aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16/lib/StaticAnalyzer/Checkers/GenericTaintChecker.cpp
blob: f6e2f59d5697c6465e716a243eab9cba87697ddf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
//== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker defines the attack surface for generic taint propagation.
//
// The taint information produced by it might be useful to other checkers. For
// example, checkers should report errors which involve tainted data more
// aggressively, even if the involved symbols are under constrained.
//
//===----------------------------------------------------------------------===//

#include "Yaml.h"
#include "clang/AST/Attr.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/Support/YAMLTraits.h"

#include <limits>
#include <memory>
#include <optional>
#include <utility>

#define DEBUG_TYPE "taint-checker"

using namespace clang;
using namespace ento;
using namespace taint;

using llvm::ImmutableSet;

namespace {

class GenericTaintChecker;

/// Check for CWE-134: Uncontrolled Format String.
constexpr llvm::StringLiteral MsgUncontrolledFormatString =
    "Untrusted data is used as a format string "
    "(CWE-134: Uncontrolled Format String)";

/// Check for:
/// CERT/STR02-C. "Sanitize data passed to complex subsystems"
/// CWE-78, "Failure to Sanitize Data into an OS Command"
constexpr llvm::StringLiteral MsgSanitizeSystemArgs =
    "Untrusted data is passed to a system call "
    "(CERT/STR02-C. Sanitize data passed to complex subsystems)";

/// Check if tainted data is used as a buffer size in strn.. functions,
/// and allocators.
constexpr llvm::StringLiteral MsgTaintedBufferSize =
    "Untrusted data is used to specify the buffer size "
    "(CERT/STR31-C. Guarantee that storage for strings has sufficient space "
    "for character data and the null terminator)";

/// Check if tainted data is used as a custom sink's parameter.
constexpr llvm::StringLiteral MsgCustomSink =
    "Untrusted data is passed to a user-defined sink";

using ArgIdxTy = int;
using ArgVecTy = llvm::SmallVector<ArgIdxTy, 2>;

/// Denotes the return value.
constexpr ArgIdxTy ReturnValueIndex{-1};

static ArgIdxTy fromArgumentCount(unsigned Count) {
  assert(Count <=
             static_cast<std::size_t>(std::numeric_limits<ArgIdxTy>::max()) &&
         "ArgIdxTy is not large enough to represent the number of arguments.");
  return Count;
}

/// Check if the region the expression evaluates to is the standard input,
/// and thus, is tainted.
/// FIXME: Move this to Taint.cpp.
bool isStdin(SVal Val, const ASTContext &ACtx) {
  // FIXME: What if Val is NonParamVarRegion?

  // The region should be symbolic, we do not know it's value.
  const auto *SymReg = dyn_cast_or_null<SymbolicRegion>(Val.getAsRegion());
  if (!SymReg)
    return false;

  // Get it's symbol and find the declaration region it's pointing to.
  const auto *DeclReg =
      dyn_cast_or_null<DeclRegion>(SymReg->getSymbol()->getOriginRegion());
  if (!DeclReg)
    return false;

  // This region corresponds to a declaration, find out if it's a global/extern
  // variable named stdin with the proper type.
  if (const auto *D = dyn_cast_or_null<VarDecl>(DeclReg->getDecl())) {
    D = D->getCanonicalDecl();
    // FIXME: This should look for an exact match.
    if (D->getName().contains("stdin") && D->isExternC()) {
      const QualType FILETy = ACtx.getFILEType().getCanonicalType();
      const QualType Ty = D->getType().getCanonicalType();

      if (Ty->isPointerType())
        return Ty->getPointeeType() == FILETy;
    }
  }
  return false;
}

SVal getPointeeOf(const CheckerContext &C, Loc LValue) {
  const QualType ArgTy = LValue.getType(C.getASTContext());
  if (!ArgTy->isPointerType() || !ArgTy->getPointeeType()->isVoidType())
    return C.getState()->getSVal(LValue);

  // Do not dereference void pointers. Treat them as byte pointers instead.
  // FIXME: we might want to consider more than just the first byte.
  return C.getState()->getSVal(LValue, C.getASTContext().CharTy);
}

/// Given a pointer/reference argument, return the value it refers to.
std::optional<SVal> getPointeeOf(const CheckerContext &C, SVal Arg) {
  if (auto LValue = Arg.getAs<Loc>())
    return getPointeeOf(C, *LValue);
  return std::nullopt;
}

/// Given a pointer, return the SVal of its pointee or if it is tainted,
/// otherwise return the pointer's SVal if tainted.
/// Also considers stdin as a taint source.
std::optional<SVal> getTaintedPointeeOrPointer(const CheckerContext &C,
                                               SVal Arg) {
  const ProgramStateRef State = C.getState();

  if (auto Pointee = getPointeeOf(C, Arg))
    if (isTainted(State, *Pointee)) // FIXME: isTainted(...) ? Pointee : None;
      return Pointee;

  if (isTainted(State, Arg))
    return Arg;

