1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
|
//===-- Serialize.cpp - ClangDoc Serializer ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Serialize.h"
#include "BitcodeWriter.h"
#include "clang/AST/Comment.h"
#include "clang/Index/USRGeneration.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/SHA1.h"
using clang::comments::FullComment;
namespace clang {
namespace doc {
namespace serialize {
SymbolID hashUSR(llvm::StringRef USR) {
return llvm::SHA1::hash(arrayRefFromStringRef(USR));
}
template <typename T>
static void
populateParentNamespaces(llvm::SmallVector<Reference, 4> &Namespaces,
const T *D, bool &IsAnonymousNamespace);
static void populateMemberTypeInfo(MemberTypeInfo &I, const FieldDecl *D);
// A function to extract the appropriate relative path for a given info's
// documentation. The path returned is a composite of the parent namespaces.
//
// Example: Given the below, the directory path for class C info will be
// <root>/A/B
//
// namespace A {
// namespace B {
//
// class C {};
//
// }
// }
llvm::SmallString<128>
getInfoRelativePath(const llvm::SmallVectorImpl<doc::Reference> &Namespaces) {
llvm::SmallString<128> Path;
for (auto R = Namespaces.rbegin(), E = Namespaces.rend(); R != E; ++R)
llvm::sys::path::append(Path, R->Name);
return Path;
}
llvm::SmallString<128> getInfoRelativePath(const Decl *D) {
llvm::SmallVector<Reference, 4> Namespaces;
// The third arg in populateParentNamespaces is a boolean passed by reference,
// its value is not relevant in here so it's not used anywhere besides the
// function call
bool B = true;
populateParentNamespaces(Namespaces, D, B);
return getInfoRelativePath(Namespaces);
}
class ClangDocCommentVisitor
: public ConstCommentVisitor<ClangDocCommentVisitor> {
public:
ClangDocCommentVisitor(CommentInfo &CI) : CurrentCI(CI) {}
void parseComment(const comments::Comment *C);
void visitTextComment(const TextComment *C);
void visitInlineCommandComment(const InlineCommandComment *C);
void visitHTMLStartTagComment(const HTMLStartTagComment *C);
void visitHTMLEndTagComment(const HTMLEndTagComment *C);
void visitBlockCommandComment(const BlockCommandComment *C);
void visitParamCommandComment(const ParamCommandComment *C);
void visitTParamCommandComment(const TParamCommandComment *C);
void visitVerbatimBlockComment(const VerbatimBlockComment *C);
void visitVerbatimBlockLineComment(const VerbatimBlockLineComment *C);
void visitVerbatimLineComment(const VerbatimLineComment *C);
private:
std::string getCommandName(unsigned CommandID) const;
bool isWhitespaceOnly(StringRef S) const;
CommentInfo &CurrentCI;
};
void ClangDocCommentVisitor::parseComment(const comments::Comment *C) {
CurrentCI.Kind = C->getCommentKindName();
ConstCommentVisitor<ClangDocCommentVisitor>::visit(C);
for (comments::Comment *Child :
llvm::make_range(C->child_begin(), C->child_end())) {
CurrentCI.Children.emplace_back(std::make_unique<CommentInfo>());
ClangDocCommentVisitor Visitor(*CurrentCI.Children.back());
Visitor.parseComment(Child);
}
}
void ClangDocCommentVisitor::visitTextComment(const TextComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
void ClangDocCommentVisitor::visitInlineCommandComment(
const InlineCommandComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
for (unsigned I = 0, E = C->getNumArgs(); I != E; ++I)
CurrentCI.Args.push_back(C->getArgText(I));
}
void ClangDocCommentVisitor::visitHTMLStartTagComment(
const HTMLStartTagComment *C) {
CurrentCI.Name = C->getTagName();
CurrentCI.SelfClosing = C->isSelfClosing();
for (unsigned I = 0, E = C->getNumAttrs(); I < E; ++I) {
const HTMLStartTagComment::Attribute &Attr = C->getAttr(I);
CurrentCI.AttrKeys.push_back(Attr.Name);
CurrentCI.AttrValues.push_back(Attr.Value);
}
}
void ClangDocCommentVisitor::visitHTMLEndTagComment(
const HTMLEndTagComment *C) {
CurrentCI.Name = C->getTagName();
CurrentCI.SelfClosing = true;
}
void ClangDocCommentVisitor::visitBlockCommandComment(
const BlockCommandComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
for (unsigned I = 0, E = C->getNumArgs(); I < E; ++I)
CurrentCI.Args.push_back(C->getArgText(I));
