1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
|
/*===--- __clang_cuda_texture_intrinsics.h - Device-side texture support ---===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*
* This header provides in-header implmentations for NVCC's built-in
* __nv_tex_surf_handler() which is used by CUDA's texture-related headers. The
* built-in is unusual as it's actually a set of function overloads that use the
* first string literal argument as one of the overload parameters.
*/
#ifndef __CLANG_CUDA_TEXTURE_INTRINSICS_H__
#define __CLANG_CUDA_TEXTURE_INTRINSICS_H__
#ifndef __CUDA__
#error "This file is for CUDA compilation only."
#endif
// __nv_tex_surf_handler() provided by this header as a macro.
#define __nv_tex_surf_handler(__op, __ptr, ...) \
::__cuda_tex::__tex_fetch< \
::__cuda_tex::__Tag<::__cuda_tex::__tex_op_hash(__op)>>(__ptr, \
__VA_ARGS__)
#pragma push_macro("__ASM_OUT")
#pragma push_macro("__ASM_OUTP")
#pragma push_macro("__Args")
#pragma push_macro("__ID")
#pragma push_macro("__IDV")
#pragma push_macro("__IMPL_2DGATHER")
#pragma push_macro("__IMPL_ALIAS")
#pragma push_macro("__IMPL_ALIASI")
#pragma push_macro("__IMPL_F1")
#pragma push_macro("__IMPL_F3")
#pragma push_macro("__IMPL_F3N")
#pragma push_macro("__IMPL_F3S")
#pragma push_macro("__IMPL_S")
#pragma push_macro("__IMPL_S3")
#pragma push_macro("__IMPL_S3I")
#pragma push_macro("__IMPL_S3N")
#pragma push_macro("__IMPL_S3NI")
#pragma push_macro("__IMPL_S3S")
#pragma push_macro("__IMPL_S3SI")
#pragma push_macro("__IMPL_SI")
#pragma push_macro("__L")
#pragma push_macro("__STRIP_PARENS")
// Put all functions into anonymous namespace so they have internal linkage.
// The device-only function here must be internal in order to avoid ODR
// violations in case they are used from the files compiled with
// -fgpu-rdc. E.g. a library and an app using it may be built with a different
// version of this header file.
namespace {
// Put the implmentation into its own namespace so we don't pollute the TU.
namespace __cuda_tex {
// First, we need a perfect hash function and a few constexpr helper functions
// for converting a string literal into a numeric value which can be used to
// parametrize a template. We can not use string literals for that as that would
// require C++20.
//
// The hash function was generated with 'gperf' and then manually converted into
// its constexpr equivalent.
//
// NOTE: the perfect hashing scheme comes with inherent self-test. If the hash
// function has a collision for any of the texture operations, the compilation
// will fail due to an attempt to redefine a tag with the same value. If the
// header compiles, then the hash function is good enough for the job.
constexpr int __tex_len(const char *s) {
return (s[0] == 0) ? 0
: (s[1] == 0) ? 1
: (s[2] == 0) ? 2
: (s[3] == 0) ? 3
: (s[4] == 0) ? 4
: (s[5] == 0) ? 5
: (s[6] == 0) ? 6
: (s[7] == 0) ? 7
: (s[8] == 0) ? 8
: (s[9] == 0) ? 9
: (s[10] == 0) ? 10
: (s[11] == 0) ? 11
: (s[12] == 0) ? 12
: (s[13] == 0) ? 13
: (s[14] == 0) ? 14
: (s[15] == 0) ? 15
: (s[16] == 0) ? 16
: (s[17] == 0) ? 17
: (s[18] == 0) ? 18
: (s[19] == 0) ? 19
: (s[20] == 0) ? 20
: (s[21] == 0) ? 21
: (s[22] == 0) ? 22
: (s[23] == 0) ? 23
: (s[24] == 0) ? 24
: (s[25] == 0) ? 25
: (s[26] == 0) ? 26
: (s[27] == 0) ? 27
: (s[28] == 0) ? 28
: (s[29] == 0) ? 29
: (s[30] == 0) ? 30
: (s[31] == 0) ? 31
: 32;
}
constexpr int __tex_hash_map(int c) {
return (c == 49) ? 10
: (c == 50) ? 0
: (c == 51) ? 100
: (c == 52) ? 30
: (c == 67) ? 10
: (c == 68) ? 0
: (c == 69) ? 25
: (c == 72) ? 70
: (c == 77) ? 0
: (c == 96) ? 44
: (c == 99) ? 10
: (c == 100) ? 5
: (c == 101) ? 60
: (c == 102) ? 40
: (c == 103) ? 70
: (c == 104) ? 25
: (c == 112) ? 0
: (c == 114) ? 45
: (c == 117) ? 5
: (c == 118) ? 85
: (c == 120) ? 20
: 225;
}
constexpr int __tex_op_hash(const char *str) {
return __tex_len(str) + __tex_hash_map(str[7] + 1) + __tex_hash_map(str[6]) +
__tex_hash_map(str[5]) + __tex_hash_map(str[__tex_len(str) - 1]);
}
// Tag type to identify particular texture operation.
