1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
|
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This coordinates the per-module state used while generating code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenModule.h"
#include "ABIInfo.h"
#include "CGBlocks.h"
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CGCall.h"
#include "CGDebugInfo.h"
#include "CGHLSLRuntime.h"
#include "CGObjCRuntime.h"
#include "CGOpenCLRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CGOpenMPRuntimeGPU.h"
#include "CodeGenFunction.h"
#include "CodeGenPGO.h"
#include "ConstantEmitter.h"
#include "CoverageMappingGen.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/CodeGen/BackendUtil.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/CRC.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/X86TargetParser.h"
#include "llvm/Support/xxhash.h"
#include <optional>
using namespace clang;
using namespace CodeGen;
static llvm::cl::opt<bool> LimitedCoverage(
"limited-coverage-experimental", llvm::cl::Hidden,
llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
static const char AnnotationSection[] = "llvm.metadata";
static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
switch (CGM.getContext().getCXXABIKind()) {
case TargetCXXABI::AppleARM64:
case TargetCXXABI::Fuchsia:
case TargetCXXABI::GenericAArch64:
case TargetCXXABI::GenericARM:
case TargetCXXABI::iOS:
case TargetCXXABI::WatchOS:
case TargetCXXABI::GenericMIPS:
case TargetCXXABI::GenericItanium:
case TargetCXXABI::WebAssembly:
case TargetCXXABI::XL:
return CreateItaniumCXXABI(CGM);
case TargetCXXABI::Microsoft:
return CreateMicrosoftCXXABI(CGM);
}
llvm_unreachable("invalid C++ ABI kind");
}
CodeGenModule::CodeGenModule(ASTContext &C,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
const HeaderSearchOptions &HSO,
const PreprocessorOptions &PPO,
const CodeGenOptions &CGO, llvm::Module &M,
DiagnosticsEngine &diags,
CoverageSourceInfo *CoverageInfo)
: Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
TheModule(M), Diags(diags), Target(C.getTargetInfo()),
ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
// Initialize the type cache.
llvm::LLVMContext &LLVMContext = M.getContext();
VoidTy = llvm::Type::getVoidTy(LLVMContext);
Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
HalfTy = llvm::Type::getHalfTy(LLVMContext);
BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
FloatTy = llvm::Type::getFloatTy(LLVMContext);
DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
PointerAlignInBytes =
C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
.getQuantity();
SizeSizeInBytes =
C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
IntAlignInBytes =
C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
CharTy =
llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
IntPtrTy = llvm::IntegerType::get(LLVMContext,
C.getTargetInfo().getMaxPointerWidth());
Int8PtrTy = Int8Ty->getPointerTo(0);
Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
const llvm::DataLayout &DL = M.getDataLayout();
AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
ConstGlobalsPtrTy = Int8Ty->getPointerTo(
C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
// Build C++20 Module initializers.
// TODO: Add Microsoft here once we know the mangling required for the
// initializers.
CXX20ModuleInits =
LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
ItaniumMangleContext::MK_Itanium;
RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
if (LangOpts.ObjC)
createObjCRuntime();
if (LangOpts.OpenCL)
createOpenCLRuntime();
if (LangOpts.OpenMP)
createOpenMPRuntime();
if (LangOpts.CUDA)
createCUDARuntime();
if (LangOpts.HLSL)
createHLSLRuntime();
// Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
(!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
getCXXABI().getMangleContext()));
// If debug info or coverage generation is enabled, create the CGDebugInfo
// object.
if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
DebugInfo.reset(new CGDebugInfo(*this));
Block.GlobalUniqueCount = 0;
if (C.getLangOpts().ObjC)
ObjCData.reset(new ObjCEntrypoints());
if (CodeGenOpts.hasProfileClangUse()) {
auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
// We're checking for profile read errors in CompilerInvocation, so if
// there was an error it should've already been caught. If it hasn't been
// somehow, trip an assertion.
assert(ReaderOrErr);
PGOReader = std::move(ReaderOrErr.get());
}
// If coverage mapping generation is enabled, create the
// CoverageMappingModuleGen object.
if (CodeGenOpts.CoverageMapping)
CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
// Generate the module name hash here if needed.
if (CodeGenOpts.UniqueInternalLinkageNames &&
!getModule().getSourceFileName().empty()) {
std::string Path = getModule().getSourceFileName();
// Check if a path substitution is needed from the MacroPrefixMap.
for (const auto &Entry : LangOpts.MacroPrefixMap)
if (Path.rfind(Entry.first, 0) != std::string::npos) {
Path = Entry.second + Path.substr(Entry.first.size());
break;
}
ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
}
}
CodeGenModule::~CodeGenModule() {}
void CodeGenModule::createObjCRuntime() {
// This is just isGNUFamily(), but we want to force implementors of
// new ABIs to decide how best to do this.
switch (LangOpts.ObjCRuntime.getKind()) {
case ObjCRuntime::GNUstep:
case ObjCRuntime::GCC:
case ObjCRuntime::ObjFW:
ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
return;
case ObjCRuntime::FragileMacOSX:
case ObjCRuntime::MacOSX:
case ObjCRuntime::iOS:
case ObjCRuntime::WatchOS:
ObjCRuntime.reset(CreateMacObjCRuntime(*this));
return;
}
llvm_unreachable("bad runtime kind");
}
void CodeGenModule::createOpenCLRuntime() {
OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
}
void CodeGenModule::createOpenMPRuntime() {
// Select a specialized code generation class based on the target, if any.
// If it does not exist use the default implementation.
switch (getTriple().getArch()) {
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
case llvm::Triple::amdgcn:
assert(getLangOpts().OpenMPIsDevice &&
"OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
break;
default:
if (LangOpts.OpenMPSimd)
OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
else
OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
break;
}
}
void CodeGenModule::createCUDARuntime() {
CUDARuntime.reset(CreateNVCUDARuntime(*this));
}
void CodeGenModule::createHLSLRuntime() {
HLSLRuntime.reset(new CGHLSLRuntime(*this));
}
void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
Replacements[Name] = C;
}
void CodeGenModule::applyReplacements() {
for (auto &I : Replacements) {
StringRef MangledName = I.first();
llvm::Constant *Replacement = I.second;
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (!Entry)
continue;
auto *OldF = cast<llvm::Function>(Entry);
auto *NewF = dyn_cast<llvm::Function>(Replacement);
if (!NewF) {
if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
} else {
auto *CE = cast<llvm::ConstantExpr>(Replacement);
assert(CE->getOpcode() == llvm::Instruction::BitCast ||
CE->getOpcode() == llvm::Instruction::GetElementPtr);
NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
}
}
// Replace old with new, but keep the old order.
OldF->replaceAllUsesWith(Replacement);
if (NewF) {
NewF->removeFromParent();
OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
NewF);
}
OldF->eraseFromParent();
}
}
void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
GlobalValReplacements.push_back(std::make_pair(GV, C));
}
void CodeGenModule::applyGlobalValReplacements() {
for (auto &I : GlobalValReplacements) {
llvm::GlobalValue *GV = I.first;
llvm::Constant *C = I.second;
GV->replaceAllUsesWith(C);
GV->eraseFromParent();
}
}
// This is only used in aliases that we created and we know they have a
// linear structure.
static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
const llvm::Constant *C;
if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
C = GA->getAliasee();
else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
C = GI->getResolver();
else
return GV;
const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
if (!AliaseeGV)
return nullptr;
const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
if (FinalGV == GV)
return nullptr;
return FinalGV;
}
static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
SourceLocation Location, bool IsIFunc,
const llvm::GlobalValue *Alias,
const llvm::GlobalValue *&GV) {
GV = getAliasedGlobal(Alias);
if (!GV) {
Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
return false;
}
if (GV->isDeclaration()) {
Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
return false;
}
if (IsIFunc) {
// Check resolver function type.
const auto *F = dyn_cast<llvm::Function>(GV);
if (!F) {
Diags.Report(Location, diag::err_alias_to_undefined)
<< IsIFunc << IsIFunc;
return false;
}
llvm::FunctionType *FTy = F->getFunctionType();
if (!FTy->getReturnType()->isPointerTy()) {
Diags.Report(Location, diag::err_ifunc_resolver_return);
return false;
}
}
return true;
}
void CodeGenModule::checkAliases() {
// Check if the constructed aliases are well formed. It is really unfortunate
// that we have to do this in CodeGen, but we only construct mangled names
// and aliases during codegen.
bool Error = false;
DiagnosticsEngine &Diags = getDiags();
for (const GlobalDecl &GD : Aliases) {
const auto *D = cast<ValueDecl>(GD.getDecl());
SourceLocation Location;
bool IsIFunc = D->hasAttr<IFuncAttr>();
if (const Attr *A = D->getDefiningAttr())
Location = A->getLocation();
else
llvm_unreachable("Not an alias or ifunc?");
StringRef MangledName = getMangledName(GD);
llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
const llvm::GlobalValue *GV = nullptr;
if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
Error = true;
continue;
}
llvm::Constant *Aliasee =
IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
: cast<llvm::GlobalAlias>(Alias)->getAliasee();
llvm::GlobalValue *AliaseeGV;
if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
else
AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
StringRef AliasSection = SA->getName();
if (AliasSection != AliaseeGV->getSection())
Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
<< AliasSection << IsIFunc << IsIFunc;
}
// We have to handle alias to weak aliases in here. LLVM itself disallows
// this since the object semantics would not match the IL one. For
// compatibility with gcc we implement it by just pointing the alias
// to its aliasee's aliasee. We also warn, since the user is probably
// expecting the link to be weak.
if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
if (GA->isInterposable()) {
Diags.Report(Location, diag::warn_alias_to_weak_alias)
<< GV->getName() << GA->getName() << IsIFunc;
Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
GA->getAliasee(), Alias->getType());
if (IsIFunc)
cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
else
cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
}
}
}
if (!Error)
return;
for (const GlobalDecl &GD : Aliases) {
StringRef MangledName = getMangledName(GD);
llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
Alias->eraseFromParent();
}
}
void CodeGenModule::clear() {
DeferredDeclsToEmit.clear();
EmittedDeferredDecls.clear();
if (OpenMPRuntime)
OpenMPRuntime->clear();
}
void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
StringRef MainFile) {
if (!hasDiagnostics())
return;
if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
if (MainFile.empty())
MainFile = "<stdin>";
Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
} else {
if (Mismatched > 0)
Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
if (Missing > 0)
Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
}
}
static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
llvm::Module &M) {
if (!LO.VisibilityFromDLLStorageClass)
return;
llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
CodeGenModule::GetLLVMVisibility(
LO.getExternDeclNoDLLStorageClassVisibility());
for (llvm::GlobalValue &GV : M.global_values()) {
if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
continue;
// Reset DSO locality before setting the visibility. This removes
// any effects that visibility options and annotations may have
// had on the DSO locality. Setting the visibility will implicitly set
// appropriate globals to DSO Local; however, this will be pessimistic
// w.r.t. to the normal compiler IRGen.