}
void ClangDocCommentVisitor::visitParamCommandComment(
const ParamCommandComment *C) {
CurrentCI.Direction =
ParamCommandComment::getDirectionAsString(C->getDirection());
CurrentCI.Explicit = C->isDirectionExplicit();
if (C->hasParamName())
CurrentCI.ParamName = C->getParamNameAsWritten();
}
void ClangDocCommentVisitor::visitTParamCommandComment(
const TParamCommandComment *C) {
if (C->hasParamName())
CurrentCI.ParamName = C->getParamNameAsWritten();
}
void ClangDocCommentVisitor::visitVerbatimBlockComment(
const VerbatimBlockComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
CurrentCI.CloseName = C->getCloseName();
}
void ClangDocCommentVisitor::visitVerbatimBlockLineComment(
const VerbatimBlockLineComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
void ClangDocCommentVisitor::visitVerbatimLineComment(
const VerbatimLineComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
bool ClangDocCommentVisitor::isWhitespaceOnly(llvm::StringRef S) const {
return llvm::all_of(S, isspace);
}
std::string ClangDocCommentVisitor::getCommandName(unsigned CommandID) const {
const CommandInfo *Info = CommandTraits::getBuiltinCommandInfo(CommandID);
if (Info)
return Info->Name;
// TODO: Add parsing for \file command.
return "<not a builtin command>";
}
// Serializing functions.
std::string getSourceCode(const Decl *D, const SourceRange &R) {
return Lexer::getSourceText(CharSourceRange::getTokenRange(R),
D->getASTContext().getSourceManager(),
D->getASTContext().getLangOpts())
.str();
}
template <typename T> static std::string serialize(T &I) {
SmallString<2048> Buffer;
llvm::BitstreamWriter Stream(Buffer);
ClangDocBitcodeWriter Writer(Stream);
Writer.emitBlock(I);
return Buffer.str().str();
}
std::string serialize(std::unique_ptr<Info> &I) {
switch (I->IT) {
case InfoType::IT_namespace:
return serialize(*static_cast<NamespaceInfo *>(I.get()));
case InfoType::IT_record:
return serialize(*static_cast<RecordInfo *>(I.get()));
case InfoType::IT_enum:
return serialize(*static_cast<EnumInfo *>(I.get()));
case InfoType::IT_function:
return serialize(*static_cast<FunctionInfo *>(I.get()));
default:
return "";
}
}
static void parseFullComment(const FullComment *C, CommentInfo &CI) {
ClangDocCommentVisitor Visitor(CI);
Visitor.parseComment(C);
}
static SymbolID getUSRForDecl(const Decl *D) {
llvm::SmallString<128> USR;
if (index::generateUSRForDecl(D, USR))
return SymbolID();
return hashUSR(USR);
}
static TagDecl *getTagDeclForType(const QualType &T) {
if (const TagDecl *D = T->getAsTagDecl())
return D->getDefinition();
return nullptr;
}
static RecordDecl *getRecordDeclForType(const QualType &T) {
if (const RecordDecl *D = T->getAsRecordDecl())
return D->getDefinition();
return nullptr;
}
TypeInfo getTypeInfoForType(const QualType &T) {
const TagDecl *TD = getTagDeclForType(T);
if (!TD)
return TypeInfo(Reference(SymbolID(), T.getAsString()));
InfoType IT;
if (dyn_cast<EnumDecl>(TD)) {
IT = InfoType::IT_enum;
} else if (dyn_cast<RecordDecl>(TD)) {
IT = InfoType::IT_record;
} else {
IT = InfoType::IT_default;
}
return TypeInfo(Reference(getUSRForDecl(TD), TD->getNameAsString(), IT,
T.getAsString(), getInfoRelativePath(TD)));
}
static bool isPublic(const clang::AccessSpecifier AS,
const clang::Linkage Link) {
if (AS == clang::AccessSpecifier::AS_private)
return false;
else if ((Link == clang::Linkage::ModuleLinkage) ||
(Link == clang::Linkage::ExternalLinkage))
return true;
return false; // otherwise, linkage is some form of internal linkage
}
static bool shouldSerializeInfo(bool PublicOnly, bool IsInAnonymousNamespace,
const NamedDecl *D) {
bool IsAnonymousNamespace = false;
if (const auto *N = dyn_cast<NamespaceDecl>(D))
IsAnonymousNamespace = N->isAnonymousNamespace();
return !PublicOnly ||
(!IsInAnonymousNamespace && !IsAnonymousNamespace &&
isPublic(D->getAccessUnsafe(), D->getLinkageInternal()));
}
// The InsertChild functions insert the given info into the given scope using
// the method appropriate for that type. Some types are moved into the
// appropriate vector, while other types have Reference objects generated to
// refer to them.