template <int N> struct __Tag;
#define __ID(__op) __Tag<__tex_op_hash(__op)>
// Tags for variants of particular operation. E.g. tex2Dgather can translate
// into 4 different instructions.
#define __IDV(__op, __variant) \
__Tag<10000 + __tex_op_hash(__op) * 100 + __variant>
// Helper classes for figuring out key data types for derived types.
// E.g. char2 has __base_t = char, __fetch_t = char4
template <class> struct __TypeInfoT;
// Type info for the fundamental types.
template <> struct __TypeInfoT<float> {
using __base_t = float;
using __fetch_t = float4;
};
template <> struct __TypeInfoT<char> {
using __base_t = char;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<signed char> {
using __base_t = signed char;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<unsigned char> {
using __base_t = unsigned char;
using __fetch_t = uint4;
};
template <> struct __TypeInfoT<short> {
using __base_t = short;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<unsigned short> {
using __base_t = unsigned short;
using __fetch_t = uint4;
};
template <> struct __TypeInfoT<int> {
using __base_t = int;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<unsigned int> {
using __base_t = unsigned int;
using __fetch_t = uint4;
};
// Derived base/fetch types for N-element vectors.
template <class __T> struct __TypeInfoT {
using __base_t = decltype(__T::x);
using __fetch_t = typename __TypeInfoT<__base_t>::__fetch_t;
};
// Classes that implement specific texture ops.
template <class __op> struct __tex_fetch_v4;
// Helper macros to strip parens from a macro argument.
#define __Args(...) __VA_ARGS__
#define __STRIP_PARENS(__X) __X
#define __L(__X) __STRIP_PARENS(__Args __X)
// Construct inline assembly output args.
// Results are stored in a temp var __r.
// isResident bool is pointed to by __ir
// Asm args for return values. It's a 4-element vector
#define __ASM_OUT(__t) \
("=" __t(__r.x), "=" __t(__r.y), "=" __t(__r.z), "=" __t(__r.w))
// .. possibly combined with a predicate.
#define __ASM_OUTP(__t) (__L(__ASM_OUT(__t)), "=h"(*__ir))
// Implements a single variant of texture fetch instruction.
#define __IMPL_F1(__rt, __dt, __args, __asm_op, __asm_outs, __asm_args) \
template <> \
__device__ __rt __run<__dt>(cudaTextureObject_t __obj, __L(__args)) { \
__rt __r; \
asm(__asm_op : __L(__asm_outs) : "l"(__obj), __L(__asm_args)); \
return __r; \
}
// Implements texture fetch instructions for int4/uint4/float4 data types.