GV.setDSOLocal(false);
if (GV.isDeclarationForLinker()) {
GV.setVisibility(GV.getDLLStorageClass() ==
llvm::GlobalValue::DLLImportStorageClass
? ExternDeclDLLImportVisibility
: ExternDeclNoDLLStorageClassVisibility);
} else {
GV.setVisibility(GV.getDLLStorageClass() ==
llvm::GlobalValue::DLLExportStorageClass
? DLLExportVisibility
: NoDLLStorageClassVisibility);
}
GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
}
}
void CodeGenModule::Release() {
Module *Primary = getContext().getModuleForCodeGen();
if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
EmitModuleInitializers(Primary);
EmitDeferred();
DeferredDecls.insert(EmittedDeferredDecls.begin(),
EmittedDeferredDecls.end());
EmittedDeferredDecls.clear();
EmitVTablesOpportunistically();
applyGlobalValReplacements();
applyReplacements();
emitMultiVersionFunctions();
if (Context.getLangOpts().IncrementalExtensions &&
GlobalTopLevelStmtBlockInFlight.first) {
const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
}
if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
EmitCXXModuleInitFunc(Primary);
else
EmitCXXGlobalInitFunc();
EmitCXXGlobalCleanUpFunc();
registerGlobalDtorsWithAtExit();
EmitCXXThreadLocalInitFunc();
if (ObjCRuntime)
if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
AddGlobalCtor(ObjCInitFunction);
if (Context.getLangOpts().CUDA && CUDARuntime) {
if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
AddGlobalCtor(CudaCtorFunction);
}
if (OpenMPRuntime) {
if (llvm::Function *OpenMPRequiresDirectiveRegFun =
OpenMPRuntime->emitRequiresDirectiveRegFun()) {
AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
}
OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
OpenMPRuntime->clear();
}
if (PGOReader) {
getModule().setProfileSummary(
PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
llvm::ProfileSummary::PSK_Instr);
if (PGOStats.hasDiagnostics())
PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
}
llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
return L.LexOrder < R.LexOrder;
});
EmitCtorList(GlobalCtors, "llvm.global_ctors");
EmitCtorList(GlobalDtors, "llvm.global_dtors");
EmitGlobalAnnotations();
EmitStaticExternCAliases();
checkAliases();
EmitDeferredUnusedCoverageMappings();
CodeGenPGO(*this).setValueProfilingFlag(getModule());
if (CoverageMapping)
CoverageMapping->emit();
if (CodeGenOpts.SanitizeCfiCrossDso) {
CodeGenFunction(*this).EmitCfiCheckFail();
CodeGenFunction(*this).EmitCfiCheckStub();
}
if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
finalizeKCFITypes();
emitAtAvailableLinkGuard();
if (Context.getTargetInfo().getTriple().isWasm())
EmitMainVoidAlias();
if (getTriple().isAMDGPU()) {
// Emit reference of __amdgpu_device_library_preserve_asan_functions to
// preserve ASAN functions in bitcode libraries.
if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
auto *FT = llvm::FunctionType::get(VoidTy, {});
auto *F = llvm::Function::Create(
FT, llvm::GlobalValue::ExternalLinkage,
"__amdgpu_device_library_preserve_asan_functions", &getModule());
auto *Var = new llvm::GlobalVariable(
getModule(), FT->getPointerTo(),
/*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
"__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
llvm::GlobalVariable::NotThreadLocal);
addCompilerUsedGlobal(Var);
}
// Emit amdgpu_code_object_version module flag, which is code object version
// times 100.
if (getTarget().getTargetOpts().CodeObjectVersion !=
TargetOptions::COV_None) {
getModule().addModuleFlag(llvm::Module::Error,
"amdgpu_code_object_version",
getTarget().getTargetOpts().CodeObjectVersion);
}
}
// Emit a global array containing all external kernels or device variables
// used by host functions and mark it as used for CUDA/HIP. This is necessary
// to get kernels or device variables in archives linked in even if these
// kernels or device variables are only used in host functions.
if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
SmallVector<llvm::Constant *, 8> UsedArray;
for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
GlobalDecl GD;
if (auto *FD = dyn_cast<FunctionDecl>(D))
GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
else
GD = GlobalDecl(D);
UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
GetAddrOfGlobal(GD), Int8PtrTy));
}
llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
auto *GV = new llvm::GlobalVariable(
getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
addCompilerUsedGlobal(GV);
}
emitLLVMUsed();
if (SanStats)
SanStats->finish();
if (CodeGenOpts.Autolink &&
(Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
EmitModuleLinkOptions();
}
// On ELF we pass the dependent library specifiers directly to the linker
// without manipulating them. This is in contrast to other platforms where
// they are mapped to a specific linker option by the compiler. This
// difference is a result of the greater variety of ELF linkers and the fact
// that ELF linkers tend to handle libraries in a more complicated fashion
// than on other platforms. This forces us to defer handling the dependent
// libs to the linker.
//
// CUDA/HIP device and host libraries are different. Currently there is no
// way to differentiate dependent libraries for host or device. Existing
// usage of #pragma comment(lib, *) is intended for host libraries on
// Windows. Therefore emit llvm.dependent-libraries only for host.
if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
for (auto *MD : ELFDependentLibraries)
NMD->addOperand(MD);
}
// Record mregparm value now so it is visible through rest of codegen.
if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
CodeGenOpts.NumRegisterParameters);
if (CodeGenOpts.DwarfVersion) {
getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
CodeGenOpts.DwarfVersion);
}
if (CodeGenOpts.Dwarf64)
getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
if (Context.getLangOpts().SemanticInterposition)
// Require various optimization to respect semantic interposition.
getModule().setSemanticInterposition(true);
if (CodeGenOpts.EmitCodeView) {
// Indicate that we want CodeView in the metadata.
getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
}
if (CodeGenOpts.CodeViewGHash) {
getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
}
if (CodeGenOpts.ControlFlowGuard) {
// Function ID tables and checks for Control Flow Guard (cfguard=2).
getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
} else if (CodeGenOpts.ControlFlowGuardNoChecks) {
// Function ID tables for Control Flow Guard (cfguard=1).
getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
}
if (CodeGenOpts.EHContGuard) {
// Function ID tables for EH Continuation Guard.
getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
}
if (Context.getLangOpts().Kernel) {
// Note if we are compiling with /kernel.
getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
}
if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
// We don't support LTO with 2 with different StrictVTablePointers
// FIXME: we could support it by stripping all the information introduced
// by StrictVTablePointers.
getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
llvm::Metadata *Ops[2] = {
llvm::MDString::get(VMContext, "StrictVTablePointers"),
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), 1))};
getModule().addModuleFlag(llvm::Module::Require,
"StrictVTablePointersRequirement",
llvm::MDNode::get(VMContext, Ops));
}
if (getModuleDebugInfo())
// We support a single version in the linked module. The LLVM
// parser will drop debug info with a different version number
// (and warn about it, too).
getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
llvm::DEBUG_METADATA_VERSION);
// We need to record the widths of enums and wchar_t, so that we can generate
// the correct build attributes in the ARM backend. wchar_size is also used by
// TargetLibraryInfo.
uint64_t WCharWidth =
Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
if ( Arch == llvm::Triple::arm
|| Arch == llvm::Triple::armeb
|| Arch == llvm::Triple::thumb
|| Arch == llvm::Triple::thumbeb) {
// The minimum width of an enum in bytes
uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
}
if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
StringRef ABIStr = Target.getABI();
llvm::LLVMContext &Ctx = TheModule.getContext();
getModule().addModuleFlag(llvm::Module::Error, "target-abi",
llvm::MDString::get(Ctx, ABIStr));
}
if (CodeGenOpts.SanitizeCfiCrossDso) {
// Indicate that we want cross-DSO control flow integrity checks.
getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
}
if (CodeGenOpts.WholeProgramVTables) {
// Indicate whether VFE was enabled for this module, so that the
// vcall_visibility metadata added under whole program vtables is handled
// appropriately in the optimizer.
getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
CodeGenOpts.VirtualFunctionElimination);
}
if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
getModule().addModuleFlag(llvm::Module::Override,
"CFI Canonical Jump Tables",
CodeGenOpts.SanitizeCfiCanonicalJumpTables);
}
if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
// KCFI assumes patchable-function-prefix is the same for all indirectly
// called functions. Store the expected offset for code generation.