//
// See MakeAndInsertIntoParent().
static void InsertChild(ScopeChildren &Scope, const NamespaceInfo &Info) {
Scope.Namespaces.emplace_back(Info.USR, Info.Name, InfoType::IT_namespace,
Info.Name, getInfoRelativePath(Info.Namespace));
}
static void InsertChild(ScopeChildren &Scope, const RecordInfo &Info) {
Scope.Records.emplace_back(Info.USR, Info.Name, InfoType::IT_record,
Info.Name, getInfoRelativePath(Info.Namespace));
}
static void InsertChild(ScopeChildren &Scope, EnumInfo Info) {
Scope.Enums.push_back(std::move(Info));
}
static void InsertChild(ScopeChildren &Scope, FunctionInfo Info) {
Scope.Functions.push_back(std::move(Info));
}
static void InsertChild(ScopeChildren &Scope, TypedefInfo Info) {
Scope.Typedefs.push_back(std::move(Info));
}
// Creates a parent of the correct type for the given child and inserts it into
// that parent.
//
// This is complicated by the fact that namespaces and records are inserted by
// reference (constructing a "Reference" object with that namespace/record's
// info), while everything else is inserted by moving it directly into the child
// vectors.
//
// For namespaces and records, explicitly specify a const& template parameter
// when invoking this function:
// MakeAndInsertIntoParent<const Record&>(...);
// Otherwise, specify an rvalue reference <EnumInfo&&> and move into the
// parameter. Since each variant is used once, it's not worth having a more
// elaborate system to automatically deduce this information.
template <typename ChildType>
std::unique_ptr<Info> MakeAndInsertIntoParent(ChildType Child) {
if (Child.Namespace.empty()) {
// Insert into unnamed parent namespace.
auto ParentNS = std::make_unique<NamespaceInfo>();
InsertChild(ParentNS->Children, std::forward<ChildType>(Child));
return ParentNS;
}
switch (Child.Namespace[0].RefType) {
case InfoType::IT_namespace: {
auto ParentNS = std::make_unique<NamespaceInfo>();
ParentNS->USR = Child.Namespace[0].USR;
InsertChild(ParentNS->Children, std::forward<ChildType>(Child));
return ParentNS;
}
case InfoType::IT_record: {
auto ParentRec = std::make_unique<RecordInfo>();
ParentRec->USR = Child.Namespace[0].USR;
InsertChild(ParentRec->Children, std::forward<ChildType>(Child));
return ParentRec;
}
default:
llvm_unreachable("Invalid reference type for parent namespace");
}
}
// There are two uses for this function.
// 1) Getting the resulting mode of inheritance of a record.
// Example: class A {}; class B : private A {}; class C : public B {};
// It's explicit that C is publicly inherited from C and B is privately
// inherited from A. It's not explicit but C is also privately inherited from
// A. This is the AS that this function calculates. FirstAS is the
// inheritance mode of `class C : B` and SecondAS is the inheritance mode of
// `class B : A`.
// 2) Getting the inheritance mode of an inherited attribute / method.
