMacros, ",");
}
void UseNullptrCheck::storeOptions(ClangTidyOptions::OptionMap &Opts) {
Options.store(Opts, "NullMacros", NullMacrosStr);
}
void UseNullptrCheck::registerMatchers(MatchFinder *Finder) {
Finder->addMatcher(makeCastSequenceMatcher(), this);
}
void UseNullptrCheck::check(const MatchFinder::MatchResult &Result) {
const auto *NullCast = Result.Nodes.getNodeAs<CastExpr>(CastSequence);
assert(NullCast && "Bad Callback. No node provided");
if (Result.Nodes.getNodeAs<CXXRewrittenBinaryOperator>(
"matchBinopOperands") !=
Result.Nodes.getNodeAs<CXXRewrittenBinaryOperator>("checkBinopOperands"))
return;
// Given an implicit null-ptr cast or an explicit cast with an implicit
// null-to-pointer cast within use CastSequenceVisitor to identify sequences
// of explicit casts that can be converted into 'nullptr'.
CastSequenceVisitor(*Result.Context, NullMacros, *this)
.TraverseStmt(const_cast<CastExpr *>(NullCast));
}
} // namespace clang::tidy::modernize
|