if (CodeGenOpts.PatchableFunctionEntryOffset)
getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
CodeGenOpts.PatchableFunctionEntryOffset);
}
if (CodeGenOpts.CFProtectionReturn &&
Target.checkCFProtectionReturnSupported(getDiags())) {
// Indicate that we want to instrument return control flow protection.
getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1);
}
if (CodeGenOpts.CFProtectionBranch &&
Target.checkCFProtectionBranchSupported(getDiags())) {
// Indicate that we want to instrument branch control flow protection.
getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1);
}
if (CodeGenOpts.FunctionReturnThunks)
getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
if (CodeGenOpts.IndirectBranchCSPrefix)
getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
// Add module metadata for return address signing (ignoring
// non-leaf/all) and stack tagging. These are actually turned on by function
// attributes, but we use module metadata to emit build attributes. This is
// needed for LTO, where the function attributes are inside bitcode
// serialised into a global variable by the time build attributes are
// emitted, so we can't access them. LTO objects could be compiled with
// different flags therefore module flags are set to "Min" behavior to achieve
// the same end result of the normal build where e.g BTI is off if any object
// doesn't support it.
if (Context.getTargetInfo().hasFeature("ptrauth") &&
LangOpts.getSignReturnAddressScope() !=
LangOptions::SignReturnAddressScopeKind::None)
getModule().addModuleFlag(llvm::Module::Override,
"sign-return-address-buildattr", 1);
if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
getModule().addModuleFlag(llvm::Module::Override,
"tag-stack-memory-buildattr", 1);
if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
Arch == llvm::Triple::aarch64_be) {
if (LangOpts.BranchTargetEnforcement)
getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1);
if (LangOpts.hasSignReturnAddress())
getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
if (LangOpts.isSignReturnAddressScopeAll())
getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1);
if (!LangOpts.isSignReturnAddressWithAKey())
getModule().addModuleFlag(llvm::Module::Min,
"sign-return-address-with-bkey", 1);
}
if (!CodeGenOpts.MemoryProfileOutput.empty()) {
llvm::LLVMContext &Ctx = TheModule.getContext();
getModule().addModuleFlag(
llvm::Module::Error, "MemProfProfileFilename",
llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
}
if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
// Indicate whether __nvvm_reflect should be configured to flush denormal
// floating point values to 0. (This corresponds to its "__CUDA_FTZ"
// property.)
getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
CodeGenOpts.FP32DenormalMode.Output !=
llvm::DenormalMode::IEEE);
}
if (LangOpts.EHAsynch)
getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
// Indicate whether this Module was compiled with -fopenmp
if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
if (getLangOpts().OpenMPIsDevice)
getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
LangOpts.OpenMP);
// Emit OpenCL specific module metadata: OpenCL/SPIR version.
if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
EmitOpenCLMetadata();
// Emit SPIR version.
if (getTriple().isSPIR()) {
// SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
// opencl.spir.version named metadata.
// C++ for OpenCL has a distinct mapping for version compatibility with
// OpenCL.
auto Version = LangOpts.getOpenCLCompatibleVersion();
llvm::Metadata *SPIRVerElts[] = {
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
Int32Ty, Version / 100)),
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
Int32Ty, (Version / 100 > 1) ? 0 : 2))};
llvm::NamedMDNode *SPIRVerMD =
TheModule.getOrInsertNamedMetadata("opencl.spir.version");
llvm::LLVMContext &Ctx = TheModule.getContext();
SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
}
}
// HLSL related end of code gen work items.
if (LangOpts.HLSL)
getHLSLRuntime().finishCodeGen();
if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
assert(PLevel < 3 && "Invalid PIC Level");
getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
if (Context.getLangOpts().PIE)
getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
}
if (getCodeGenOpts().CodeModel.size() > 0) {
unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
.Case("tiny", llvm::CodeModel::Tiny)
.Case("small", llvm::CodeModel::Small)
.Case("kernel", llvm::CodeModel::Kernel)
.Case("medium", llvm::CodeModel::Medium)
.Case("large", llvm::CodeModel::Large)
.Default(~0u);
if (CM != ~0u) {
llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
getModule().setCodeModel(codeModel);
}
}
if (CodeGenOpts.NoPLT)
getModule().setRtLibUseGOT();
if (CodeGenOpts.UnwindTables)
getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
switch (CodeGenOpts.getFramePointer()) {
case CodeGenOptions::FramePointerKind::None:
// 0 ("none") is the default.
break;
case CodeGenOptions::FramePointerKind::NonLeaf:
getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
break;
case CodeGenOptions::FramePointerKind::All:
getModule().setFramePointer(llvm::FramePointerKind::All);
break;
}
SimplifyPersonality();
if (getCodeGenOpts().EmitDeclMetadata)
EmitDeclMetadata();
if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
EmitCoverageFile();
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->finalize();
if (getCodeGenOpts().EmitVersionIdentMetadata)
EmitVersionIdentMetadata();
if (!getCodeGenOpts().RecordCommandLine.empty())
EmitCommandLineMetadata();
if (!getCodeGenOpts().StackProtectorGuard.empty())
getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
if (!getCodeGenOpts().StackProtectorGuardReg.empty())
getModule().setStackProtectorGuardReg(
getCodeGenOpts().StackProtectorGuardReg);
if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
getModule().setStackProtectorGuardSymbol(
getCodeGenOpts().StackProtectorGuardSymbol);
if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
getModule().setStackProtectorGuardOffset(
getCodeGenOpts().StackProtectorGuardOffset);
if (getCodeGenOpts().StackAlignment)
getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
if (getCodeGenOpts().SkipRaxSetup)
getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
EmitBackendOptionsMetadata(getCodeGenOpts());
// If there is device offloading code embed it in the host now.
EmbedObject(&getModule(), CodeGenOpts, getDiags());
// Set visibility from DLL storage class
// We do this at the end of LLVM IR generation; after any operation
// that might affect the DLL storage class or the visibility, and
// before anything that might act on these.
setVisibilityFromDLLStorageClass(LangOpts, getModule());
}
void CodeGenModule::EmitOpenCLMetadata() {
// SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
// opencl.ocl.version named metadata node.
// C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
auto Version = LangOpts.getOpenCLCompatibleVersion();
llvm::Metadata *OCLVerElts[] = {
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
Int32Ty, Version / 100)),
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
Int32Ty, (Version % 100) / 10))};
llvm::NamedMDNode *OCLVerMD =
TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
llvm::LLVMContext &Ctx = TheModule.getContext();
OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
}
void CodeGenModule::EmitBackendOptionsMetadata(
const CodeGenOptions CodeGenOpts) {
if (getTriple().isRISCV()) {
getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
CodeGenOpts.SmallDataLimit);
}
}
void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
// Make sure that this type is translated.
Types.UpdateCompletedType(TD);
}
void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
// Make sure that this type is translated.
Types.RefreshTypeCacheForClass(RD);
}
llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
if (!TBAA)
return nullptr;
return TBAA->getTypeInfo(QTy);
}
TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
if (!TBAA)
return TBAAAccessInfo();
if (getLangOpts().CUDAIsDevice) {
// As CUDA builtin surface/texture types are replaced, skip generating TBAA
// access info.
if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
nullptr)
return TBAAAccessInfo();
} else if (AccessType->isCUDADeviceBuiltinTextureType()) {
if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
nullptr)
return TBAAAccessInfo();
}
}
return TBAA->getAccessInfo(AccessType);
}
TBAAAccessInfo
CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
if (!TBAA)
return TBAAAccessInfo();
return TBAA->getVTablePtrAccessInfo(VTablePtrType);
}
llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
if (!TBAA)
return nullptr;
return TBAA->getTBAAStructInfo(QTy);
}
llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
if (!TBAA)
return nullptr;
return TBAA->getBaseTypeInfo(QTy);
}
llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
if (!TBAA)
return nullptr;
return TBAA->getAccessTagInfo(Info);
}
TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
TBAAAccessInfo TargetInfo) {
if (!TBAA)
return TBAAAccessInfo();
return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
}
TBAAAccessInfo
CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
TBAAAccessInfo InfoB) {
if (!TBAA)
return TBAAAccessInfo();
return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
}
TBAAAccessInfo
CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
TBAAAccessInfo SrcInfo) {
if (!TBAA)
return TBAAAccessInfo();
return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
}
void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
TBAAAccessInfo TBAAInfo) {
if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
}
void CodeGenModule::DecorateInstructionWithInvariantGroup(
llvm::Instruction *I, const CXXRecordDecl *RD) {
I->setMetadata(llvm::LLVMContext::MD_invariant_group,
llvm::MDNode::get(getLLVMContext(), {}));
}
void CodeGenModule::Error(SourceLocation loc, StringRef message) {
unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
getDiags().Report(Context.getFullLoc(loc), diagID) << message;
}
/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified stmt yet.
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot compile this %0 yet");
std::string Msg = Type;
getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
<< Msg << S->getSourceRange();
}
/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified decl yet.
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot compile this %0 yet");
std::string Msg = Type;
getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
}
llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
return llvm::ConstantInt::get(SizeTy, size.getQuantity());
}
void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
const NamedDecl *D) const {
// Internal definitions always have default visibility.
if (GV->hasLocalLinkage()) {
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
return;
}
if (!D)
return;
// Set visibility for definitions, and for declarations if requested globally
// or set explicitly.