  // FIXME: This should be done by the isTainted() API.
  if (isStdin(Arg, C.getASTContext()))
    return Arg;

  return std::nullopt;
}

bool isTaintedOrPointsToTainted(const Expr *E, const ProgramStateRef &State,
                                CheckerContext &C) {
  return getTaintedPointeeOrPointer(C, C.getSVal(E)).has_value();
}

/// ArgSet is used to describe arguments relevant for taint detection or
/// taint application. A discrete set of argument indexes and a variadic
/// argument list signified by a starting index are supported.
class ArgSet {
public:
  ArgSet() = default;
  ArgSet(ArgVecTy &&DiscreteArgs,
         std::optional<ArgIdxTy> VariadicIndex = std::nullopt)
      : DiscreteArgs(std::move(DiscreteArgs)),
        VariadicIndex(std::move(VariadicIndex)) {}

  bool contains(ArgIdxTy ArgIdx) const {
    if (llvm::is_contained(DiscreteArgs, ArgIdx))
      return true;

    return VariadicIndex && ArgIdx >= *VariadicIndex;
  }

  bool isEmpty() const { return DiscreteArgs.empty() && !VariadicIndex; }

private:
  ArgVecTy DiscreteArgs;
  std::optional<ArgIdxTy> VariadicIndex;
};

/// A struct used to specify taint propagation rules for a function.
///
/// If any of the possible taint source arguments is tainted, all of the
/// destination arguments should also be tainted. If ReturnValueIndex is added
/// to the dst list, the return value will be tainted.
class GenericTaintRule {
  /// Arguments which are taints sinks and should be checked, and a report
  /// should be emitted if taint reaches these.
  ArgSet SinkArgs;
  /// Arguments which should be sanitized on function return.
  ArgSet FilterArgs;
  /// Arguments which can participate in taint propagationa. If any of the
  /// arguments in PropSrcArgs is tainted, all arguments in  PropDstArgs should
  /// be tainted.
  ArgSet PropSrcArgs;
  ArgSet PropDstArgs;

  /// A message that explains why the call is sensitive to taint.
  std::optional<StringRef> SinkMsg;

  GenericTaintRule() = default;

  GenericTaintRule(ArgSet &&Sink, ArgSet &&Filter, ArgSet &&Src, ArgSet &&Dst,
                   std::optional<StringRef> SinkMsg = std::nullopt)
      : SinkArgs(std::move(Sink)), FilterArgs(std::move(Filter)),
        PropSrcArgs(std::move(Src)), PropDstArgs(std::move(Dst)),
        SinkMsg(SinkMsg) {}

public:
  /// Make a rule that reports a warning if taint reaches any of \p FilterArgs
  /// arguments.
  static GenericTaintRule Sink(ArgSet &&SinkArgs,
                               std::optional<StringRef> Msg = std::nullopt) {
    return {std::move(SinkArgs), {}, {}, {}, Msg};
  }

  /// Make a rule that sanitizes all FilterArgs arguments.
  static GenericTaintRule Filter(ArgSet &&FilterArgs) {
    return {{}, std::move(FilterArgs), {}, {}};
  }

  /// Make a rule that unconditionally taints all Args.
  /// If Func is provided, it must also return true for taint to propagate.
  static GenericTaintRule Source(ArgSet &&SourceArgs) {
    return {{}, {}, {}, std::move(SourceArgs)};
  }

  /// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted.
  static GenericTaintRule Prop(ArgSet &&SrcArgs, ArgSet &&DstArgs) {
    return {{}, {}, std::move(SrcArgs), std::move(DstArgs)};
  }

  /// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted.
  static GenericTaintRule
  SinkProp(ArgSet &&SinkArgs, ArgSet &&SrcArgs, ArgSet &&DstArgs,
           std::optional<StringRef> Msg = std::nullopt) {
    return {
        std::move(SinkArgs), {}, std::move(SrcArgs), std::move(DstArgs), Msg};
  }

  /// Process a function which could either be a taint source, a taint sink, a
  /// taint filter or a taint propagator.
  void process(const GenericTaintChecker &Checker, const CallEvent &Call,
               CheckerContext &C) const;

  /// Handles the resolution of indexes of type ArgIdxTy to Expr*-s.
  static const Expr *GetArgExpr(ArgIdxTy ArgIdx, const CallEvent &Call) {
    return ArgIdx == ReturnValueIndex ? Call.getOriginExpr()
                                      : Call.getArgExpr(ArgIdx);
  };

  /// Functions for custom taintedness propagation.
  static bool UntrustedEnv(CheckerContext &C);
};

using RuleLookupTy = CallDescriptionMap<GenericTaintRule>;