#define __IMPL_F3(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_F1(int4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \
__ASM_OUT("r"), __asm_args) \
__IMPL_F1(uint4, uint4, __args, __asm_op ".u32." __ctype "\t" __asm_op_args, \
__ASM_OUT("r"), __asm_args) \
__IMPL_F1(float4, float4, __args, \
__asm_op ".f32." __ctype "\t" __asm_op_args, __ASM_OUT("f"), \
__asm_args)
// Implements 'sparse' texture fetch instructions for int4/uint4/float4 data
// types. Similar to above, but returns a boolean 'isPresent' value in addition
// to texture data,
#define __IMPL_F3S(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_F1(int4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \
__ASM_OUTP("r"), __asm_args) \
__IMPL_F1(uint4, uint4, __args, __asm_op ".u32." __ctype "\t" __asm_op_args, \
__ASM_OUTP("r"), __asm_args) \
__IMPL_F1(float4, float4, __args, \
__asm_op ".f32." __ctype "\t" __asm_op_args, __ASM_OUTP("f"), \
__asm_args)
// Similar to F3, but for integer data which is returned as normalized floats.
// Only instantiates fetch functions for int4/uint4.
#define __IMPL_F3N(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_F1(float4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \
__ASM_OUT("r"), __asm_args) \
__IMPL_F1(float4, uint4, __args, \
__asm_op ".u32." __ctype "\t" __asm_op_args, __ASM_OUT("r"), \
__asm_args)
// Instantiates __tex_fetch_v4 with regular fetch functions.
#define __IMPL_S3I(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
template <> struct __tex_fetch_v4<__op> { \
template <class T> \
__device__ static T __run(cudaTextureObject_t __obj, __L(__args)); \
__IMPL_F3(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
}
// Same, but for sparse ops. Only available on sm_60+
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600)
#define __IMPL_S3SI(__op, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
template <> struct __tex_fetch_v4<__op> { \
template <class T> \
__device__ static T __run(cudaTextureObject_t __obj, __L(__args)); \
__IMPL_F3S(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
}
#else
#define __IMPL_S3SI(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#endif
// Same, but for normalized float ops.
#define __IMPL_S3NI(__op, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
template <> struct __tex_fetch_v4<__op> { \
template <class T> \
__device__ static float4 __run(cudaTextureObject_t __obj, __L(__args)); \
__IMPL_F3N(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
}
// Regular and normalized float ops share a lot of similarities. This macro
// instantiates both variants -- normal for __op and normalized for __opn.
#define __IMPL_SI(__op, __opn, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
__IMPL_S3I(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args); \
__IMPL_S3NI(__opn, __args, __asm_op, __ctype, __asm_op_args, __asm_args)
// Convenience macros which converts string literal __op into a __Tag,
#define __IMPL_S3(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_S3I(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#define __IMPL_S3S(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_S3SI(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#define __IMPL_S3N(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_S3NI(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#define __IMPL_S(__op, __opn, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
__IMPL_SI(__ID(__op), __ID(__opn), __args, __asm_op, __ctype, __asm_op_args, \
__asm_args)
// CUDA headers have some 'legacy' texture oprerations that duplicate
// functionality. So, we just inherit it, instead of refining a copy.
#define __IMPL_ALIASI(__op, __opn) \
template <> struct __tex_fetch_v4<__op> : __tex_fetch_v4<__opn> {}
#define __IMPL_ALIAS(__op, __opn) __IMPL_ALIASI(__ID(__op), __ID(__opn))
// Now we can instantiate everything we need for each specific texture fetch
// variant.