LinkageInfo LV = D->getLinkageAndVisibility();
if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
// Reject incompatible dlllstorage and visibility annotations.
if (!LV.isVisibilityExplicit())
return;
if (GV->hasDLLExportStorageClass()) {
if (LV.getVisibility() == HiddenVisibility)
getDiags().Report(D->getLocation(),
diag::err_hidden_visibility_dllexport);
} else if (LV.getVisibility() != DefaultVisibility) {
getDiags().Report(D->getLocation(),
diag::err_non_default_visibility_dllimport);
}
return;
}
if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
!GV->isDeclarationForLinker())
GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
}
static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
llvm::GlobalValue *GV) {
if (GV->hasLocalLinkage())
return true;
if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
return true;
// DLLImport explicitly marks the GV as external.
if (GV->hasDLLImportStorageClass())
return false;
const llvm::Triple &TT = CGM.getTriple();
if (TT.isWindowsGNUEnvironment()) {
// In MinGW, variables without DLLImport can still be automatically
// imported from a DLL by the linker; don't mark variables that
// potentially could come from another DLL as DSO local.
// With EmulatedTLS, TLS variables can be autoimported from other DLLs
// (and this actually happens in the public interface of libstdc++), so
// such variables can't be marked as DSO local. (Native TLS variables
// can't be dllimported at all, though.)
if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
(!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
return false;
}
// On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
// remain unresolved in the link, they can be resolved to zero, which is
// outside the current DSO.
if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
return false;
// Every other GV is local on COFF.
// Make an exception for windows OS in the triple: Some firmware builds use
// *-win32-macho triples. This (accidentally?) produced windows relocations
// without GOT tables in older clang versions; Keep this behaviour.
// FIXME: even thread local variables?
if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
return true;
// Only handle COFF and ELF for now.
if (!TT.isOSBinFormatELF())
return false;
// If this is not an executable, don't assume anything is local.
const auto &CGOpts = CGM.getCodeGenOpts();
llvm::Reloc::Model RM = CGOpts.RelocationModel;
const auto &LOpts = CGM.getLangOpts();
if (RM != llvm::Reloc::Static && !LOpts.PIE) {
// On ELF, if -fno-semantic-interposition is specified and the target
// supports local aliases, there will be neither CC1
// -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
// dso_local on the function if using a local alias is preferable (can avoid
// PLT indirection).
if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
return false;
return !(CGM.getLangOpts().SemanticInterposition ||
CGM.getLangOpts().HalfNoSemanticInterposition);
}
// A definition cannot be preempted from an executable.
if (!GV->isDeclarationForLinker())
return true;
// Most PIC code sequences that assume that a symbol is local cannot produce a
// 0 if it turns out the symbol is undefined. While this is ABI and relocation
// depended, it seems worth it to handle it here.
if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
return false;
// PowerPC64 prefers TOC indirection to avoid copy relocations.
if (TT.isPPC64())
return false;
if (CGOpts.DirectAccessExternalData) {
// If -fdirect-access-external-data (default for -fno-pic), set dso_local
// for non-thread-local variables. If the symbol is not defined in the
// executable, a copy relocation will be needed at link time. dso_local is
// excluded for thread-local variables because they generally don't support
// copy relocations.
if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
if (!Var->isThreadLocal())
return true;
// -fno-pic sets dso_local on a function declaration to allow direct
// accesses when taking its address (similar to a data symbol). If the
// function is not defined in the executable, a canonical PLT entry will be
// needed at link time. -fno-direct-access-external-data can avoid the
// canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
// it could just cause trouble without providing perceptible benefits.
if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
return true;
}
// If we can use copy relocations we can assume it is local.
// Otherwise don't assume it is local.
return false;
}
void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
}
void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
GlobalDecl GD) const {
const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
// C++ destructors have a few C++ ABI specific special cases.
if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
return;
}
setDLLImportDLLExport(GV, D);
}
void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
const NamedDecl *D) const {
if (D && D->isExternallyVisible()) {
if (D->hasAttr<DLLImportAttr>())
GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
else if ((D->hasAttr<DLLExportAttr>() ||
shouldMapVisibilityToDLLExport(D)) &&
!GV->isDeclarationForLinker())
GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
}
}
void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
GlobalDecl GD) const {
setDLLImportDLLExport(GV, GD);
setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
}
void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
const NamedDecl *D) const {
setDLLImportDLLExport(GV, D);
setGVPropertiesAux(GV, D);
}
void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
const NamedDecl *D) const {
setGlobalVisibility(GV, D);
setDSOLocal(GV);
GV->setPartition(CodeGenOpts.SymbolPartition);
}
static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
.Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
.Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
.Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
.Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
}
llvm::GlobalVariable::ThreadLocalMode
CodeGenModule::GetDefaultLLVMTLSModel() const {
switch (CodeGenOpts.getDefaultTLSModel()) {
case CodeGenOptions::GeneralDynamicTLSModel:
return llvm::GlobalVariable::GeneralDynamicTLSModel;
case CodeGenOptions::LocalDynamicTLSModel:
return llvm::GlobalVariable::LocalDynamicTLSModel;
case CodeGenOptions::InitialExecTLSModel:
return llvm::GlobalVariable::InitialExecTLSModel;
case CodeGenOptions::LocalExecTLSModel:
return llvm::GlobalVariable::LocalExecTLSModel;
}
llvm_unreachable("Invalid TLS model!");
}
void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
llvm::GlobalValue::ThreadLocalMode TLM;
TLM = GetDefaultLLVMTLSModel();
// Override the TLS model if it is explicitly specified.
if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
TLM = GetLLVMTLSModel(Attr->getModel());
}
GV->setThreadLocalMode(TLM);
}
static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
StringRef Name) {
const TargetInfo &Target = CGM.getTarget();
return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
}
static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
const CPUSpecificAttr *Attr,
unsigned CPUIndex,
raw_ostream &Out) {
// cpu_specific gets the current name, dispatch gets the resolver if IFunc is
// supported.
if (Attr)
Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
else if (CGM.getTarget().supportsIFunc())
Out << ".resolver";
}
static void AppendTargetVersionMangling(const CodeGenModule &CGM,
const TargetVersionAttr *Attr,
raw_ostream &Out) {
if (Attr->isDefaultVersion())
return;
Out << "._";
llvm::SmallVector<StringRef, 8> Feats;
Attr->getFeatures(Feats);
for (const auto &Feat : Feats) {
Out << 'M';
Out << Feat;
}
}
static void AppendTargetMangling(const CodeGenModule &CGM,
const TargetAttr *Attr, raw_ostream &Out) {
if (Attr->isDefaultVersion())
return;
Out << '.';
const TargetInfo &Target = CGM.getTarget();
ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
// Multiversioning doesn't allow "no-${feature}", so we can
// only have "+" prefixes here.
assert(LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.");
return Target.multiVersionSortPriority(LHS.substr(1)) >
Target.multiVersionSortPriority(RHS.substr(1));
});
bool IsFirst = true;
if (!Info.CPU.empty()) {
IsFirst = false;
Out << "arch_" << Info.CPU;
}
for (StringRef Feat : Info.Features) {
if (!IsFirst)
Out << '_';
IsFirst = false;
Out << Feat.substr(1);
}
}
// Returns true if GD is a function decl with internal linkage and
// needs a unique suffix after the mangled name.
static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
CodeGenModule &CGM) {
const Decl *D = GD.getDecl();
return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
(CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
}
static void AppendTargetClonesMangling(const CodeGenModule &CGM,
const TargetClonesAttr *Attr,
unsigned VersionIndex,
raw_ostream &Out) {
if (CGM.getTarget().getTriple().isAArch64()) {
StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
if (FeatureStr == "default")
return;
Out << "._";
SmallVector<StringRef, 8> Features;
FeatureStr.split(Features, "+");
for (auto &Feat : Features) {
Out << 'M';
Out << Feat;
}
} else {
Out << '.';
StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
if (FeatureStr.startswith("arch="))
Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
else
Out << FeatureStr;
Out << '.' << Attr->getMangledIndex(VersionIndex);
}
}
static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
const NamedDecl *ND,
bool OmitMultiVersionMangling = false) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
MangleContext &MC = CGM.getCXXABI().getMangleContext();
if (!CGM.getModuleNameHash().empty())
MC.needsUniqueInternalLinkageNames();
bool ShouldMangle = MC.shouldMangleDeclName(ND);
if (ShouldMangle)
MC.mangleName(GD.getWithDecl(ND), Out);
else {
IdentifierInfo *II = ND->getIdentifier();
assert(II && "Attempt to mangle unnamed decl.");
const auto *FD = dyn_cast<FunctionDecl>(ND);
if (FD &&
FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
Out << "__regcall3__" << II->getName();
} else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
Out << "__device_stub__" << II->getName();
} else {
Out << II->getName();
}
}
// Check if the module name hash should be appended for internal linkage
// symbols. This should come before multi-version target suffixes are
// appended. This is to keep the name and module hash suffix of the
// internal linkage function together. The unique suffix should only be
// added when name mangling is done to make sure that the final name can
// be properly demangled. For example, for C functions without prototypes,
// name mangling is not done and the unique suffix should not be appeneded
// then.
if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
"Hash computed when not explicitly requested");
Out << CGM.getModuleNameHash();
}
if (const auto *FD = dyn_cast<FunctionDecl>(ND))
if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
switch (FD->getMultiVersionKind()) {
case MultiVersionKind::CPUDispatch:
case MultiVersionKind::CPUSpecific:
AppendCPUSpecificCPUDispatchMangling(CGM,
FD->getAttr<CPUSpecificAttr>(),
GD.getMultiVersionIndex(), Out);
break;
case MultiVersionKind::Target:
AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
break;
case MultiVersionKind::TargetVersion:
AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
break;
case MultiVersionKind::TargetClones:
AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
GD.getMultiVersionIndex(), Out);
break;
case MultiVersionKind::None:
llvm_unreachable("None multiversion type isn't valid here");
}
}
// Make unique name for device side static file-scope variable for HIP.