/// Used to parse the configuration file.
struct TaintConfiguration {
  using NameScopeArgs = std::tuple<std::string, std::string, ArgVecTy>;
  enum class VariadicType { None, Src, Dst };

  struct Common {
    std::string Name;
    std::string Scope;
  };

  struct Sink : Common {
    ArgVecTy SinkArgs;
  };

  struct Filter : Common {
    ArgVecTy FilterArgs;
  };

  struct Propagation : Common {
    ArgVecTy SrcArgs;
    ArgVecTy DstArgs;
    VariadicType VarType;
    ArgIdxTy VarIndex;
  };

  std::vector<Propagation> Propagations;
  std::vector<Filter> Filters;
  std::vector<Sink> Sinks;

  TaintConfiguration() = default;
  TaintConfiguration(const TaintConfiguration &) = default;
  TaintConfiguration(TaintConfiguration &&) = default;
  TaintConfiguration &operator=(const TaintConfiguration &) = default;
  TaintConfiguration &operator=(TaintConfiguration &&) = default;
};

struct GenericTaintRuleParser {
  GenericTaintRuleParser(CheckerManager &Mgr) : Mgr(Mgr) {}
  /// Container type used to gather call identification objects grouped into
  /// pairs with their corresponding taint rules. It is temporary as it is used
  /// to finally initialize RuleLookupTy, which is considered to be immutable.
  using RulesContTy = std::vector<std::pair<CallDescription, GenericTaintRule>>;
  RulesContTy parseConfiguration(const std::string &Option,
                                 TaintConfiguration &&Config) const;

private:
  using NamePartsTy = llvm::SmallVector<StringRef, 2>;

  /// Validate part of the configuration, which contains a list of argument
  /// indexes.
  void validateArgVector(const std::string &Option, const ArgVecTy &Args) const;

  template <typename Config> static NamePartsTy parseNameParts(const Config &C);

  // Takes the config and creates a CallDescription for it and associates a Rule
  // with that.
  template <typename Config>
  static void consumeRulesFromConfig(const Config &C, GenericTaintRule &&Rule,
                                     RulesContTy &Rules);

  void parseConfig(const std::string &Option, TaintConfiguration::Sink &&P,
                   RulesContTy &Rules) const;
  void parseConfig(const std::string &Option, TaintConfiguration::Filter &&P,
                   RulesContTy &Rules) const;
  void parseConfig(const std::string &Option,
                   TaintConfiguration::Propagation &&P,
                   RulesContTy &Rules) const;

  CheckerManager &Mgr;
};

class GenericTaintChecker : public Checker<check::PreCall, check::PostCall> {
public:
  void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;

  void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
                  const char *Sep) const override;

  /// Generate a report if the expression is tainted or points to tainted data.
  bool generateReportIfTainted(const Expr *E, StringRef Msg,
                               CheckerContext &C) const;

private:
  const BugType BT{this, "Use of Untrusted Data", "Untrusted Data"};

  bool checkUncontrolledFormatString(const CallEvent &Call,
                                     CheckerContext &C) const;

  void taintUnsafeSocketProtocol(const CallEvent &Call,
                                 CheckerContext &C) const;

  /// Default taint rules are initilized with the help of a CheckerContext to
  /// access the names of built-in functions like memcpy.
  void initTaintRules(CheckerContext &C) const;

  /// CallDescription currently cannot restrict matches to the global namespace
  /// only, which is why multiple CallDescriptionMaps are used, as we want to
  /// disambiguate global C functions from functions inside user-defined
  /// namespaces.
  // TODO: Remove separation to simplify matching logic once CallDescriptions
  // are more expressive.

  mutable std::optional<RuleLookupTy> StaticTaintRules;
  mutable std::optional<RuleLookupTy> DynamicTaintRules;
};
} // end of anonymous namespace

/// YAML serialization mapping.
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Sink)
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Filter)
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Propagation)

namespace llvm {
namespace yaml {
template <> struct MappingTraits<TaintConfiguration> {
  static void mapping(IO &IO, TaintConfiguration &Config) {
    IO.mapOptional("Propagations", Config.Propagations);
    IO.mapOptional("Filters", Config.Filters);
    IO.mapOptional("Sinks", Config.Sinks);
  }
};

template <> struct MappingTraits<TaintConfiguration::Sink> {
  static void mapping(IO &IO, TaintConfiguration::Sink &Sink) {
    IO.mapRequired("Name", Sink.Name);
    IO.mapOptional("Scope", Sink.Scope);
    IO.mapRequired("Args", Sink.SinkArgs);
  }
};

template <> struct MappingTraits<TaintConfiguration::Filter> {
  static void mapping(IO &IO, TaintConfiguration::Filter &Filter) {
    IO.mapRequired("Name", Filter.Name);
    IO.mapOptional("Scope", Filter.Scope);
    IO.mapRequired("Args", Filter.FilterArgs);
  }
};

