aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16/lib/Format/MacroCallReconstructor.cpp
blob: 1c295477a922ef2f189e09ae7f93c2c4fe4c8d27 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
//===--- MacroCallReconstructor.cpp - Format C++ code -----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains the implementation of MacroCallReconstructor, which fits
/// an reconstructed macro call to a parsed set of UnwrappedLines.
///
//===----------------------------------------------------------------------===//

#include "Macros.h"

#include "UnwrappedLineParser.h"
#include "clang/Basic/TokenKinds.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include <cassert>

#define DEBUG_TYPE "format-reconstruct"

namespace clang {
namespace format {

// Call \p Call for each token in the unwrapped line given, passing
// the token, its parent and whether it is the first token in the line.
template <typename T>
void forEachToken(const UnwrappedLine &Line, const T &Call,
                  FormatToken *Parent = nullptr) {
  bool First = true;
  for (const auto &N : Line.Tokens) {
    Call(N.Tok, Parent, First);
    First = false;
    for (const auto &Child : N.Children)
      forEachToken(Child, Call, N.Tok);
  }
}

MacroCallReconstructor::MacroCallReconstructor(
    unsigned Level,
    const llvm::DenseMap<FormatToken *, std::unique_ptr<UnwrappedLine>>
        &ActiveExpansions)
    : Level(Level), IdToReconstructed(ActiveExpansions) {
  Result.Tokens.push_back(std::make_unique<LineNode>());
  ActiveReconstructedLines.push_back(&Result);
}

void MacroCallReconstructor::addLine(const UnwrappedLine &Line) {
  assert(State != Finalized);
  LLVM_DEBUG(llvm::dbgs() << "MCR: new line...\n");
  forEachToken(Line, [&](FormatToken *Token, FormatToken *Parent, bool First) {
    add(Token, Parent, First);
  });
  assert(InProgress || finished());
}

UnwrappedLine MacroCallReconstructor::takeResult() && {
  finalize();
  assert(Result.Tokens.size() == 1 &&
         Result.Tokens.front()->Children.size() == 1);
  UnwrappedLine Final =
      createUnwrappedLine(*Result.Tokens.front()->Children.front(), Level);
  assert(!Final.Tokens.empty());
  return Final;
}

// Reconstruct the position of the next \p Token, given its parent \p
// ExpandedParent in the incoming unwrapped line. \p First specifies whether it
// is the first token in a given unwrapped line.
void MacroCallReconstructor::add(FormatToken *Token,
                                 FormatToken *ExpandedParent, bool First) {
  LLVM_DEBUG(
      llvm::dbgs() << "MCR: Token: " << Token->TokenText << ", Parent: "
                   << (ExpandedParent ? ExpandedParent->TokenText : "<null>")
                   << ", First: " << First << "\n");
  // In order to be able to find the correct parent in the reconstructed token
  // stream, we need to continue the last open reconstruction until we find the
  // given token if it is part of the reconstructed token stream.
  //
  // Note that hidden tokens can be part of the reconstructed stream in nested
  // macro calls.
  // For example, given
  //   #define C(x, y) x y
  //   #define B(x) {x}
  // And the call:
  //   C(a, B(b))
  // The outer macro call will be C(a, {b}), and the hidden token '}' can be
  // found in the reconstructed token stream of that expansion level.
  // In the expanded token stream
  //   a {b}
  // 'b' is a child of '{'. We need to continue the open expansion of the ','
  // in the call of 'C' in order to correctly set the ',' as the parent of '{',
  // so we later set the spelled token 'b' as a child of the ','.
  if (!ActiveExpansions.empty() && Token->MacroCtx &&
      (Token->MacroCtx->Role != MR_Hidden ||
       ActiveExpansions.size() != Token->MacroCtx->ExpandedFrom.size())) {
    if (/*PassedMacroComma = */ reconstructActiveCallUntil(Token))
      First = true;
  }

  prepareParent(ExpandedParent, First);

  if (Token->MacroCtx) {
    // If this token was generated by a macro call, add the reconstructed
    // equivalent of the token.
    reconstruct(Token);
  } else {
    // Otherwise, we add it to the current line.
    appendToken(Token);
  }
}