if (CGM.getContext().shouldExternalize(ND) &&
CGM.getLangOpts().GPURelocatableDeviceCode &&
CGM.getLangOpts().CUDAIsDevice)
CGM.printPostfixForExternalizedDecl(Out, ND);
return std::string(Out.str());
}
void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
const FunctionDecl *FD,
StringRef &CurName) {
if (!FD->isMultiVersion())
return;
// Get the name of what this would be without the 'target' attribute. This
// allows us to lookup the version that was emitted when this wasn't a
// multiversion function.
std::string NonTargetName =
getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
GlobalDecl OtherGD;
if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
assert(OtherGD.getCanonicalDecl()
.getDecl()
->getAsFunction()
->isMultiVersion() &&
"Other GD should now be a multiversioned function");
// OtherFD is the version of this function that was mangled BEFORE
// becoming a MultiVersion function. It potentially needs to be updated.
const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
.getDecl()
->getAsFunction()
->getMostRecentDecl();
std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
// This is so that if the initial version was already the 'default'
// version, we don't try to update it.
if (OtherName != NonTargetName) {
// Remove instead of erase, since others may have stored the StringRef
// to this.
const auto ExistingRecord = Manglings.find(NonTargetName);
if (ExistingRecord != std::end(Manglings))
Manglings.remove(&(*ExistingRecord));
auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
Result.first->first();
// If this is the current decl is being created, make sure we update the name.
if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
CurName = OtherNameRef;
if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
Entry->setName(OtherName);
}
}
}
StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
GlobalDecl CanonicalGD = GD.getCanonicalDecl();
// Some ABIs don't have constructor variants. Make sure that base and
// complete constructors get mangled the same.
if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
if (!getTarget().getCXXABI().hasConstructorVariants()) {
CXXCtorType OrigCtorType = GD.getCtorType();
assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
if (OrigCtorType == Ctor_Base)
CanonicalGD = GlobalDecl(CD, Ctor_Complete);
}
}
// In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
// static device variable depends on whether the variable is referenced by
// a host or device host function. Therefore the mangled name cannot be
// cached.
if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
auto FoundName = MangledDeclNames.find(CanonicalGD);
if (FoundName != MangledDeclNames.end())
return FoundName->second;
}
// Keep the first result in the case of a mangling collision.
const auto *ND = cast<NamedDecl>(GD.getDecl());
std::string MangledName = getMangledNameImpl(*this, GD, ND);
// Ensure either we have different ABIs between host and device compilations,
// says host compilation following MSVC ABI but device compilation follows
// Itanium C++ ABI or, if they follow the same ABI, kernel names after
// mangling should be the same after name stubbing. The later checking is
// very important as the device kernel name being mangled in host-compilation
// is used to resolve the device binaries to be executed. Inconsistent naming
// result in undefined behavior. Even though we cannot check that naming
// directly between host- and device-compilations, the host- and
// device-mangling in host compilation could help catching certain ones.
assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
(getContext().getAuxTargetInfo() &&
(getContext().getAuxTargetInfo()->getCXXABI() !=
getContext().getTargetInfo().getCXXABI())) ||
getCUDARuntime().getDeviceSideName(ND) ==
getMangledNameImpl(
*this,
GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
ND));
auto Result = Manglings.insert(std::make_pair(MangledName, GD));
return MangledDeclNames[CanonicalGD] = Result.first->first();
}
StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
const BlockDecl *BD) {
MangleContext &MangleCtx = getCXXABI().getMangleContext();
const Decl *D = GD.getDecl();
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
if (!D)
MangleCtx.mangleGlobalBlock(BD,
dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
else
MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
return Result.first->first();
}
const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
auto it = MangledDeclNames.begin();
while (it != MangledDeclNames.end()) {
if (it->second == Name)
return it->first;
it++;
}
return GlobalDecl();
}
llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
return getModule().getNamedValue(Name);
}
/// AddGlobalCtor - Add a function to the list that will be called before
/// main() runs.
void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
unsigned LexOrder,
llvm::Constant *AssociatedData) {
// FIXME: Type coercion of void()* types.
GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
}
/// AddGlobalDtor - Add a function to the list that will be called
/// when the module is unloaded.
void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
bool IsDtorAttrFunc) {
if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
(!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
DtorsUsingAtExit[Priority].push_back(Dtor);
return;
}
// FIXME: Type coercion of void()* types.
GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
}
void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
if (Fns.empty()) return;
// Ctor function type is void()*.
llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
TheModule.getDataLayout().getProgramAddressSpace());
// Get the type of a ctor entry, { i32, void ()*, i8* }.
llvm::StructType *CtorStructTy = llvm::StructType::get(
Int32Ty, CtorPFTy, VoidPtrTy);
// Construct the constructor and destructor arrays.
ConstantInitBuilder builder(*this);
auto ctors = builder.beginArray(CtorStructTy);
for (const auto &I : Fns) {
auto ctor = ctors.beginStruct(CtorStructTy);
ctor.addInt(Int32Ty, I.Priority);
ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
if (I.AssociatedData)
ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
else
ctor.addNullPointer(VoidPtrTy);
ctor.finishAndAddTo(ctors);
}
auto list =
ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
/*constant*/ false,
llvm::GlobalValue::AppendingLinkage);
// The LTO linker doesn't seem to like it when we set an alignment
// on appending variables. Take it off as a workaround.
list->setAlignment(std::nullopt);
Fns.clear();
}
llvm::GlobalValue::LinkageTypes
CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
const auto *D = cast<FunctionDecl>(GD.getDecl());
GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
if (isa<CXXConstructorDecl>(D) &&
cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
Context.getTargetInfo().getCXXABI().isMicrosoft()) {
// Our approach to inheriting constructors is fundamentally different from
// that used by the MS ABI, so keep our inheriting constructor thunks
// internal rather than trying to pick an unambiguous mangling for them.
return llvm::GlobalValue::InternalLinkage;
}
return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
}
llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
if (!MDS) return nullptr;
return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
}
llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
if (auto *FnType = T->getAs<FunctionProtoType>())
T = getContext().getFunctionType(
FnType->getReturnType(), FnType->getParamTypes(),
FnType->getExtProtoInfo().withExceptionSpec(EST_None));
std::string OutName;
llvm::raw_string_ostream Out(OutName);
getCXXABI().getMangleContext().mangleTypeName(T, Out);
return llvm::ConstantInt::get(Int32Ty,
static_cast<uint32_t>(llvm::xxHash64(OutName)));
}
void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
const CGFunctionInfo &Info,
llvm::Function *F, bool IsThunk) {
unsigned CallingConv;
llvm::AttributeList PAL;
ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
/*AttrOnCallSite=*/false, IsThunk);
F->setAttributes(PAL);
F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
}
static void removeImageAccessQualifier(std::string& TyName) {
std::string ReadOnlyQual("__read_only");
std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
if (ReadOnlyPos != std::string::npos)
// "+ 1" for the space after access qualifier.
TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
else {
std::string WriteOnlyQual("__write_only");
std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
if (WriteOnlyPos != std::string::npos)
TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
else {
std::string ReadWriteQual("__read_write");
std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
if (ReadWritePos != std::string::npos)
TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
}
}
}
// Returns the address space id that should be produced to the
// kernel_arg_addr_space metadata. This is always fixed to the ids
// as specified in the SPIR 2.0 specification in order to differentiate
// for example in clGetKernelArgInfo() implementation between the address
// spaces with targets without unique mapping to the OpenCL address spaces
// (basically all single AS CPUs).
static unsigned ArgInfoAddressSpace(LangAS AS) {
switch (AS) {
case LangAS::opencl_global:
return 1;
case LangAS::opencl_constant:
return 2;
case LangAS::opencl_local:
return 3;
case LangAS::opencl_generic:
return 4; // Not in SPIR 2.0 specs.
case LangAS::opencl_global_device:
return 5;
case LangAS::opencl_global_host:
return 6;
default:
return 0; // Assume private.
}
}
void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
const FunctionDecl *FD,
CodeGenFunction *CGF) {
assert(((FD && CGF) || (!FD && !CGF)) &&
"Incorrect use - FD and CGF should either be both null or not!");
// Create MDNodes that represent the kernel arg metadata.
// Each MDNode is a list in the form of "key", N number of values which is
// the same number of values as their are kernel arguments.
const PrintingPolicy &Policy = Context.getPrintingPolicy();
// MDNode for the kernel argument address space qualifiers.
SmallVector<llvm::Metadata *, 8> addressQuals;
// MDNode for the kernel argument access qualifiers (images only).
SmallVector<llvm::Metadata *, 8> accessQuals;
// MDNode for the kernel argument type names.
SmallVector<llvm::Metadata *, 8> argTypeNames;
// MDNode for the kernel argument base type names.
SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
// MDNode for the kernel argument type qualifiers.
SmallVector<llvm::Metadata *, 8> argTypeQuals;
// MDNode for the kernel argument names.