template <> struct MappingTraits<TaintConfiguration::Propagation> {
  static void mapping(IO &IO, TaintConfiguration::Propagation &Propagation) {
    IO.mapRequired("Name", Propagation.Name);
    IO.mapOptional("Scope", Propagation.Scope);
    IO.mapOptional("SrcArgs", Propagation.SrcArgs);
    IO.mapOptional("DstArgs", Propagation.DstArgs);
    IO.mapOptional("VariadicType", Propagation.VarType);
    IO.mapOptional("VariadicIndex", Propagation.VarIndex);
  }
};

template <> struct ScalarEnumerationTraits<TaintConfiguration::VariadicType> {
  static void enumeration(IO &IO, TaintConfiguration::VariadicType &Value) {
    IO.enumCase(Value, "None", TaintConfiguration::VariadicType::None);
    IO.enumCase(Value, "Src", TaintConfiguration::VariadicType::Src);
    IO.enumCase(Value, "Dst", TaintConfiguration::VariadicType::Dst);
  }
};
} // namespace yaml
} // namespace llvm

/// A set which is used to pass information from call pre-visit instruction
/// to the call post-visit. The values are signed integers, which are either
/// ReturnValueIndex, or indexes of the pointer/reference argument, which
/// points to data, which should be tainted on return.
REGISTER_MAP_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, const LocationContext *,
                               ImmutableSet<ArgIdxTy>)
REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ArgIdxFactory, ArgIdxTy)

void GenericTaintRuleParser::validateArgVector(const std::string &Option,
                                               const ArgVecTy &Args) const {
  for (ArgIdxTy Arg : Args) {
    if (Arg < ReturnValueIndex) {
      Mgr.reportInvalidCheckerOptionValue(
          Mgr.getChecker<GenericTaintChecker>(), Option,
          "an argument number for propagation rules greater or equal to -1");
    }
  }
}

template <typename Config>
GenericTaintRuleParser::NamePartsTy
GenericTaintRuleParser::parseNameParts(const Config &C) {
  NamePartsTy NameParts;
  if (!C.Scope.empty()) {
    // If the Scope argument contains multiple "::" parts, those are considered
    // namespace identifiers.
    StringRef{C.Scope}.split(NameParts, "::", /*MaxSplit*/ -1,
                             /*KeepEmpty*/ false);
  }
  NameParts.emplace_back(C.Name);
  return NameParts;
}

template <typename Config>
void GenericTaintRuleParser::consumeRulesFromConfig(const Config &C,
                                                    GenericTaintRule &&Rule,
                                                    RulesContTy &Rules) {
  NamePartsTy NameParts = parseNameParts(C);
  Rules.emplace_back(CallDescription(NameParts), std::move(Rule));
}

void GenericTaintRuleParser::parseConfig(const std::string &Option,
                                         TaintConfiguration::Sink &&S,
                                         RulesContTy &Rules) const {
  validateArgVector(Option, S.SinkArgs);
  consumeRulesFromConfig(S, GenericTaintRule::Sink(std::move(S.SinkArgs)),
                         Rules);
}

void GenericTaintRuleParser::parseConfig(const std::string &Option,
                                         TaintConfiguration::Filter &&S,
                                         RulesContTy &Rules) const {
  validateArgVector(Option, S.FilterArgs);
  consumeRulesFromConfig(S, GenericTaintRule::Filter(std::move(S.FilterArgs)),
                         Rules);
}

void GenericTaintRuleParser::parseConfig(const std::string &Option,
                                         TaintConfiguration::Propagation &&P,
                                         RulesContTy &Rules) const {
  validateArgVector(Option, P.SrcArgs);
  validateArgVector(Option, P.DstArgs);
  bool IsSrcVariadic = P.VarType == TaintConfiguration::VariadicType::Src;
  bool IsDstVariadic = P.VarType == TaintConfiguration::VariadicType::Dst;
  std::optional<ArgIdxTy> JustVarIndex = P.VarIndex;

  ArgSet SrcDesc(std::move(P.SrcArgs),
                 IsSrcVariadic ? JustVarIndex : std::nullopt);
  ArgSet DstDesc(std::move(P.DstArgs),
                 IsDstVariadic ? JustVarIndex : std::nullopt);

  consumeRulesFromConfig(
      P, GenericTaintRule::Prop(std::move(SrcDesc), std::move(DstDesc)), Rules);
}

GenericTaintRuleParser::RulesContTy
GenericTaintRuleParser::parseConfiguration(const std::string &Option,
                                           TaintConfiguration &&Config) const {

  RulesContTy Rules;

  for (auto &F : Config.Filters)
    parseConfig(Option, std::move(F), Rules);

  for (auto &S : Config.Sinks)
    parseConfig(Option, std::move(S), Rules);

  for (auto &P : Config.Propagations)
    parseConfig(Option, std::move(P), Rules);

  return Rules;
}

void GenericTaintChecker::initTaintRules(CheckerContext &C) const {
  // Check for exact name match for functions without builtin substitutes.
  // Use qualified name, because these are C functions without namespace.