// Adjusts the stack of active reconstructed lines so we're ready to push
// tokens. The tokens to be pushed are children of ExpandedParent in the
// expanded code.
//
// This may entail:
// - creating a new line, if the parent is on the active line
// - popping active lines, if the parent is further up the stack
//
// Postcondition:
// ActiveReconstructedLines.back() is the line that has \p ExpandedParent or its
// reconstructed replacement token as a parent (when possible) - that is, the
// last token in \c ActiveReconstructedLines[ActiveReconstructedLines.size()-2]
// is the parent of ActiveReconstructedLines.back() in the reconstructed
// unwrapped line.
void MacroCallReconstructor::prepareParent(FormatToken *ExpandedParent,
                                           bool NewLine) {
  LLVM_DEBUG({
    llvm::dbgs() << "ParentMap:\n";
    debugParentMap();
  });
  // We want to find the parent in the new unwrapped line, where the expanded
  // parent might have been replaced during reconstruction.
  FormatToken *Parent = getParentInResult(ExpandedParent);
  LLVM_DEBUG(llvm::dbgs() << "MCR: New parent: "
                          << (Parent ? Parent->TokenText : "<null>") << "\n");

  FormatToken *OpenMacroParent = nullptr;
  if (!MacroCallStructure.empty()) {
    // Inside a macro expansion, it is possible to lose track of the correct
    // parent - either because it is already popped, for example because it was
    // in a different macro argument (e.g. M({, })), or when we work on invalid
    // code.
    // Thus, we use the innermost macro call's parent as the parent at which
    // we stop; this allows us to stay within the macro expansion and keeps
    // any problems confined to the extent of the macro call.
    OpenMacroParent =
        getParentInResult(MacroCallStructure.back().MacroCallLParen);
    LLVM_DEBUG(llvm::dbgs()
               << "MacroCallLParen: "
               << MacroCallStructure.back().MacroCallLParen->TokenText
               << ", OpenMacroParent: "
               << (OpenMacroParent ? OpenMacroParent->TokenText : "<null>")
               << "\n");
  }
  if (NewLine ||
      (!ActiveReconstructedLines.back()->Tokens.empty() &&
       Parent == ActiveReconstructedLines.back()->Tokens.back()->Tok)) {
    // If we are at the first token in a new line, we want to also
    // create a new line in the resulting reconstructed unwrapped line.
    while (ActiveReconstructedLines.back()->Tokens.empty() ||
           (Parent != ActiveReconstructedLines.back()->Tokens.back()->Tok &&
            ActiveReconstructedLines.back()->Tokens.back()->Tok !=
                OpenMacroParent)) {
      ActiveReconstructedLines.pop_back();
      assert(!ActiveReconstructedLines.empty());
    }
    assert(!ActiveReconstructedLines.empty());
    ActiveReconstructedLines.back()->Tokens.back()->Children.push_back(
        std::make_unique<ReconstructedLine>());
    ActiveReconstructedLines.push_back(
        &*ActiveReconstructedLines.back()->Tokens.back()->Children.back());
  } else if (parentLine().Tokens.back()->Tok != Parent) {
    // If we're not the first token in a new line, pop lines until we find
    // the child of \c Parent in the stack.
    while (Parent != parentLine().Tokens.back()->Tok &&
           parentLine().Tokens.back()->Tok &&
           parentLine().Tokens.back()->Tok != OpenMacroParent) {
      ActiveReconstructedLines.pop_back();
      assert(!ActiveReconstructedLines.empty());
    }
  }
  assert(!ActiveReconstructedLines.empty());
}