__IMPL_S("__tex1D_v2", "__tex1D_rmnf_v2", (float __x), "tex.1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5}];", ("f"(__x)));
__IMPL_S("__tex1Dfetch_v2", "__tex1Dfetch_rmnf_v2", (int __x), "tex.1d.v4",
"s32", "{%0, %1, %2, %3}, [%4, {%5}];", ("r"(__x)));
__IMPL_ALIAS("__itex1D", "__tex1D_v2");
__IMPL_ALIAS("__itex1Dfetch", "__tex1Dfetch_v2");
__IMPL_S("__tex1DGrad_v2", "__tex1DGrad_rmnf_v2",
(float __x, float __dPdx, float __dPdy), "tex.grad.1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5}], {%6}, {%7};",
("f"(__x), "f"(__dPdx), "f"(__dPdy)));
__IMPL_ALIAS("__itex1DGrad", "__tex1DGrad_v2");
__IMPL_S("__tex1DLayered_v2", "__tex1DLayered_rmnf_v2",
(float __x, int __layer), "tex.a1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}];", ("r"(__layer), "f"(__x)));
__IMPL_ALIAS("__itex1DLayered", "__tex1DLayered_v2");
__IMPL_S("__tex1DLayeredGrad_v2", "__tex1DLayeredGrad_rmnf_v2",
(float __x, int __layer, float __dPdx, float __dPdy),
"tex.grad.a1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], {%7}, {%8};",
("r"(__layer), "f"(__x), "f"(__dPdx), "f"(__dPdy)));
__IMPL_ALIAS("__itex1DLayeredGrad", "__tex1DLayeredGrad_v2");
__IMPL_S("__tex1DLayeredLod_v2", "__tex1DLayeredLod_rmnf_v2",
(float __x, int __layer, float __level), "tex.level.a1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], %7;",
("r"(__layer), "f"(__x), "f"(__level)));
__IMPL_ALIAS("__itex1DLayeredLod", "__tex1DLayeredLod_v2");
__IMPL_S("__tex1DLod_v2", "__tex1DLod_rmnf_v2", (float __x, float __level),
"tex.level.1d.v4", "f32", "{%0, %1, %2, %3}, [%4, {%5}], %6;",
("f"(__x), "f"(__level)));
__IMPL_ALIAS("__itex1DLod", "__tex1DLod_v2");
// 2D
__IMPL_S("__tex2D_v2", "__tex2D_rmnf_v2", (float __x, float __y), "tex.2d.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6}];", ("f"(__x), "f"(__y)));
__IMPL_ALIAS("__itex2D", "__tex2D_v2");
__IMPL_S3S("__itex2D_sparse", (float __x, float __y, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}];\n\t"
" selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y)));
__IMPL_S("__tex2DGrad_v2", "__tex2DGrad_rmnf_v2",
(float __x, float __y, const float2 *__dPdx, const float2 *__dPdy),
"tex.grad.2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], {%7, %8}, {%9, %10};",
("f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y), "f"(__dPdy->x),
"f"(__dPdy->y)));
__IMPL_ALIAS("__itex2DGrad_v2", "__tex2DGrad_v2");
__IMPL_S3S("__itex2DGrad_sparse",
(float __x, float __y, const float2 *__dPdx, const float2 *__dPdy,
unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.grad.2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}], {%8, %9}, {%10, %11};\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y), "f"(__dPdy->x),
"f"(__dPdy->y)));
__IMPL_S("__tex2DLayered_v2", "__tex2DLayered_rmnf_v2",
(float __x, float __y, int __layer), "tex.a2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];",
("r"(__layer), "f"(__x), "f"(__y)));
__IMPL_ALIAS("__itex2DLayered", "__tex2DLayered_v2");
__IMPL_S3S("__itex2DLayered_sparse",
(float __x, float __y, int __layer, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.a2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("r"(__layer), "f"(__x), "f"(__y)));
__IMPL_S("__tex2DLayeredGrad_v2", "__tex2DLayeredGrad_rmnf_v2",
(float __x, float __y, int __layer, const float2 *__dPdx,
const float2 *__dPdy),
"tex.grad.a2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], {%8, %9}, {%10, %11};",
("r"(__layer), "f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdy->x), "f"(__dPdy->y)));
__IMPL_ALIAS("__itex2DLayeredGrad_v2", "__tex2DLayeredGrad_v2");
__IMPL_S3S(
"__itex2DLayeredGrad_sparse",
(float __x, float __y, int __layer, const float2 *__dPdx,
const float2 *__dPdy, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.grad.a2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], {%9, %10}, {%11, %12};\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("r"(__layer), "f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdy->x), "f"(__dPdy->y)));
__IMPL_S("__tex2DLayeredLod_v2", "__tex2DLayeredLod_rmnf_v2",
(float __x, float __y, int __layer, float __level), "tex.level.a2d.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;",
("r"(__layer), "f"(__x), "f"(__y), "f"(__level)));
__IMPL_ALIAS("__itex2DLayeredLod", "__tex2DLayeredLod_v2");
__IMPL_S3S("__itex2DLayeredLod_sparse",
(float __x, float __y, int __layer, float __level,
unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.level.a2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], %9;\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("r"(__layer), "f"(__x), "f"(__y), "f"(__level)));
__IMPL_S("__tex2DLod_v2", "__tex2DLod_rmnf_v2",
(float __x, float __y, float __level), "tex.level.2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], %7;",
("f"(__x), "f"(__y), "f"(__level)));
__IMPL_ALIAS("__itex2DLod", "__tex2DLod_v2");
__IMPL_S3S("__itex2DLod_sparse",
(float __x, float __y, float __level, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.level.2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}], %8;\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__level)));
// 2D gather is special. Unlike other variants that translate into exactly one
// asm instruction, it uses one of the four different instructions selected by
// __comp. We implement each instruction variant separately, and dispatch the
// right one from the manually implemented 'umbrella' fetch.