SmallVector<llvm::Metadata *, 8> argNames;
if (FD && CGF)
for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
const ParmVarDecl *parm = FD->getParamDecl(i);
// Get argument name.
argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
if (!getLangOpts().OpenCL)
continue;
QualType ty = parm->getType();
std::string typeQuals;
// Get image and pipe access qualifier:
if (ty->isImageType() || ty->isPipeType()) {
const Decl *PDecl = parm;
if (const auto *TD = ty->getAs<TypedefType>())
PDecl = TD->getDecl();
const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
if (A && A->isWriteOnly())
accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
else if (A && A->isReadWrite())
accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
else
accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
} else
accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
auto getTypeSpelling = [&](QualType Ty) {
auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
if (Ty.isCanonical()) {
StringRef typeNameRef = typeName;
// Turn "unsigned type" to "utype"
if (typeNameRef.consume_front("unsigned "))
return std::string("u") + typeNameRef.str();
if (typeNameRef.consume_front("signed "))
return typeNameRef.str();
}
return typeName;
};
if (ty->isPointerType()) {
QualType pointeeTy = ty->getPointeeType();
// Get address qualifier.
addressQuals.push_back(
llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
// Get argument type name.
std::string typeName = getTypeSpelling(pointeeTy) + "*";
std::string baseTypeName =
getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
argBaseTypeNames.push_back(
llvm::MDString::get(VMContext, baseTypeName));
// Get argument type qualifiers:
if (ty.isRestrictQualified())
typeQuals = "restrict";
if (pointeeTy.isConstQualified() ||
(pointeeTy.getAddressSpace() == LangAS::opencl_constant))
typeQuals += typeQuals.empty() ? "const" : " const";
if (pointeeTy.isVolatileQualified())
typeQuals += typeQuals.empty() ? "volatile" : " volatile";
} else {
uint32_t AddrSpc = 0;
bool isPipe = ty->isPipeType();
if (ty->isImageType() || isPipe)
AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
addressQuals.push_back(
llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
// Get argument type name.
ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
std::string typeName = getTypeSpelling(ty);
std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
// Remove access qualifiers on images
// (as they are inseparable from type in clang implementation,
// but OpenCL spec provides a special query to get access qualifier
// via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
if (ty->isImageType()) {
removeImageAccessQualifier(typeName);
removeImageAccessQualifier(baseTypeName);
}
argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
argBaseTypeNames.push_back(
llvm::MDString::get(VMContext, baseTypeName));
if (isPipe)
typeQuals = "pipe";
}
argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
}
if (getLangOpts().OpenCL) {
Fn->setMetadata("kernel_arg_addr_space",
llvm::MDNode::get(VMContext, addressQuals));
Fn->setMetadata("kernel_arg_access_qual",
llvm::MDNode::get(VMContext, accessQuals));
Fn->setMetadata("kernel_arg_type",
llvm::MDNode::get(VMContext, argTypeNames));
Fn->setMetadata("kernel_arg_base_type",
llvm::MDNode::get(VMContext, argBaseTypeNames));
Fn->setMetadata("kernel_arg_type_qual",
llvm::MDNode::get(VMContext, argTypeQuals));
}
if (getCodeGenOpts().EmitOpenCLArgMetadata ||
getCodeGenOpts().HIPSaveKernelArgName)
Fn->setMetadata("kernel_arg_name",
llvm::MDNode::get(VMContext, argNames));
}
/// Determines whether the language options require us to model
/// unwind exceptions. We treat -fexceptions as mandating this
/// except under the fragile ObjC ABI with only ObjC exceptions
/// enabled. This means, for example, that C with -fexceptions
/// enables this.
static bool hasUnwindExceptions(const LangOptions &LangOpts) {
// If exceptions are completely disabled, obviously this is false.
if (!LangOpts.Exceptions) return false;
// If C++ exceptions are enabled, this is true.
if (LangOpts.CXXExceptions) return true;
// If ObjC exceptions are enabled, this depends on the ABI.
if (LangOpts.ObjCExceptions) {
return LangOpts.ObjCRuntime.hasUnwindExceptions();
}
return true;
}
static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
const CXXMethodDecl *MD) {
// Check that the type metadata can ever actually be used by a call.
if (!CGM.getCodeGenOpts().LTOUnit ||
!CGM.HasHiddenLTOVisibility(MD->getParent()))
return false;
// Only functions whose address can be taken with a member function pointer
// need this sort of type metadata.
return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
!isa<CXXDestructorDecl>(MD);
}
std::vector<const CXXRecordDecl *>
CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
llvm::SetVector<const CXXRecordDecl *> MostBases;
std::function<void (const CXXRecordDecl *)> CollectMostBases;
CollectMostBases = [&](const CXXRecordDecl *RD) {
if (RD->getNumBases() == 0)
MostBases.insert(RD);
for (const CXXBaseSpecifier &B : RD->bases())
CollectMostBases(B.getType()->getAsCXXRecordDecl());
};
CollectMostBases(RD);
return MostBases.takeVector();
}
llvm::GlobalVariable *
CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
auto It = RTTIProxyMap.find(Addr);
if (It != RTTIProxyMap.end())
return It->second;
auto *FTRTTIProxy = new llvm::GlobalVariable(
TheModule, Addr->getType(),
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
"__llvm_rtti_proxy");
FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
RTTIProxyMap[Addr] = FTRTTIProxy;
return FTRTTIProxy;
}
void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
llvm::Function *F) {
llvm::AttrBuilder B(F->getContext());
if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
if (CodeGenOpts.StackClashProtector)
B.addAttribute("probe-stack", "inline-asm");
if (!hasUnwindExceptions(LangOpts))
B.addAttribute(llvm::Attribute::NoUnwind);
if (D && D->hasAttr<NoStackProtectorAttr>())
; // Do nothing.
else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
LangOpts.getStackProtector() == LangOptions::SSPOn)
B.addAttribute(llvm::Attribute::StackProtectStrong);
else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
B.addAttribute(llvm::Attribute::StackProtect);
else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
B.addAttribute(llvm::Attribute::StackProtectStrong);
else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
B.addAttribute(llvm::Attribute::StackProtectReq);
if (!D) {
// If we don't have a declaration to control inlining, the function isn't
// explicitly marked as alwaysinline for semantic reasons, and inlining is
// disabled, mark the function as noinline.
if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
B.addAttribute(llvm::Attribute::NoInline);
F->addFnAttrs(B);
return;
}
// Track whether we need to add the optnone LLVM attribute,
// starting with the default for this optimization level.
bool ShouldAddOptNone =
!CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
// We can't add optnone in the following cases, it won't pass the verifier.
ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
// Add optnone, but do so only if the function isn't always_inline.
if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
B.addAttribute(llvm::Attribute::OptimizeNone);
// OptimizeNone implies noinline; we should not be inlining such functions.
B.addAttribute(llvm::Attribute::NoInline);
// We still need to handle naked functions even though optnone subsumes
// much of their semantics.
if (D->hasAttr<NakedAttr>())
B.addAttribute(llvm::Attribute::Naked);
// OptimizeNone wins over OptimizeForSize and MinSize.
F->removeFnAttr(llvm::Attribute::OptimizeForSize);
F->removeFnAttr(llvm::Attribute::MinSize);
} else if (D->hasAttr<NakedAttr>()) {
// Naked implies noinline: we should not be inlining such functions.
B.addAttribute(llvm::Attribute::Naked);
B.addAttribute(llvm::Attribute::NoInline);
} else if (D->hasAttr<NoDuplicateAttr>()) {
B.addAttribute(llvm::Attribute::NoDuplicate);
} else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
// Add noinline if the function isn't always_inline.
B.addAttribute(llvm::Attribute::NoInline);
} else if (D->hasAttr<AlwaysInlineAttr>() &&
!F->hasFnAttribute(llvm::Attribute::NoInline)) {
// (noinline wins over always_inline, and we can't specify both in IR)
B.addAttribute(llvm::Attribute::AlwaysInline);
} else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
// If we're not inlining, then force everything that isn't always_inline to
// carry an explicit noinline attribute.
if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
B.addAttribute(llvm::Attribute::NoInline);
} else {
// Otherwise, propagate the inline hint attribute and potentially use its
// absence to mark things as noinline.
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
// Search function and template pattern redeclarations for inline.
auto CheckForInline = [](const FunctionDecl *FD) {
auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
return Redecl->isInlineSpecified();
};
if (any_of(FD->redecls(), CheckRedeclForInline))
return true;
const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
if (!Pattern)
return false;
return any_of(Pattern->redecls(), CheckRedeclForInline);
};
if (CheckForInline(FD)) {
B.addAttribute(llvm::Attribute::InlineHint);
} else if (CodeGenOpts.getInlining() ==
CodeGenOptions::OnlyHintInlining &&
!FD->isInlined() &&
!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
B.addAttribute(llvm::Attribute::NoInline);
}
}
}
// Add other optimization related attributes if we are optimizing this
// function.
if (!D->hasAttr<OptimizeNoneAttr>()) {
if (D->hasAttr<ColdAttr>()) {
if (!ShouldAddOptNone)
B.addAttribute(llvm::Attribute::OptimizeForSize);
B.addAttribute(llvm::Attribute::Cold);
}
if (D->hasAttr<HotAttr>())
B.addAttribute(llvm::Attribute::Hot);
if (D->hasAttr<MinSizeAttr>())
B.addAttribute(llvm::Attribute::MinSize);
}
F->addFnAttrs(B);
unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
if (alignment)
F->setAlignment(llvm::Align(alignment));
if (!D->hasAttr<AlignedAttr>())
if (LangOpts.FunctionAlignment)
F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
// Some C++ ABIs require 2-byte alignment for member functions, in order to
// reserve a bit for differentiating between virtual and non-virtual member
// functions. If the current target's C++ ABI requires this and this is a
// member function, set its alignment accordingly.
if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
F->setAlignment(llvm::Align(2));
}
// In the cross-dso CFI mode with canonical jump tables, we want !type
// attributes on definitions only.
if (CodeGenOpts.SanitizeCfiCrossDso &&
CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
// Skip available_externally functions. They won't be codegen'ed in the
// current module anyway.
if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
CreateFunctionTypeMetadataForIcall(FD, F);
}
}
// Emit type metadata on member functions for member function pointer checks.