// For a given \p Parent in the incoming expanded token stream, find the
// corresponding parent in the output.
FormatToken *MacroCallReconstructor::getParentInResult(FormatToken *Parent) {
  FormatToken *Mapped = SpelledParentToReconstructedParent.lookup(Parent);
  if (!Mapped)
    return Parent;
  for (; Mapped; Mapped = SpelledParentToReconstructedParent.lookup(Parent))
    Parent = Mapped;
  // If we use a different token than the parent in the expanded token stream
  // as parent, mark it as a special parent, so the formatting code knows it
  // needs to have its children formatted.
  Parent->MacroParent = true;
  return Parent;
}

// Reconstruct a \p Token that was expanded from a macro call.
void MacroCallReconstructor::reconstruct(FormatToken *Token) {
  assert(Token->MacroCtx);
  // A single token can be the only result of a macro call:
  // Given: #define ID(x, y) ;
  // And the call: ID(<some>, <tokens>)
  // ';' in the expanded stream will reconstruct all of ID(<some>, <tokens>).
  if (Token->MacroCtx->StartOfExpansion) {
    startReconstruction(Token);
    // If the order of tokens in the expanded token stream is not the
    // same as the order of tokens in the reconstructed stream, we need
    // to reconstruct tokens that arrive later in the stream.
    if (Token->MacroCtx->Role != MR_Hidden)
      reconstructActiveCallUntil(Token);
  }
  assert(!ActiveExpansions.empty());
  if (ActiveExpansions.back().SpelledI != ActiveExpansions.back().SpelledE) {
    assert(ActiveExpansions.size() == Token->MacroCtx->ExpandedFrom.size());
    if (Token->MacroCtx->Role != MR_Hidden) {
      // The current token in the reconstructed token stream must be the token
      // we're looking for - we either arrive here after startReconstruction,
      // which initiates the stream to the first token, or after
      // continueReconstructionUntil skipped until the expected token in the
      // reconstructed stream at the start of add(...).
      assert(ActiveExpansions.back().SpelledI->Tok == Token);
      processNextReconstructed();
    } else if (!currentLine()->Tokens.empty()) {
      // Map all hidden tokens to the last visible token in the output.
      // If the hidden token is a parent, we'll use the last visible
      // token as the parent of the hidden token's children.
      SpelledParentToReconstructedParent[Token] =
          currentLine()->Tokens.back()->Tok;
    } else {
      for (auto I = ActiveReconstructedLines.rbegin(),
                E = ActiveReconstructedLines.rend();
           I != E; ++I) {
        if (!(*I)->Tokens.empty()) {
          SpelledParentToReconstructedParent[Token] = (*I)->Tokens.back()->Tok;
          break;
        }
      }
    }
  }
  if (Token->MacroCtx->EndOfExpansion)
    endReconstruction(Token);
}

// Given a \p Token that starts an expansion, reconstruct the beginning of the
// macro call.
// For example, given: #define ID(x) x
// And the call: ID(int a)
// Reconstructs: ID(
void MacroCallReconstructor::startReconstruction(FormatToken *Token) {
  assert(Token->MacroCtx);
  assert(!Token->MacroCtx->ExpandedFrom.empty());
  assert(ActiveExpansions.size() <= Token->MacroCtx->ExpandedFrom.size());
#ifndef NDEBUG
  // Check that the token's reconstruction stack matches our current
  // reconstruction stack.
  for (size_t I = 0; I < ActiveExpansions.size(); ++I) {
    assert(ActiveExpansions[I].ID ==
           Token->MacroCtx
               ->ExpandedFrom[Token->MacroCtx->ExpandedFrom.size() - 1 - I]);
  }
#endif
  // Start reconstruction for all calls for which this token is the first token
  // generated by the call.
  // Note that the token's expanded from stack is inside-to-outside, and the
  // expansions for which this token is not the first are the outermost ones.
  ArrayRef<FormatToken *> StartedMacros =
      ArrayRef(Token->MacroCtx->ExpandedFrom)
          .drop_back(ActiveExpansions.size());
  assert(StartedMacros.size() == Token->MacroCtx->StartOfExpansion);
  // We reconstruct macro calls outside-to-inside.
  for (FormatToken *ID : llvm::reverse(StartedMacros)) {
    // We found a macro call to be reconstructed; the next time our
    // reconstruction stack is empty we know we finished an reconstruction.
#ifndef NDEBUG
    State = InProgress;
#endif
    // Put the reconstructed macro call's token into our reconstruction stack.
    auto IU = IdToReconstructed.find(ID);
    assert(IU != IdToReconstructed.end());
    ActiveExpansions.push_back(
        {ID, IU->second->Tokens.begin(), IU->second->Tokens.end()});
    // Process the macro call's identifier.
    processNextReconstructed();
    if (ActiveExpansions.back().SpelledI == ActiveExpansions.back().SpelledE)
      continue;
    if (ActiveExpansions.back().SpelledI->Tok->is(tok::l_paren)) {
      // Process the optional opening parenthesis.
      processNextReconstructed();
    }
  }
}