  if (StaticTaintRules || DynamicTaintRules)
    return;

  using RulesConstructionTy =
      std::vector<std::pair<CallDescription, GenericTaintRule>>;
  using TR = GenericTaintRule;

  const Builtin::Context &BI = C.getASTContext().BuiltinInfo;

  RulesConstructionTy GlobalCRules{
      // Sources
      {{{"fdopen"}}, TR::Source({{ReturnValueIndex}})},
      {{{"fopen"}}, TR::Source({{ReturnValueIndex}})},
      {{{"freopen"}}, TR::Source({{ReturnValueIndex}})},
      {{{"getch"}}, TR::Source({{ReturnValueIndex}})},
      {{{"getchar"}}, TR::Source({{ReturnValueIndex}})},
      {{{"getchar_unlocked"}}, TR::Source({{ReturnValueIndex}})},
      {{{"gets"}}, TR::Source({{0}, ReturnValueIndex})},
      {{{"gets_s"}}, TR::Source({{0}, ReturnValueIndex})},
      {{{"scanf"}}, TR::Source({{}, 1})},
      {{{"scanf_s"}}, TR::Source({{}, {1}})},
      {{{"wgetch"}}, TR::Source({{}, ReturnValueIndex})},
      // Sometimes the line between taint sources and propagators is blurry.
      // _IO_getc is choosen to be a source, but could also be a propagator.
      // This way it is simpler, as modeling it as a propagator would require
      // to model the possible sources of _IO_FILE * values, which the _IO_getc
      // function takes as parameters.
      {{{"_IO_getc"}}, TR::Source({{ReturnValueIndex}})},
      {{{"getcwd"}}, TR::Source({{0, ReturnValueIndex}})},
      {{{"getwd"}}, TR::Source({{0, ReturnValueIndex}})},
      {{{"readlink"}}, TR::Source({{1, ReturnValueIndex}})},
      {{{"readlinkat"}}, TR::Source({{2, ReturnValueIndex}})},
      {{{"get_current_dir_name"}}, TR::Source({{ReturnValueIndex}})},
      {{{"gethostname"}}, TR::Source({{0}})},
      {{{"getnameinfo"}}, TR::Source({{2, 4}})},
      {{{"getseuserbyname"}}, TR::Source({{1, 2}})},
      {{{"getgroups"}}, TR::Source({{1, ReturnValueIndex}})},
      {{{"getlogin"}}, TR::Source({{ReturnValueIndex}})},
      {{{"getlogin_r"}}, TR::Source({{0}})},

      // Props
      {{{"atoi"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"atol"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"atoll"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"fgetc"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"fgetln"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"fgets"}}, TR::Prop({{2}}, {{0, ReturnValueIndex}})},
      {{{"fscanf"}}, TR::Prop({{0}}, {{}, 2})},
      {{{"fscanf_s"}}, TR::Prop({{0}}, {{}, {2}})},
      {{{"sscanf"}}, TR::Prop({{0}}, {{}, 2})},

      {{{"getc"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"getc_unlocked"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"getdelim"}}, TR::Prop({{3}}, {{0}})},
      {{{"getline"}}, TR::Prop({{2}}, {{0}})},
      {{{"getw"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"pread"}}, TR::Prop({{0, 1, 2, 3}}, {{1, ReturnValueIndex}})},
      {{{"read"}}, TR::Prop({{0, 2}}, {{1, ReturnValueIndex}})},
      {{{"strchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"strrchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"tolower"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"toupper"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"fread"}}, TR::Prop({{3}}, {{0, ReturnValueIndex}})},
      {{{"recv"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
      {{{"recvfrom"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},

      {{{"ttyname"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"ttyname_r"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},

      {{{"basename"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"dirname"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"fnmatch"}}, TR::Prop({{1}}, {{ReturnValueIndex}})},
      {{{"memchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"memrchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"rawmemchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},

      {{{"mbtowc"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
      {{{"wctomb"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
      {{{"wcwidth"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},

      {{{"memcmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
      {{{"memcpy"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
      {{{"memmove"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
      // If memmem was called with a tainted needle and the search was
      // successful, that would mean that the value pointed by the return value
      // has the same content as the needle. If we choose to go by the policy of
      // content equivalence implies taintedness equivalence, that would mean
      // haystack should be considered a propagation source argument.
      {{{"memmem"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},

      // The comment for memmem above also applies to strstr.
      {{{"strstr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"strcasestr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},

      {{{"strchrnul"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},

      {{{"index"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"rindex"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},

      // FIXME: In case of arrays, only the first element of the array gets
      // tainted.
      {{{"qsort"}}, TR::Prop({{0}}, {{0}})},
      {{{"qsort_r"}}, TR::Prop({{0}}, {{0}})},

      {{{"strcmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
      {{{"strcasecmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
      {{{"strncmp"}}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
      {{{"strncasecmp"}}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
      {{{"strspn"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
      {{{"strcspn"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
      {{{"strpbrk"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"strndup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"strndupa"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"strlen"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"strnlen"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"strtol"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
      {{{"strtoll"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
      {{{"strtoul"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
      {{{"strtoull"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},