#define __IMPL_2DGATHER(variant, instr) \
__IMPL_SI(__IDV("__tex2Dgather_v2", variant), \
__IDV("__tex2Dgather_rmnf_v2", variant), \
(float __x, float __y, int __comp), instr, "f32", \
"{%0, %1, %2, %3}, [%4, {%5, %6}];", ("f"(__x), "f"(__y))); \
__IMPL_ALIASI(__IDV("__itex2Dgather", variant), \
__IDV("__tex2Dgather_v2", variant)); \
__IMPL_S3SI(__IDV("__itex2Dgather_sparse", variant), \
(float __x, float __y, unsigned char *__ir, int __comp), \
"{.reg .pred %%p0;\n\t" instr, "f32", \
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}];\n\t" \
"selp.u16 %4, 1, 0, %%p0; }", \
("f"(__x), "f"(__y)));
__IMPL_2DGATHER(0, "tld4.r.2d.v4");
__IMPL_2DGATHER(1, "tld4.g.2d.v4");
__IMPL_2DGATHER(2, "tld4.b.2d.v4");
__IMPL_2DGATHER(3, "tld4.a.2d.v4");
// Umbrella dispatcher -- calls into specific 2Dgather variant.
template <> struct __tex_fetch_v4<__ID("__tex2Dgather_v2")> {
template <class __T>
__device__ static __T __run(cudaTextureObject_t __obj, float __x, float __y,
int __comp) {
switch (__comp) {
case 0:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 0)>::__run<__T>(
__obj, __x, __y, __comp);
case 1:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 1)>::__run<__T>(
__obj, __x, __y, __comp);
case 2:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 2)>::__run<__T>(
__obj, __x, __y, __comp);
case 3:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 3)>::__run<__T>(
__obj, __x, __y, __comp);
}
}
};
__IMPL_ALIAS("__itex2Dgather", "__tex2Dgather_v2");
template <> struct __tex_fetch_v4<__ID("__tex2Dgather_rmnf_v2")> {
template <class __T>
__device__ static float4 __run(cudaTextureObject_t __obj, float __x,
float __y, int __comp) {
switch (__comp) {
case 0:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 0)>::__run<__T>(
__obj, __x, __y, __comp);
case 1:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 1)>::__run<__T>(
__obj, __x, __y, __comp);
case 2:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 2)>::__run<__T>(
__obj, __x, __y, __comp);
case 3:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 3)>::__run<__T>(
__obj, __x, __y, __comp);
}
}
};
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600)
template <> struct __tex_fetch_v4<__ID("__itex2Dgather_sparse")> {
template <class __T>
__device__ static __T __run(cudaTextureObject_t __obj, float __x, float __y,
unsigned char *__ir, int __comp) {
switch (__comp) {
case 0:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 0)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
case 1:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 1)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
case 2:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 2)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
case 3:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 3)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
}
}
};
#endif
// 3D
__IMPL_S("__tex3D_v2", "__tex3D_rmnf_v2", (float __x, float __y, float __z),
"tex.3d.v4", "f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_ALIAS("__itex3D", "__tex3D_v2");
__IMPL_S3S("__itex3D_sparse",
(float __x, float __y, float __z, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.3d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_S("__tex3DGrad_v2", "__tex3DGrad_rmnf_v2",
(float __x, float __y, float __z, const float4 *__dPdx,
const float4 *__dPdy),
"tex.grad.3d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], "
"{%8, %9, %10, %10}, {%11, %12, %13, %13};",
("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z)));
__IMPL_ALIAS("__itex3DGrad_v2", "__tex3DGrad_v2");
__IMPL_S3S("__itex3DGrad_sparse",
(float __x, float __y, float __z, const float4 *__dPdx,
const float4 *__dPdy, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.grad.3d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], "