// Add all tokens in the reconstruction stream to the output until we find the
// given \p Token.
bool MacroCallReconstructor::reconstructActiveCallUntil(FormatToken *Token) {
  assert(!ActiveExpansions.empty());
  bool PassedMacroComma = false;
  // FIXME: If Token was already expanded earlier, due to
  // a change in order, we will not find it, but need to
  // skip it.
  while (ActiveExpansions.back().SpelledI != ActiveExpansions.back().SpelledE &&
         ActiveExpansions.back().SpelledI->Tok != Token) {
    PassedMacroComma = processNextReconstructed() || PassedMacroComma;
  }
  return PassedMacroComma;
}

// End all reconstructions for which \p Token is the final token.
void MacroCallReconstructor::endReconstruction(FormatToken *Token) {
  assert(Token->MacroCtx &&
         (ActiveExpansions.size() >= Token->MacroCtx->EndOfExpansion));
  for (size_t I = 0; I < Token->MacroCtx->EndOfExpansion; ++I) {
#ifndef NDEBUG
    // Check all remaining tokens but the final closing parenthesis and optional
    // trailing comment were already reconstructed at an inner expansion level.
    for (auto T = ActiveExpansions.back().SpelledI;
         T != ActiveExpansions.back().SpelledE; ++T) {
      FormatToken *Token = T->Tok;
      bool ClosingParen = (std::next(T) == ActiveExpansions.back().SpelledE ||
                           std::next(T)->Tok->isTrailingComment()) &&
                          !Token->MacroCtx && Token->is(tok::r_paren);
      bool TrailingComment = Token->isTrailingComment();
      bool PreviousLevel =
          Token->MacroCtx &&
          (ActiveExpansions.size() < Token->MacroCtx->ExpandedFrom.size());
      if (!ClosingParen && !TrailingComment && !PreviousLevel)
        llvm::dbgs() << "At token: " << Token->TokenText << "\n";
      // In addition to the following cases, we can also run into this
      // when a macro call had more arguments than expected; in that case,
      // the comma and the remaining tokens in the macro call will potentially
      // end up in the line when we finish the expansion.
      // FIXME: Add the information which arguments are unused, and assert
      // one of the cases below plus reconstructed macro argument tokens.
      // assert(ClosingParen || TrailingComment || PreviousLevel);
    }
#endif
    // Handle the remaining open tokens:
    // - expand the closing parenthesis, if it exists, including an optional
    //   trailing comment
    // - handle tokens that were already reconstructed at an inner expansion
    //   level
    // - handle tokens when a macro call had more than the expected number of
    //   arguments, i.e. when #define M(x) is called as M(a, b, c) we'll end
    //   up with the sequence ", b, c)" being open at the end of the
    //   reconstruction; we want to gracefully handle that case
    //
    // FIXME: See the above debug-check for what we will need to do to be
    // able to assert this.
    for (auto T = ActiveExpansions.back().SpelledI;
         T != ActiveExpansions.back().SpelledE; ++T) {
      processNextReconstructed();
    }
    ActiveExpansions.pop_back();
  }
}