// These are only ever necessary on definitions; we're guaranteed that the
// definition will be present in the LTO unit as a result of LTO visibility.
auto *MD = dyn_cast<CXXMethodDecl>(D);
if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
llvm::Metadata *Id =
CreateMetadataIdentifierForType(Context.getMemberPointerType(
MD->getType(), Context.getRecordType(Base).getTypePtr()));
F->addTypeMetadata(0, Id);
}
}
}
void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
llvm::Function *F) {
if (D->hasAttr<StrictFPAttr>()) {
llvm::AttrBuilder FuncAttrs(F->getContext());
FuncAttrs.addAttribute("strictfp");
F->addFnAttrs(FuncAttrs);
}
}
void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
const Decl *D = GD.getDecl();
if (isa_and_nonnull<NamedDecl>(D))
setGVProperties(GV, GD);
else
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
if (D && D->hasAttr<UsedAttr>())
addUsedOrCompilerUsedGlobal(GV);
if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
const auto *VD = cast<VarDecl>(D);
if (VD->getType().isConstQualified() &&
VD->getStorageDuration() == SD_Static)
addUsedOrCompilerUsedGlobal(GV);
}
}
bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
llvm::AttrBuilder &Attrs) {
// Add target-cpu and target-features attributes to functions. If
// we have a decl for the function and it has a target attribute then
// parse that and add it to the feature set.
StringRef TargetCPU = getTarget().getTargetOpts().CPU;
StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
std::vector<std::string> Features;
const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
FD = FD ? FD->getMostRecentDecl() : FD;
const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
assert((!TD || !TV) && "both target_version and target specified");
const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
bool AddedAttr = false;
if (TD || TV || SD || TC) {
llvm::StringMap<bool> FeatureMap;
getContext().getFunctionFeatureMap(FeatureMap, GD);
// Produce the canonical string for this set of features.
for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
// Now add the target-cpu and target-features to the function.
// While we populated the feature map above, we still need to
// get and parse the target attribute so we can get the cpu for
// the function.
if (TD) {
ParsedTargetAttr ParsedAttr =
Target.parseTargetAttr(TD->getFeaturesStr());
if (!ParsedAttr.CPU.empty() &&
getTarget().isValidCPUName(ParsedAttr.CPU)) {
TargetCPU = ParsedAttr.CPU;
TuneCPU = ""; // Clear the tune CPU.
}
if (!ParsedAttr.Tune.empty() &&
getTarget().isValidCPUName(ParsedAttr.Tune))
TuneCPU = ParsedAttr.Tune;
}
if (SD) {
// Apply the given CPU name as the 'tune-cpu' so that the optimizer can
// favor this processor.
TuneCPU = getTarget().getCPUSpecificTuneName(
SD->getCPUName(GD.getMultiVersionIndex())->getName());
}
} else {
// Otherwise just add the existing target cpu and target features to the
// function.
Features = getTarget().getTargetOpts().Features;
}
if (!TargetCPU.empty()) {
Attrs.addAttribute("target-cpu", TargetCPU);
AddedAttr = true;
}
if (!TuneCPU.empty()) {
Attrs.addAttribute("tune-cpu", TuneCPU);
AddedAttr = true;
}
if (!Features.empty()) {
llvm::sort(Features);
Attrs.addAttribute("target-features", llvm::join(Features, ","));
AddedAttr = true;
}
return AddedAttr;
}
void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
llvm::GlobalObject *GO) {
const Decl *D = GD.getDecl();
SetCommonAttributes(GD, GO);
if (D) {
if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
if (D->hasAttr<RetainAttr>())
addUsedGlobal(GV);
if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
GV->addAttribute("bss-section", SA->getName());
if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
GV->addAttribute("data-section", SA->getName());
if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
GV->addAttribute("rodata-section", SA->getName());
if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
GV->addAttribute("relro-section", SA->getName());
}
if (auto *F = dyn_cast<llvm::Function>(GO)) {
if (D->hasAttr<RetainAttr>())
addUsedGlobal(F);
if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
if (!D->getAttr<SectionAttr>())
F->addFnAttr("implicit-section-name", SA->getName());
llvm::AttrBuilder Attrs(F->getContext());
if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
// We know that GetCPUAndFeaturesAttributes will always have the
// newest set, since it has the newest possible FunctionDecl, so the
// new ones should replace the old.
llvm::AttributeMask RemoveAttrs;
RemoveAttrs.addAttribute("target-cpu");
RemoveAttrs.addAttribute("target-features");
RemoveAttrs.addAttribute("tune-cpu");
F->removeFnAttrs(RemoveAttrs);
F->addFnAttrs(Attrs);
}
}
if (const auto *CSA = D->getAttr<CodeSegAttr>())
GO->setSection(CSA->getName());
else if (const auto *SA = D->getAttr<SectionAttr>())
GO->setSection(SA->getName());
}
getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
}
void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
llvm::Function *F,
const CGFunctionInfo &FI) {
const Decl *D = GD.getDecl();
SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
SetLLVMFunctionAttributesForDefinition(D, F);
F->setLinkage(llvm::Function::InternalLinkage);
setNonAliasAttributes(GD, F);
}
static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
// Set linkage and visibility in case we never see a definition.
LinkageInfo LV = ND->getLinkageAndVisibility();
// Don't set internal linkage on declarations.
// "extern_weak" is overloaded in LLVM; we probably should have
// separate linkage types for this.
if (isExternallyVisible(LV.getLinkage()) &&
(ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
}
void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
llvm::Function *F) {
// Only if we are checking indirect calls.
if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
return;
// Non-static class methods are handled via vtable or member function pointer
// checks elsewhere.
if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
return;
llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
F->addTypeMetadata(0, MD);
F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
// Emit a hash-based bit set entry for cross-DSO calls.
if (CodeGenOpts.SanitizeCfiCrossDso)
if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
}
void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
return;
llvm::LLVMContext &Ctx = F->getContext();
llvm::MDBuilder MDB(Ctx);
F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
llvm::MDNode::get(
Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
}
static bool allowKCFIIdentifier(StringRef Name) {
// KCFI type identifier constants are only necessary for external assembly
// functions, which means it's safe to skip unusual names. Subset of
// MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
return llvm::all_of(Name, [](const char &C) {
return llvm::isAlnum(C) || C == '_' || C == '.';
});
}
void CodeGenModule::finalizeKCFITypes() {
llvm::Module &M = getModule();
for (auto &F : M.functions()) {
// Remove KCFI type metadata from non-address-taken local functions.
bool AddressTaken = F.hasAddressTaken();
if (!AddressTaken && F.hasLocalLinkage())
F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
// Generate a constant with the expected KCFI type identifier for all
// address-taken function declarations to support annotating indirectly
// called assembly functions.
if (!AddressTaken || !F.isDeclaration())
continue;
const llvm::ConstantInt *Type;
if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
else
continue;
StringRef Name = F.getName();
if (!allowKCFIIdentifier(Name))
continue;
std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
Name + ", " + Twine(Type->getZExtValue()) + "\n")
.str();
M.appendModuleInlineAsm(Asm);
}
}
void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
bool IsIncompleteFunction,
bool IsThunk) {
if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
// If this is an intrinsic function, set the function's attributes
// to the intrinsic's attributes.
F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
return;
}
const auto *FD = cast<FunctionDecl>(GD.getDecl());
if (!IsIncompleteFunction)
SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
IsThunk);
// Add the Returned attribute for "this", except for iOS 5 and earlier
// where substantial code, including the libstdc++ dylib, was compiled with
// GCC and does not actually return "this".
if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
!(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
assert(!F->arg_empty() &&
F->arg_begin()->getType()
->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return");
F->addParamAttr(0, llvm::Attribute::Returned);
}
// Only a few attributes are set on declarations; these may later be
// overridden by a definition.
setLinkageForGV(F, FD);
setGVProperties(F, FD);
// Setup target-specific attributes.
if (!IsIncompleteFunction && F->isDeclaration())
getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
if (const auto *CSA = FD->getAttr<CodeSegAttr>())
F->setSection(CSA->getName());
else if (const auto *SA = FD->getAttr<SectionAttr>())
F->setSection(SA->getName());
if (const auto *EA = FD->getAttr<ErrorAttr>()) {
if (EA->isError())
F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
else if (EA->isWarning())
F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
}
// If we plan on emitting this inline builtin, we can't treat it as a builtin.
if (FD->isInlineBuiltinDeclaration()) {
const FunctionDecl *FDBody;
bool HasBody = FD->hasBody(FDBody);
(void)HasBody;
assert(HasBody && "Inline builtin declarations should always have an "
"available body!");
if (shouldEmitFunction(FDBody))
F->addFnAttr(llvm::Attribute::NoBuiltin);
}
if (FD->isReplaceableGlobalAllocationFunction()) {
// A replaceable global allocation function does not act like a builtin by
// default, only if it is invoked by a new-expression or delete-expression.
F->addFnAttr(llvm::Attribute::NoBuiltin);
}
if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
if (MD->isVirtual())
F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
// Don't emit entries for function declarations in the cross-DSO mode. This
// is handled with better precision by the receiving DSO. But if jump tables
// are non-canonical then we need type metadata in order to produce the local
// jump table.
if (!CodeGenOpts.SanitizeCfiCrossDso ||
!CodeGenOpts.SanitizeCfiCanonicalJumpTables)
CreateFunctionTypeMetadataForIcall(FD, F);
if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
setKCFIType(FD, F);
if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
if (const auto *CB = FD->getAttr<CallbackAttr>()) {
// Annotate the callback behavior as metadata:
// - The callback callee (as argument number).