"{%9, %10, %11, %11}, {%12, %13, %14, %14};\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z)));
__IMPL_S("__tex3DLod_v2", "__tex3DLod_rmnf_v2",
(float __x, float __y, float __z, float __level), "tex.level.3d.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;",
("f"(__x), "f"(__y), "f"(__z), "f"(__level)));
__IMPL_ALIAS("__itex3DLod", "__tex3DLod_v2");
__IMPL_S3S("__itex3DLod_sparse",
(float __x, float __y, float __z, float __level,
unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.level.3d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], %9;\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z), "f"(__level)));
// Cubemap
__IMPL_S("__texCubemap_v2", "__texCubemap_rmnf_v2",
(float __x, float __y, float __z), "tex.cube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_ALIAS("__itexCubemap", "__texCubemap_v2");
__IMPL_S3S("__itexCubemap_sparse",
(float __x, float __y, float __z, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.cube.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_S("__texCubemapGrad_v2", "__texCubemapGrad_rmnf_v2",
(float __x, float __y, float __z, const float4 *__dPdx,
const float4 *__dPdy),
"tex.grad.cube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], "
"{%8, %9, %10, %10}, {%11, %12, %13, %13};",
("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z)));
__IMPL_ALIAS("__itexCubemapGrad_v2", "__texCubemapGrad_v2");
__IMPL_S("__texCubemapLayered_v2", "__texCubemapLayered_rmnf_v2",
(float __x, float __y, float __z, int __layer), "tex.acube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}];",
("r"(__layer), "f"(__x), "f"(__y), "f"(__z)));
__IMPL_ALIAS("__itexCubemapLayered", "__texCubemapLayered_v2");
__IMPL_S("__texCubemapLayeredGrad_v2", "__texCubemapLayeredGrad_rmnf_v2",
(float __x, float __y, float __z, int __layer, const float4 *__dPdx,
const float4 *__dPdy),
"tex.grad.acube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}], "
"{%9, %10, %11, %11}, {%12, %13, %14, %14};",
("r"(__layer), "f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x),
"f"(__dPdx->y), "f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y),
"f"(__dPdy->z)));
__IMPL_ALIAS("__itexCubemapLayeredGrad_v2", "__texCubemapLayeredGrad_v2");
__IMPL_S("__texCubemapLayeredLod_v2", "__texCubemapLayeredLod_rmnf_v2",
(float __x, float __y, float __z, int __layer, float __level),
"tex.level.acube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}], %9;",
("r"(__layer), "f"(__x), "f"(__y), "f"(__z), "f"(__level)));
__IMPL_ALIAS("__itexCubemapLayeredLod", "__texCubemapLayeredLod_v2");
__IMPL_S("__texCubemapLod_v2", "__texCubemapLod_rmnf_v2",
(float __x, float __y, float __z, float __level), "tex.level.cube.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;",
("f"(__x), "f"(__y), "f"(__z), "f"(__level)));
__IMPL_ALIAS("__itexCubemapLod", "__texCubemapLod_v2");
// Helper class for extracting slice of data from V4 fetch results.
template <class __DestT, class __SrcT> struct __convert {
template <int __NElements = sizeof(__DestT) /
sizeof(typename __TypeInfoT<__DestT>::__base_t)>
__device__ static __DestT __run(__SrcT __v);
template <> __device__ static __DestT __run<1>(__SrcT __v) { return {__v.x}; }
template <> __device__ static __DestT __run<2>(__SrcT __v) {
return {__v.x, __v.y};
}
template <> __device__ static __DestT __run<3>(__SrcT __v) {
return {__v.x, __v.y, __v.z};
}
template <> __device__ static __DestT __run<4>(__SrcT __v) {
return {__v.x, __v.y, __v.z, __v.w};
}
};
// These are the top-level function overloads the __nv_tex_surf_handler expands
// to. Each overload deals with one of the several ways __nv_tex_surf_handler
// is called by CUDA headers. In the end, each of the overloads does the same
// job -- it figures out which `__tex_fetch_v4::run` variant should be used to
// fetch texture data and which `__convert::run` is needed to convert it into
// appropriate return type.