void MacroCallReconstructor::debugParentMap() const {
  llvm::DenseSet<FormatToken *> Values;
  for (const auto &P : SpelledParentToReconstructedParent)
    Values.insert(P.second);

  for (const auto &P : SpelledParentToReconstructedParent) {
    if (Values.contains(P.first))
      continue;
    llvm::dbgs() << (P.first ? P.first->TokenText : "<null>");
    for (auto I = SpelledParentToReconstructedParent.find(P.first),
              E = SpelledParentToReconstructedParent.end();
         I != E; I = SpelledParentToReconstructedParent.find(I->second)) {
      llvm::dbgs() << " -> " << (I->second ? I->second->TokenText : "<null>");
    }
    llvm::dbgs() << "\n";
  }
}

// If visible, add the next token of the reconstructed token sequence to the
// output. Returns whether reconstruction passed a comma that is part of a
// macro call.
bool MacroCallReconstructor::processNextReconstructed() {
  FormatToken *Token = ActiveExpansions.back().SpelledI->Tok;
  ++ActiveExpansions.back().SpelledI;
  if (Token->MacroCtx) {
    // Skip tokens that are not part of the macro call.
    if (Token->MacroCtx->Role == MR_Hidden)
      return false;
    // Skip tokens we already expanded during an inner reconstruction.
    // For example, given: #define ID(x) {x}
    // And the call: ID(ID(f))
    // We get two reconstructions:
    // ID(f) -> {f}
    // ID({f}) -> {{f}}
    // We reconstruct f during the first reconstruction, and skip it during the
    // second reconstruction.
    if (ActiveExpansions.size() < Token->MacroCtx->ExpandedFrom.size())
      return false;
  }
  // Tokens that do not have a macro context are tokens in that are part of the
  // macro call that have not taken part in expansion.
  if (!Token->MacroCtx) {
    // Put the parentheses and commas of a macro call into the same line;
    // if the arguments produce new unwrapped lines, they will become children
    // of the corresponding opening parenthesis or comma tokens in the
    // reconstructed call.
    if (Token->is(tok::l_paren)) {
      MacroCallStructure.push_back(MacroCallState(
          currentLine(), parentLine().Tokens.back()->Tok, Token));
      // All tokens that are children of the previous line's last token in the
      // reconstructed token stream will now be children of the l_paren token.
      // For example, for the line containing the macro calls:
      //   auto x = ID({ID(2)});
      // We will build up a map <null> -> ( -> ( with the first and second
      // l_paren of the macro call respectively. New lines that come in with a
      // <null> parent will then become children of the l_paren token of the
      // currently innermost macro call.
      SpelledParentToReconstructedParent[MacroCallStructure.back()
                                             .ParentLastToken] = Token;
      appendToken(Token);
      prepareParent(Token, /*NewLine=*/true);
      Token->MacroParent = true;
      return false;
    }
    if (!MacroCallStructure.empty()) {
      if (Token->is(tok::comma)) {
        // Make new lines inside the next argument children of the comma token.
        SpelledParentToReconstructedParent
            [MacroCallStructure.back().Line->Tokens.back()->Tok] = Token;
        Token->MacroParent = true;
        appendToken(Token, MacroCallStructure.back().Line);
        prepareParent(Token, /*NewLine=*/true);
        return true;
      }
      if (Token->is(tok::r_paren)) {
        appendToken(Token, MacroCallStructure.back().Line);
        SpelledParentToReconstructedParent.erase(
            MacroCallStructure.back().ParentLastToken);
        MacroCallStructure.pop_back();
        return false;
      }
    }
  }
  // Note that any tokens that are tagged with MR_None have been passed as
  // arguments to the macro that have not been expanded, for example:
  // Given: #define ID(X) x
  // When calling: ID(a, b)
  // 'b' will be part of the reconstructed token stream, but tagged MR_None.
  // Given that erroring out in this case would be disruptive, we continue
  // pushing the (unformatted) token.
  // FIXME: This can lead to unfortunate formatting decisions - give the user
  // a hint that their macro definition is broken.
  appendToken(Token);
  return false;
}

void MacroCallReconstructor::finalize() {
#ifndef NDEBUG
  assert(State != Finalized && finished());
  State = Finalized;
#endif