// Example : class A { public: int M; }; class B : private A {};
// Class B is inherited from class A, which has a public attribute. This
// attribute is now part of the derived class B but it's not public. This
// will be private because the inheritance is private. This is the AS that
// this function calculates. FirstAS is the inheritance mode and SecondAS is
// the AS of the attribute / method.
static AccessSpecifier getFinalAccessSpecifier(AccessSpecifier FirstAS,
AccessSpecifier SecondAS) {
if (FirstAS == AccessSpecifier::AS_none ||
SecondAS == AccessSpecifier::AS_none)
return AccessSpecifier::AS_none;
if (FirstAS == AccessSpecifier::AS_private ||
SecondAS == AccessSpecifier::AS_private)
return AccessSpecifier::AS_private;
if (FirstAS == AccessSpecifier::AS_protected ||
SecondAS == AccessSpecifier::AS_protected)
return AccessSpecifier::AS_protected;
return AccessSpecifier::AS_public;
}
// The Access parameter is only provided when parsing the field of an inherited
// record, the access specification of the field depends on the inheritance mode
static void parseFields(RecordInfo &I, const RecordDecl *D, bool PublicOnly,
AccessSpecifier Access = AccessSpecifier::AS_public) {
for (const FieldDecl *F : D->fields()) {
if (!shouldSerializeInfo(PublicOnly, /*IsInAnonymousNamespace=*/false, F))
continue;
// Use getAccessUnsafe so that we just get the default AS_none if it's not
// valid, as opposed to an assert.
MemberTypeInfo &NewMember = I.Members.emplace_back(
getTypeInfoForType(F->getTypeSourceInfo()->getType()),
F->getNameAsString(),
getFinalAccessSpecifier(Access, F->getAccessUnsafe()));
populateMemberTypeInfo(NewMember, F);
}
}
static void parseEnumerators(EnumInfo &I, const EnumDecl *D) {
for (const EnumConstantDecl *E : D->enumerators()) {
std::string ValueExpr;
if (const Expr *InitExpr = E->getInitExpr())
ValueExpr = getSourceCode(D, InitExpr->getSourceRange());
SmallString<16> ValueStr;
E->getInitVal().toString(ValueStr);
I.Members.emplace_back(E->getNameAsString(), ValueStr, ValueExpr);
}
}
static void parseParameters(FunctionInfo &I, const FunctionDecl *D) {
for (const ParmVarDecl *P : D->parameters()) {
FieldTypeInfo &FieldInfo = I.Params.emplace_back(
getTypeInfoForType(P->getOriginalType()), P->getNameAsString());
FieldInfo.DefaultValue = getSourceCode(D, P->getDefaultArgRange());
}
}
// TODO: Remove the serialization of Parents and VirtualParents, this
// information is also extracted in the other definition of parseBases.
static void parseBases(RecordInfo &I, const CXXRecordDecl *D) {
// Don't parse bases if this isn't a definition.
if (!D->isThisDeclarationADefinition())
return;
for (const CXXBaseSpecifier &B : D->bases()) {
if (B.isVirtual())
continue;
if (const auto *Ty = B.getType()->getAs<TemplateSpecializationType>()) {
const TemplateDecl *D = Ty->getTemplateName().getAsTemplateDecl();
I.Parents.emplace_back(getUSRForDecl(D), B.getType().getAsString(),
InfoType::IT_record, B.getType().getAsString());
} else if (const RecordDecl *P = getRecordDeclForType(B.getType()))
I.Parents.emplace_back(getUSRForDecl(P), P->getNameAsString(),
InfoType::IT_record, P->getQualifiedNameAsString(),
getInfoRelativePath(P));
else
I.Parents.emplace_back(SymbolID(), B.getType().getAsString());
}
for (const CXXBaseSpecifier &B : D->vbases()) {
if (const RecordDecl *P = getRecordDeclForType(B.getType()))
I.VirtualParents.emplace_back(
getUSRForDecl(P), P->getNameAsString(), InfoType::IT_record,
P->getQualifiedNameAsString(), getInfoRelativePath(P));
else
I.VirtualParents.emplace_back(SymbolID(), B.getType().getAsString());
}
}
template <typename T>
static void
populateParentNamespaces(llvm::SmallVector<Reference, 4> &Namespaces,
const T *D, bool &IsInAnonymousNamespace) {
const DeclContext *DC = D->getDeclContext();
do {
if (const auto *N = dyn_cast<NamespaceDecl>(DC)) {
std::string Namespace;
if (N->isAnonymousNamespace()) {
Namespace = "@nonymous_namespace";
IsInAnonymousNamespace = true;
} else
Namespace = N->getNameAsString();
Namespaces.emplace_back(getUSRForDecl(N), Namespace,
InfoType::IT_namespace,
N->getQualifiedNameAsString());
} else if (const auto *N = dyn_cast<RecordDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_record,
N->getQualifiedNameAsString());
else if (const auto *N = dyn_cast<FunctionDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_function,
N->getQualifiedNameAsString());
else if (const auto *N = dyn_cast<EnumDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_enum, N->getQualifiedNameAsString());
} while ((DC = DC->getParent()));
// The global namespace should be added to the list of namespaces if the decl
// corresponds to a Record and if it doesn't have any namespace (because this
// means it's in the global namespace). Also if its outermost namespace is a
// record because that record matches the previous condition mentioned.