      {{{"isalnum"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"isalpha"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"isascii"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"isblank"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"iscntrl"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"isdigit"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"isgraph"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"islower"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"isprint"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"ispunct"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"isspace"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"isupper"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{{"isxdigit"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},

      {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncat)}},
       TR::Prop({{1, 2}}, {{0, ReturnValueIndex}})},
      {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcpy)}},
       TR::Prop({{1, 2}}, {{0}})},
      {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcat)}},
       TR::Prop({{1, 2}}, {{0}})},
      {{CDF_MaybeBuiltin, {{"snprintf"}}},
       TR::Prop({{1}, 3}, {{0, ReturnValueIndex}})},
      {{CDF_MaybeBuiltin, {{"sprintf"}}},
       TR::Prop({{1}, 2}, {{0, ReturnValueIndex}})},
      {{CDF_MaybeBuiltin, {{"strcpy"}}},
       TR::Prop({{1}}, {{0, ReturnValueIndex}})},
      {{CDF_MaybeBuiltin, {{"stpcpy"}}},
       TR::Prop({{1}}, {{0, ReturnValueIndex}})},
      {{CDF_MaybeBuiltin, {{"strcat"}}},
       TR::Prop({{1}}, {{0, ReturnValueIndex}})},
      {{CDF_MaybeBuiltin, {{"strdup"}}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{CDF_MaybeBuiltin, {{"strdupa"}}},
       TR::Prop({{0}}, {{ReturnValueIndex}})},
      {{CDF_MaybeBuiltin, {{"wcsdup"}}}, TR::Prop({{0}}, {{ReturnValueIndex}})},

      // Sinks
      {{{"system"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
      {{{"popen"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
      {{{"execl"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
      {{{"execle"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
      {{{"execlp"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
      {{{"execvp"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
      {{{"execvP"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
      {{{"execve"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
      {{{"dlopen"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
      {{CDF_MaybeBuiltin, {{"malloc"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
      {{CDF_MaybeBuiltin, {{"calloc"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
      {{CDF_MaybeBuiltin, {{"alloca"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
      {{CDF_MaybeBuiltin, {{"memccpy"}}},
       TR::Sink({{3}}, MsgTaintedBufferSize)},
      {{CDF_MaybeBuiltin, {{"realloc"}}},
       TR::Sink({{1}}, MsgTaintedBufferSize)},
      {{{{"setproctitle"}}}, TR::Sink({{0}, 1}, MsgUncontrolledFormatString)},
      {{{{"setproctitle_fast"}}},
       TR::Sink({{0}, 1}, MsgUncontrolledFormatString)},

      // SinkProps
      {{CDF_MaybeBuiltin, BI.getName(Builtin::BImemcpy)},
       TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
                    MsgTaintedBufferSize)},
      {{CDF_MaybeBuiltin, {BI.getName(Builtin::BImemmove)}},
       TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
                    MsgTaintedBufferSize)},
      {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncpy)}},
       TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
                    MsgTaintedBufferSize)},
      {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrndup)}},
       TR::SinkProp({{1}}, {{0, 1}}, {{ReturnValueIndex}},
                    MsgTaintedBufferSize)},
      {{CDF_MaybeBuiltin, {{"bcopy"}}},
       TR::SinkProp({{2}}, {{0, 2}}, {{1}}, MsgTaintedBufferSize)}};

  // `getenv` returns taint only in untrusted environments.
  if (TR::UntrustedEnv(C)) {
    // void setproctitle_init(int argc, char *argv[], char *envp[])
    GlobalCRules.push_back(
        {{{"setproctitle_init"}}, TR::Sink({{1, 2}}, MsgCustomSink)});
    GlobalCRules.push_back({{{"getenv"}}, TR::Source({{ReturnValueIndex}})});
  }

  StaticTaintRules.emplace(std::make_move_iterator(GlobalCRules.begin()),
                           std::make_move_iterator(GlobalCRules.end()));

  // User-provided taint configuration.
  CheckerManager *Mgr = C.getAnalysisManager().getCheckerManager();
  assert(Mgr);
  GenericTaintRuleParser ConfigParser{*Mgr};
  std::string Option{"Config"};
  StringRef ConfigFile =
      Mgr->getAnalyzerOptions().getCheckerStringOption(this, Option);
  std::optional<TaintConfiguration> Config =
      getConfiguration<TaintConfiguration>(*Mgr, this, Option, ConfigFile);
  if (!Config) {
    // We don't have external taint config, no parsing required.
    DynamicTaintRules = RuleLookupTy{};
    return;
  }

  GenericTaintRuleParser::RulesContTy Rules{
      ConfigParser.parseConfiguration(Option, std::move(*Config))};