// __nv_tex_surf_handler("__tex...", &ret, cudaTextureObject_t handle, args...);
// Data type and return type are based on ret.
template <class __op, class __T, class... __Args>
__device__ static void __tex_fetch(__T *__ptr, cudaTextureObject_t __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__T>::__fetch_t;
*__ptr = __convert<__T, __FetchT>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(__handle, __args...));
}
#if CUDA_VERSION < 12000
// texture<> objects get magically converted into a texture reference. However,
// there's no way to convert them to cudaTextureObject_t on C++ level. So, we
// cheat a bit and use inline assembly to do it. It costs us an extra register
// and a move, but that is easy for ptxas to optimize away.
template <class __T>
__device__ cudaTextureObject_t __tex_handle_to_obj(__T __handle) {
cudaTextureObject_t __obj;
asm("mov.b64 %0, %1; " : "=l"(__obj) : "l"(__handle));
return __obj;
}
// __nv_tex_surf_handler ("__tex...", &ret, textureReference, args...);
// Data type and return type is based on ret.
template <class __op, class __T, class __HandleT, class... __Args>
__device__ static void __tex_fetch(__T *__ptr, __HandleT __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__T>::__fetch_t;
*__ptr = __convert<__T, __FetchT>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(
__tex_handle_to_obj(__handle), __args...));
}
// __nv_tex_surf_handler ("__tex...", &type_dummy, &ret, texture<...>, args...);
// cudaReadModeNormalizedFloat fetches always return float4.
template <class __op, class __DataT, class __RetT, int __TexT, class... __Args>
__device__ static void
__tex_fetch(__DataT *, __RetT *__ptr,
texture<__DataT, __TexT, cudaReadModeNormalizedFloat> __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__DataT>::__fetch_t;
*__ptr = __convert<__RetT, float4>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(
__tex_handle_to_obj(__handle), __args...));
}
// __nv_tex_surf_handler ("__tex...", &type_dummy, &ret, texture<...>, args...);
// For cudaReadModeElementType fetch return type is based on type_dummy.
template <class __op, class __DataT, class __RetT, int __TexT, class... __Args>
__device__ static void
__tex_fetch(__DataT *, __RetT *__ptr,
texture<__DataT, __TexT, cudaReadModeElementType> __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__DataT>::__fetch_t;
*__ptr = __convert<__RetT, __FetchT>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(
__tex_handle_to_obj(__handle), __args...));
}
#endif // CUDA_VERSION
} // namespace __cuda_tex
} // namespace
#pragma pop_macro("__ASM_OUT")
#pragma pop_macro("__ASM_OUTP")
#pragma pop_macro("__Args")
#pragma pop_macro("__ID")
#pragma pop_macro("__IDV")
#pragma pop_macro("__IMPL_2DGATHER")
#pragma pop_macro("__IMPL_ALIAS")
#pragma pop_macro("__IMPL_ALIASI")
#pragma pop_macro("__IMPL_F1")
#pragma pop_macro("__IMPL_F3")
#pragma pop_macro("__IMPL_F3N")
#pragma pop_macro("__IMPL_F3S")
#pragma pop_macro("__IMPL_S")
#pragma pop_macro("__IMPL_S3")
#pragma pop_macro("__IMPL_S3I")
#pragma pop_macro("__IMPL_S3N")
#pragma pop_macro("__IMPL_S3NI")
#pragma pop_macro("__IMPL_S3S")
#pragma pop_macro("__IMPL_S3SI")
#pragma pop_macro("__IMPL_SI")
#pragma pop_macro("__L")
#pragma pop_macro("__STRIP_PARENS")
#endif // __CLANG_CUDA_TEXTURE_INTRINSICS_H__
|