  // We created corresponding unwrapped lines for each incoming line as children
  // the the toplevel null token.
  assert(Result.Tokens.size() == 1 && !Result.Tokens.front()->Children.empty());
  LLVM_DEBUG({
    llvm::dbgs() << "Finalizing reconstructed lines:\n";
    debug(Result, 0);
  });

  // The first line becomes the top level line in the resulting unwrapped line.
  LineNode &Top = *Result.Tokens.front();
  auto *I = Top.Children.begin();
  // Every subsequent line will become a child of the last token in the previous
  // line, which is the token prior to the first token in the line.
  LineNode *Last = (*I)->Tokens.back().get();
  ++I;
  for (auto *E = Top.Children.end(); I != E; ++I) {
    assert(Last->Children.empty());
    Last->Children.push_back(std::move(*I));

    // Mark the previous line's last token as generated by a macro expansion
    // so the formatting algorithm can take that into account.
    Last->Tok->MacroParent = true;

    Last = Last->Children.back()->Tokens.back().get();
  }
  Top.Children.resize(1);
}

void MacroCallReconstructor::appendToken(FormatToken *Token,
                                         ReconstructedLine *L) {
  L = L ? L : currentLine();
  LLVM_DEBUG(llvm::dbgs() << "-> " << Token->TokenText << "\n");
  L->Tokens.push_back(std::make_unique<LineNode>(Token));
}

UnwrappedLine
MacroCallReconstructor::createUnwrappedLine(const ReconstructedLine &Line,
                                            int Level) {
  UnwrappedLine Result;
  Result.Level = Level;
  for (const auto &N : Line.Tokens) {
    Result.Tokens.push_back(N->Tok);
    UnwrappedLineNode &Current = Result.Tokens.back();
    for (const auto &Child : N->Children) {
      if (Child->Tokens.empty())
        continue;
      Current.Children.push_back(createUnwrappedLine(*Child, Level + 1));
    }
    if (Current.Children.size() == 1 &&
        Current.Tok->isOneOf(tok::l_paren, tok::comma)) {
      Result.Tokens.splice(Result.Tokens.end(),
                           Current.Children.front().Tokens);
      Current.Children.clear();
    }
  }
  return Result;
}

void MacroCallReconstructor::debug(const ReconstructedLine &Line, int Level) {
  for (int i = 0; i < Level; ++i)
    llvm::dbgs() << " ";
  for (const auto &N : Line.Tokens) {
    if (!N)
      continue;
    if (N->Tok)
      llvm::dbgs() << N->Tok->TokenText << " ";
    for (const auto &Child : N->Children) {
      llvm::dbgs() << "\n";
      debug(*Child, Level + 1);
      for (int i = 0; i < Level; ++i)
        llvm::dbgs() << " ";
    }
  }
  llvm::dbgs() << "\n";
}

MacroCallReconstructor::ReconstructedLine &
MacroCallReconstructor::parentLine() {
  return **std::prev(std::prev(ActiveReconstructedLines.end()));
}

MacroCallReconstructor::ReconstructedLine *
MacroCallReconstructor::currentLine() {
  return ActiveReconstructedLines.back();
}

MacroCallReconstructor::MacroCallState::MacroCallState(
    MacroCallReconstructor::ReconstructedLine *Line,
    FormatToken *ParentLastToken, FormatToken *MacroCallLParen)
    : Line(Line), ParentLastToken(ParentLastToken),
      MacroCallLParen(MacroCallLParen) {
  LLVM_DEBUG(
      llvm::dbgs() << "ParentLastToken: "
                   << (ParentLastToken ? ParentLastToken->TokenText : "<null>")
                   << "\n");

  assert(MacroCallLParen->is(tok::l_paren));
}

} // namespace format
} // namespace clang