  DynamicTaintRules.emplace(std::make_move_iterator(Rules.begin()),
                            std::make_move_iterator(Rules.end()));
}

void GenericTaintChecker::checkPreCall(const CallEvent &Call,
                                       CheckerContext &C) const {
  initTaintRules(C);

  // FIXME: this should be much simpler.
  if (const auto *Rule =
          Call.isGlobalCFunction() ? StaticTaintRules->lookup(Call) : nullptr)
    Rule->process(*this, Call, C);
  else if (const auto *Rule = DynamicTaintRules->lookup(Call))
    Rule->process(*this, Call, C);

  // FIXME: These edge cases are to be eliminated from here eventually.
  //
  // Additional check that is not supported by CallDescription.
  // TODO: Make CallDescription be able to match attributes such as printf-like
  // arguments.
  checkUncontrolledFormatString(Call, C);

  // TODO: Modeling sockets should be done in a specific checker.
  // Socket is a source, which taints the return value.
  taintUnsafeSocketProtocol(Call, C);
}

void GenericTaintChecker::checkPostCall(const CallEvent &Call,
                                        CheckerContext &C) const {
  // Set the marked values as tainted. The return value only accessible from
  // checkPostStmt.
  ProgramStateRef State = C.getState();
  const StackFrameContext *CurrentFrame = C.getStackFrame();

  // Depending on what was tainted at pre-visit, we determined a set of
  // arguments which should be tainted after the function returns. These are
  // stored in the state as TaintArgsOnPostVisit set.
  TaintArgsOnPostVisitTy TaintArgsMap = State->get<TaintArgsOnPostVisit>();

  const ImmutableSet<ArgIdxTy> *TaintArgs = TaintArgsMap.lookup(CurrentFrame);
  if (!TaintArgs)
    return;
  assert(!TaintArgs->isEmpty());

  LLVM_DEBUG(for (ArgIdxTy I
                  : *TaintArgs) {
    llvm::dbgs() << "PostCall<";
    Call.dump(llvm::dbgs());
    llvm::dbgs() << "> actually wants to taint arg index: " << I << '\n';
  });

  for (ArgIdxTy ArgNum : *TaintArgs) {
    // Special handling for the tainted return value.
    if (ArgNum == ReturnValueIndex) {
      State = addTaint(State, Call.getReturnValue());
      continue;
    }

    // The arguments are pointer arguments. The data they are pointing at is
    // tainted after the call.
    if (auto V = getPointeeOf(C, Call.getArgSVal(ArgNum)))
      State = addTaint(State, *V);
  }

  // Clear up the taint info from the state.
  State = State->remove<TaintArgsOnPostVisit>(CurrentFrame);
  C.addTransition(State);
}

void GenericTaintChecker::printState(raw_ostream &Out, ProgramStateRef State,
                                     const char *NL, const char *Sep) const {
  printTaint(State, Out, NL, Sep);
}

void GenericTaintRule::process(const GenericTaintChecker &Checker,
                               const CallEvent &Call, CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());

  /// Iterate every call argument, and get their corresponding Expr and SVal.
  const auto ForEachCallArg = [&C, &Call, CallNumArgs](auto &&Fun) {
    for (ArgIdxTy I = ReturnValueIndex; I < CallNumArgs; ++I) {
      const Expr *E = GetArgExpr(I, Call);
      Fun(I, E, C.getSVal(E));
    }
  };

  /// Check for taint sinks.
  ForEachCallArg([this, &Checker, &C, &State](ArgIdxTy I, const Expr *E, SVal) {
    if (SinkArgs.contains(I) && isTaintedOrPointsToTainted(E, State, C))
      Checker.generateReportIfTainted(E, SinkMsg.value_or(MsgCustomSink), C);
  });

  /// Check for taint filters.
  ForEachCallArg([this, &C, &State](ArgIdxTy I, const Expr *E, SVal S) {
    if (FilterArgs.contains(I)) {
      State = removeTaint(State, S);
      if (auto P = getPointeeOf(C, S))
        State = removeTaint(State, *P);
    }
  });

  /// Check for taint propagation sources.
  /// A rule is relevant if PropSrcArgs is empty, or if any of its signified
  /// args are tainted in context of the current CallEvent.
  bool IsMatching = PropSrcArgs.isEmpty();
  ForEachCallArg(
      [this, &C, &IsMatching, &State](ArgIdxTy I, const Expr *E, SVal) {
        IsMatching = IsMatching || (PropSrcArgs.contains(I) &&
                                    isTaintedOrPointsToTainted(E, State, C));
      });

  if (!IsMatching)
    return;

  const auto WouldEscape = [](SVal V, QualType Ty) -> bool {
    if (!isa<Loc>(V))
      return false;

    const bool IsNonConstRef = Ty->isReferenceType() && !Ty.isConstQualified();
    const bool IsNonConstPtr =
        Ty->isPointerType() && !Ty->getPointeeType().isConstQualified();

    return IsNonConstRef || IsNonConstPtr;
  };