if ((Namespaces.empty() && isa<RecordDecl>(D)) ||
(!Namespaces.empty() && Namespaces.back().RefType == InfoType::IT_record))
Namespaces.emplace_back(SymbolID(), "GlobalNamespace",
InfoType::IT_namespace);
}
void PopulateTemplateParameters(std::optional<TemplateInfo> &TemplateInfo,
const clang::Decl *D) {
if (const TemplateParameterList *ParamList =
D->getDescribedTemplateParams()) {
if (!TemplateInfo) {
TemplateInfo.emplace();
}
for (const NamedDecl *ND : *ParamList) {
TemplateInfo->Params.emplace_back(
getSourceCode(ND, ND->getSourceRange()));
}
}
}
TemplateParamInfo TemplateArgumentToInfo(const clang::Decl *D,
const TemplateArgument &Arg) {
// The TemplateArgument's pretty printing handles all the normal cases
// well enough for our requirements.
std::string Str;
llvm::raw_string_ostream Stream(Str);
Arg.print(PrintingPolicy(D->getLangOpts()), Stream, false);
return TemplateParamInfo(Str);
}
template <typename T>
static void populateInfo(Info &I, const T *D, const FullComment *C,
bool &IsInAnonymousNamespace) {
I.USR = getUSRForDecl(D);
I.Name = D->getNameAsString();
populateParentNamespaces(I.Namespace, D, IsInAnonymousNamespace);
if (C) {
I.Description.emplace_back();
parseFullComment(C, I.Description.back());
}
}
template <typename T>
static void populateSymbolInfo(SymbolInfo &I, const T *D, const FullComment *C,
int LineNumber, StringRef Filename,
bool IsFileInRootDir,
bool &IsInAnonymousNamespace) {
populateInfo(I, D, C, IsInAnonymousNamespace);
if (D->isThisDeclarationADefinition())
I.DefLoc.emplace(LineNumber, Filename, IsFileInRootDir);
else
I.Loc.emplace_back(LineNumber, Filename, IsFileInRootDir);
}
static void populateFunctionInfo(FunctionInfo &I, const FunctionDecl *D,
const FullComment *FC, int LineNumber,
StringRef Filename, bool IsFileInRootDir,
bool &IsInAnonymousNamespace) {
populateSymbolInfo(I, D, FC, LineNumber, Filename, IsFileInRootDir,
IsInAnonymousNamespace);
I.ReturnType = getTypeInfoForType(D->getReturnType());
parseParameters(I, D);
PopulateTemplateParameters(I.Template, D);
// Handle function template specializations.
if (const FunctionTemplateSpecializationInfo *FTSI =
D->getTemplateSpecializationInfo()) {
if (!I.Template)
I.Template.emplace();
I.Template->Specialization.emplace();
auto &Specialization = *I.Template->Specialization;
Specialization.SpecializationOf = getUSRForDecl(FTSI->getTemplate());
// Template parameters to the specialization.
if (FTSI->TemplateArguments) {
for (const TemplateArgument &Arg : FTSI->TemplateArguments->asArray()) {
Specialization.Params.push_back(TemplateArgumentToInfo(D, Arg));
}
}
}
}
static void populateMemberTypeInfo(MemberTypeInfo &I, const FieldDecl *D) {
assert(D && "Expect non-null FieldDecl in populateMemberTypeInfo");
ASTContext& Context = D->getASTContext();
// TODO investigate whether we can use ASTContext::getCommentForDecl instead
// of this logic. See also similar code in Mapper.cpp.