  /// Propagate taint where it is necessary.
  auto &F = State->getStateManager().get_context<ArgIdxFactory>();
  ImmutableSet<ArgIdxTy> Result = F.getEmptySet();
  ForEachCallArg(
      [&](ArgIdxTy I, const Expr *E, SVal V) {
        if (PropDstArgs.contains(I)) {
          LLVM_DEBUG(llvm::dbgs() << "PreCall<"; Call.dump(llvm::dbgs());
                     llvm::dbgs()
                     << "> prepares tainting arg index: " << I << '\n';);
          Result = F.add(Result, I);
        }

        // TODO: We should traverse all reachable memory regions via the
        // escaping parameter. Instead of doing that we simply mark only the
        // referred memory region as tainted.
        if (WouldEscape(V, E->getType())) {
          LLVM_DEBUG(if (!Result.contains(I)) {
            llvm::dbgs() << "PreCall<";
            Call.dump(llvm::dbgs());
            llvm::dbgs() << "> prepares tainting arg index: " << I << '\n';
          });
          Result = F.add(Result, I);
        }
      });

  if (!Result.isEmpty())
    State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
  C.addTransition(State);
}

bool GenericTaintRule::UntrustedEnv(CheckerContext &C) {
  return !C.getAnalysisManager()
              .getAnalyzerOptions()
              .ShouldAssumeControlledEnvironment;
}

bool GenericTaintChecker::generateReportIfTainted(const Expr *E, StringRef Msg,
                                                  CheckerContext &C) const {
  assert(E);
  std::optional<SVal> TaintedSVal{getTaintedPointeeOrPointer(C, C.getSVal(E))};

  if (!TaintedSVal)
    return false;

  // Generate diagnostic.
  if (ExplodedNode *N = C.generateNonFatalErrorNode()) {
    auto report = std::make_unique<PathSensitiveBugReport>(BT, Msg, N);
    report->addRange(E->getSourceRange());
    report->addVisitor(std::make_unique<TaintBugVisitor>(*TaintedSVal));
    C.emitReport(std::move(report));
    return true;
  }
  return false;
}

/// TODO: remove checking for printf format attributes and socket whitelisting
/// from GenericTaintChecker, and that means the following functions:
/// getPrintfFormatArgumentNum,
/// GenericTaintChecker::checkUncontrolledFormatString,
/// GenericTaintChecker::taintUnsafeSocketProtocol

static bool getPrintfFormatArgumentNum(const CallEvent &Call,
                                       const CheckerContext &C,
                                       ArgIdxTy &ArgNum) {
  // Find if the function contains a format string argument.
  // Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf,
  // vsnprintf, syslog, custom annotated functions.
  const Decl *CallDecl = Call.getDecl();
  if (!CallDecl)
    return false;
  const FunctionDecl *FDecl = CallDecl->getAsFunction();
  if (!FDecl)
    return false;

  const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());

  for (const auto *Format : FDecl->specific_attrs<FormatAttr>()) {
    ArgNum = Format->getFormatIdx() - 1;
    if ((Format->getType()->getName() == "printf") && CallNumArgs > ArgNum)
      return true;
  }

  return false;
}

bool GenericTaintChecker::checkUncontrolledFormatString(
    const CallEvent &Call, CheckerContext &C) const {
  // Check if the function contains a format string argument.
  ArgIdxTy ArgNum = 0;
  if (!getPrintfFormatArgumentNum(Call, C, ArgNum))
    return false;

  // If either the format string content or the pointer itself are tainted,
  // warn.
  return generateReportIfTainted(Call.getArgExpr(ArgNum),
                                 MsgUncontrolledFormatString, C);
}

void GenericTaintChecker::taintUnsafeSocketProtocol(const CallEvent &Call,
                                                    CheckerContext &C) const {
  if (Call.getNumArgs() < 1)
    return;
  const IdentifierInfo *ID = Call.getCalleeIdentifier();
  if (!ID)
    return;
  if (!ID->getName().equals("socket"))
    return;

  SourceLocation DomLoc = Call.getArgExpr(0)->getExprLoc();
  StringRef DomName = C.getMacroNameOrSpelling(DomLoc);
  // Allow internal communication protocols.
  bool SafeProtocol = DomName.equals("AF_SYSTEM") ||
                      DomName.equals("AF_LOCAL") || DomName.equals("AF_UNIX") ||
                      DomName.equals("AF_RESERVED_36");
  if (SafeProtocol)
    return;

  ProgramStateRef State = C.getState();
  auto &F = State->getStateManager().get_context<ArgIdxFactory>();
  ImmutableSet<ArgIdxTy> Result = F.add(F.getEmptySet(), ReturnValueIndex);
  State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
  C.addTransition(State);
}

/// Checker registration
void ento::registerGenericTaintChecker(CheckerManager &Mgr) {
  Mgr.registerChecker<GenericTaintChecker>();
}

bool ento::shouldRegisterGenericTaintChecker(const CheckerManager &mgr) {
  return true;
}