RawComment *Comment = Context.getRawCommentForDeclNoCache(D);
if (!Comment)
return;
Comment->setAttached();
if (comments::FullComment* fc = Comment->parse(Context, nullptr, D)) {
I.Description.emplace_back();
parseFullComment(fc, I.Description.back());
}
}
static void
parseBases(RecordInfo &I, const CXXRecordDecl *D, bool IsFileInRootDir,
bool PublicOnly, bool IsParent,
AccessSpecifier ParentAccess = AccessSpecifier::AS_public) {
// Don't parse bases if this isn't a definition.
if (!D->isThisDeclarationADefinition())
return;
for (const CXXBaseSpecifier &B : D->bases()) {
if (const RecordType *Ty = B.getType()->getAs<RecordType>()) {
if (const CXXRecordDecl *Base =
cast_or_null<CXXRecordDecl>(Ty->getDecl()->getDefinition())) {
// Initialized without USR and name, this will be set in the following
// if-else stmt.
BaseRecordInfo BI(
{}, "", getInfoRelativePath(Base), B.isVirtual(),
getFinalAccessSpecifier(ParentAccess, B.getAccessSpecifier()),
IsParent);
if (const auto *Ty = B.getType()->getAs<TemplateSpecializationType>()) {
const TemplateDecl *D = Ty->getTemplateName().getAsTemplateDecl();
BI.USR = getUSRForDecl(D);
BI.Name = B.getType().getAsString();
} else {
BI.USR = getUSRForDecl(Base);
BI.Name = Base->getNameAsString();
}
parseFields(BI, Base, PublicOnly, BI.Access);
for (const auto &Decl : Base->decls())
if (const auto *MD = dyn_cast<CXXMethodDecl>(Decl)) {
// Don't serialize private methods
if (MD->getAccessUnsafe() == AccessSpecifier::AS_private ||
!MD->isUserProvided())
continue;
FunctionInfo FI;
FI.IsMethod = true;
// The seventh arg in populateFunctionInfo is a boolean passed by
// reference, its value is not relevant in here so it's not used
// anywhere besides the function call.
bool IsInAnonymousNamespace;
populateFunctionInfo(FI, MD, /*FullComment=*/{}, /*LineNumber=*/{},
/*FileName=*/{}, IsFileInRootDir,
IsInAnonymousNamespace);
FI.Access =
getFinalAccessSpecifier(BI.Access, MD->getAccessUnsafe());
BI.Children.Functions.emplace_back(std::move(FI));
}
I.Bases.emplace_back(std::move(BI));
// Call this function recursively to get the inherited classes of
// this base; these new bases will also get stored in the original
// RecordInfo: I.
parseBases(I, Base, IsFileInRootDir, PublicOnly, false,
I.Bases.back().Access);
}
}
}
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const NamespaceDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
auto I = std::make_unique<NamespaceInfo>();
bool IsInAnonymousNamespace = false;
populateInfo(*I, D, FC, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
I->Name = D->isAnonymousNamespace()
? llvm::SmallString<16>("@nonymous_namespace")
: I->Name;
I->Path = getInfoRelativePath(I->Namespace);
if (I->Namespace.empty() && I->USR == SymbolID())
return {std::unique_ptr<Info>{std::move(I)}, nullptr};
// Namespaces are inserted into the parent by reference, so we need to return
// both the parent and the record itself.
return {std::move(I), MakeAndInsertIntoParent<const NamespaceInfo &>(*I)};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const RecordDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
auto I = std::make_unique<RecordInfo>();
bool IsInAnonymousNamespace = false;
populateSymbolInfo(*I, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
I->TagType = D->getTagKind();
parseFields(*I, D, PublicOnly);
if (const auto *C = dyn_cast<CXXRecordDecl>(D)) {
if (const TypedefNameDecl *TD = C->getTypedefNameForAnonDecl()) {
I->Name = TD->getNameAsString();
I->IsTypeDef = true;
}
// TODO: remove first call to parseBases, that function should be deleted
parseBases(*I, C);
parseBases(*I, C, IsFileInRootDir, PublicOnly, true);
}
I->Path = getInfoRelativePath(I->Namespace);
PopulateTemplateParameters(I->Template, D);
// Full and partial specializations.
if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
if (!I->Template)
I->Template.emplace();
I->Template->Specialization.emplace();
auto &Specialization = *I->Template->Specialization;
// What this is a specialization of.
auto SpecOf = CTSD->getSpecializedTemplateOrPartial();
if (SpecOf.is<ClassTemplateDecl *>()) {
Specialization.SpecializationOf =
getUSRForDecl(SpecOf.get<ClassTemplateDecl *>());
} else if (SpecOf.is<ClassTemplatePartialSpecializationDecl *>()) {
Specialization.SpecializationOf =
getUSRForDecl(SpecOf.get<ClassTemplatePartialSpecializationDecl *>());
}
// Parameters to the specilization. For partial specializations, get the
// parameters "as written" from the ClassTemplatePartialSpecializationDecl
// because the non-explicit template parameters will have generated internal
// placeholder names rather than the names the user typed that match the
// template parameters.
if (const ClassTemplatePartialSpecializationDecl *CTPSD =
dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) {
if (const ASTTemplateArgumentListInfo *AsWritten =
CTPSD->getTemplateArgsAsWritten()) {
for (unsigned i = 0; i < AsWritten->getNumTemplateArgs(); i++) {
Specialization.Params.emplace_back(
getSourceCode(D, (*AsWritten)[i].getSourceRange()));
}
}
} else {
for (const TemplateArgument &Arg : CTSD->getTemplateArgs().asArray()) {
Specialization.Params.push_back(TemplateArgumentToInfo(D, Arg));
}
}
}
// Records are inserted into the parent by reference, so we need to return
// both the parent and the record itself.
auto Parent = MakeAndInsertIntoParent<const RecordInfo &>(*I);
return {std::move(I), std::move(Parent)};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const FunctionDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
FunctionInfo Func;
bool IsInAnonymousNamespace = false;
populateFunctionInfo(Func, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
Func.Access = clang::AccessSpecifier::AS_none;
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, MakeAndInsertIntoParent<FunctionInfo &&>(std::move(Func))};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const CXXMethodDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
FunctionInfo Func;
bool IsInAnonymousNamespace = false;
populateFunctionInfo(Func, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Func.IsMethod = true;
const NamedDecl *Parent = nullptr;
if (const auto *SD =
dyn_cast<ClassTemplateSpecializationDecl>(D->getParent()))
Parent = SD->getSpecializedTemplate();
else
Parent = D->getParent();
SymbolID ParentUSR = getUSRForDecl(Parent);
Func.Parent =
Reference{ParentUSR, Parent->getNameAsString(), InfoType::IT_record,
Parent->getQualifiedNameAsString()};
Func.Access = D->getAccess();
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, MakeAndInsertIntoParent<FunctionInfo &&>(std::move(Func))};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const TypedefDecl *D, const FullComment *FC, int LineNumber,
StringRef File, bool IsFileInRootDir, bool PublicOnly) {
TypedefInfo Info;
bool IsInAnonymousNamespace = false;
populateInfo(Info, D, FC, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Info.DefLoc.emplace(LineNumber, File, IsFileInRootDir);
Info.Underlying = getTypeInfoForType(D->getUnderlyingType());
if (Info.Underlying.Type.Name.empty()) {
// Typedef for an unnamed type. This is like "typedef struct { } Foo;"
// The record serializer explicitly checks for this syntax and constructs
// a record with that name, so we don't want to emit a duplicate here.
return {};
}
Info.IsUsing = false;
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, MakeAndInsertIntoParent<TypedefInfo &&>(std::move(Info))};
}
// A type alias is a C++ "using" declaration for a type. It gets mapped to a
// TypedefInfo with the IsUsing flag set.
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const TypeAliasDecl *D, const FullComment *FC, int LineNumber,
StringRef File, bool IsFileInRootDir, bool PublicOnly) {
TypedefInfo Info;
bool IsInAnonymousNamespace = false;
populateInfo(Info, D, FC, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Info.DefLoc.emplace(LineNumber, File, IsFileInRootDir);
Info.Underlying = getTypeInfoForType(D->getUnderlyingType());
Info.IsUsing = true;
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, MakeAndInsertIntoParent<TypedefInfo &&>(std::move(Info))};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const EnumDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
EnumInfo Enum;
bool IsInAnonymousNamespace = false;
populateSymbolInfo(Enum, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Enum.Scoped = D->isScoped();
if (D->isFixed()) {
auto Name = D->getIntegerType().getAsString();
Enum.BaseType = TypeInfo(Name, Name);
}
parseEnumerators(Enum, D);
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, MakeAndInsertIntoParent<EnumInfo &&>(std::move(Enum))};
}
} // namespace serialize
} // namespace doc
} // namespace clang
|