// - The callback payloads (as argument numbers).
llvm::LLVMContext &Ctx = F->getContext();
llvm::MDBuilder MDB(Ctx);
// The payload indices are all but the first one in the encoding. The first
// identifies the callback callee.
int CalleeIdx = *CB->encoding_begin();
ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
F->addMetadata(llvm::LLVMContext::MD_callback,
*llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
CalleeIdx, PayloadIndices,
/* VarArgsArePassed */ false)}));
}
}
void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
"Only globals with definition can force usage.");
LLVMUsed.emplace_back(GV);
}
void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
assert(!GV->isDeclaration() &&
"Only globals with definition can force usage.");
LLVMCompilerUsed.emplace_back(GV);
}
void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
"Only globals with definition can force usage.");
if (getTriple().isOSBinFormatELF())
LLVMCompilerUsed.emplace_back(GV);
else
LLVMUsed.emplace_back(GV);
}
static void emitUsed(CodeGenModule &CGM, StringRef Name,
std::vector<llvm::WeakTrackingVH> &List) {
// Don't create llvm.used if there is no need.
if (List.empty())
return;
// Convert List to what ConstantArray needs.
SmallVector<llvm::Constant*, 8> UsedArray;
UsedArray.resize(List.size());
for (unsigned i = 0, e = List.size(); i != e; ++i) {
UsedArray[i] =
llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
}
if (UsedArray.empty())
return;
llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
auto *GV = new llvm::GlobalVariable(
CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
llvm::ConstantArray::get(ATy, UsedArray), Name);
GV->setSection("llvm.metadata");
}
void CodeGenModule::emitLLVMUsed() {
emitUsed(*this, "llvm.used", LLVMUsed);
emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
}
void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}
void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
llvm::SmallString<32> Opt;
getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
if (Opt.empty())
return;
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}
void CodeGenModule::AddDependentLib(StringRef Lib) {
auto &C = getLLVMContext();
if (getTarget().getTriple().isOSBinFormatELF()) {
ELFDependentLibraries.push_back(
llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
return;
}
llvm::SmallString<24> Opt;
getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
}
/// Add link options implied by the given module, including modules
/// it depends on, using a postorder walk.
static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
SmallVectorImpl<llvm::MDNode *> &Metadata,
llvm::SmallPtrSet<Module *, 16> &Visited) {
// Import this module's parent.
if (Mod->Parent && Visited.insert(Mod->Parent).second) {
addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
}
// Import this module's dependencies.
for (Module *Import : llvm::reverse(Mod->Imports)) {
if (Visited.insert(Import).second)
addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
}
// Add linker options to link against the libraries/frameworks
// described by this module.
llvm::LLVMContext &Context = CGM.getLLVMContext();
bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
// For modules that use export_as for linking, use that module
// name instead.
if (Mod->UseExportAsModuleLinkName)
return;
for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
// Link against a framework. Frameworks are currently Darwin only, so we
// don't to ask TargetCodeGenInfo for the spelling of the linker option.
if (LL.IsFramework) {
llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
llvm::MDString::get(Context, LL.Library)};
Metadata.push_back(llvm::MDNode::get(Context, Args));
continue;
}
// Link against a library.
if (IsELF) {
llvm::Metadata *Args[2] = {
llvm::MDString::get(Context, "lib"),
llvm::MDString::get(Context, LL.Library),
};
Metadata.push_back(llvm::MDNode::get(Context, Args));
} else {
llvm::SmallString<24> Opt;
CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
auto *OptString = llvm::MDString::get(Context, Opt);
Metadata.push_back(llvm::MDNode::get(Context, OptString));
}
}
}
void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
// Emit the initializers in the order that sub-modules appear in the
// source, first Global Module Fragments, if present.
if (auto GMF = Primary->getGlobalModuleFragment()) {
for (Decl *D : getContext().getModuleInitializers(GMF)) {
if (isa<ImportDecl>(D))
continue;
assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
EmitTopLevelDecl(D);
}
}
// Second any associated with the module, itself.
for (Decl *D : getContext().getModuleInitializers(Primary)) {
// Skip import decls, the inits for those are called explicitly.
if (isa<ImportDecl>(D))
continue;
EmitTopLevelDecl(D);
}
// Third any associated with the Privat eMOdule Fragment, if present.
if (auto PMF = Primary->getPrivateModuleFragment()) {
for (Decl *D : getContext().getModuleInitializers(PMF)) {
assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
EmitTopLevelDecl(D);
}
}
}
void CodeGenModule::EmitModuleLinkOptions() {
// Collect the set of all of the modules we want to visit to emit link
// options, which is essentially the imported modules and all of their
// non-explicit child modules.
llvm::SetVector<clang::Module *> LinkModules;
llvm::SmallPtrSet<clang::Module *, 16> Visited;
SmallVector<clang::Module *, 16> Stack;
// Seed the stack with imported modules.
for (Module *M : ImportedModules) {
// Do not add any link flags when an implementation TU of a module imports
// a header of that same module.
if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
!getLangOpts().isCompilingModule())
continue;
if (Visited.insert(M).second)
Stack.push_back(M);
}
// Find all of the modules to import, making a little effort to prune
// non-leaf modules.
while (!Stack.empty()) {
clang::Module *Mod = Stack.pop_back_val();
bool AnyChildren = false;
// Visit the submodules of this module.
for (const auto &SM : Mod->submodules()) {
// Skip explicit children; they need to be explicitly imported to be
// linked against.
if (SM->IsExplicit)
continue;
if (Visited.insert(SM).second) {
Stack.push_back(SM);
AnyChildren = true;
}
}
// We didn't find any children, so add this module to the list of
// modules to link against.
if (!AnyChildren) {
LinkModules.insert(Mod);
}
}
// Add link options for all of the imported modules in reverse topological
// order. We don't do anything to try to order import link flags with respect
// to linker options inserted by things like #pragma comment().
SmallVector<llvm::MDNode *, 16> MetadataArgs;
Visited.clear();
for (Module *M : LinkModules)
if (Visited.insert(M).second)
addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
std::reverse(MetadataArgs.begin(), MetadataArgs.end());
LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
// Add the linker options metadata flag.
auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
for (auto *MD : LinkerOptionsMetadata)
NMD->addOperand(MD);
}
void CodeGenModule::EmitDeferred() {
// Emit deferred declare target declarations.
if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
getOpenMPRuntime().emitDeferredTargetDecls();
// Emit code for any potentially referenced deferred decls. Since a
// previously unused static decl may become used during the generation of code
// for a static function, iterate until no changes are made.
if (!DeferredVTables.empty()) {
EmitDeferredVTables();
// Emitting a vtable doesn't directly cause more vtables to
// become deferred, although it can cause functions to be
// emitted that then need those vtables.
assert(DeferredVTables.empty());
}
// Emit CUDA/HIP static device variables referenced by host code only.
// Note we should not clear CUDADeviceVarODRUsedByHost since it is still
// needed for further handling.
if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
llvm::append_range(DeferredDeclsToEmit,
getContext().CUDADeviceVarODRUsedByHost);
// Stop if we're out of both deferred vtables and deferred declarations.
if (DeferredDeclsToEmit.empty())
return;
// Grab the list of decls to emit. If EmitGlobalDefinition schedules more
// work, it will not interfere with this.
std::vector<GlobalDecl> CurDeclsToEmit;
CurDeclsToEmit.swap(DeferredDeclsToEmit);
for (GlobalDecl &D : CurDeclsToEmit) {
// We should call GetAddrOfGlobal with IsForDefinition set to true in order
// to get GlobalValue with exactly the type we need, not something that
// might had been created for another decl with the same mangled name but
// different type.
llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
GetAddrOfGlobal(D, ForDefinition));
// In case of different address spaces, we may still get a cast, even with
// IsForDefinition equal to true. Query mangled names table to get
// GlobalValue.
if (!GV)
GV = GetGlobalValue(getMangledName(D));
// Make sure GetGlobalValue returned non-null.
assert(GV);
// Check to see if we've already emitted this. This is necessary
// for a couple of reasons: first, decls can end up in the
// deferred-decls queue multiple times, and second, decls can end
// up with definitions in unusual ways (e.g. by an extern inline
// function acquiring a strong function redefinition). Just
// ignore these cases.
if (!GV->isDeclaration())
continue;
// If this is OpenMP, check if it is legal to emit this global normally.
if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
continue;
// Otherwise, emit the definition and move on to the next one.
EmitGlobalDefinition(D, GV);
// If we found out that we need to emit more decls, do that recursively.
// This has the advantage that the decls are emitted in a DFS and related
// ones are close together, which is convenient for testing.
if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
EmitDeferred();
assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
}
}
}
void CodeGenModule::EmitVTablesOpportunistically() {
// Try to emit external vtables as available_externally if they have emitted
// all inlined virtual functions. It runs after EmitDeferred() and therefore
// is not allowed to create new references to things that need to be emitted
// lazily. Note that it also uses fact that we eagerly emitting RTTI.
assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
&& "Only emit opportunistic vtables with optimizations");
for (const CXXRecordDecl *RD : OpportunisticVTables) {
assert(getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables");
if (getCXXABI().canSpeculativelyEmitVTable(RD))
VTables.GenerateClassData(RD);
}
OpportunisticVTables.clear();
}
void CodeGenModule::EmitGlobalAnnotations() {
if (Annotations.empty())
return;
// Create a new global variable for the ConstantStruct in the Module.
llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
Annotations[0]->getType(), Annotations.size()), Annotations);
auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
llvm::GlobalValue::AppendingLinkage,
Array, "llvm.global.annotations");
gv->setSection(AnnotationSection);
}
llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
llvm::Constant *&AStr = AnnotationStrings[Str];
if (AStr)
return AStr;
// Not found yet, create a new global.
llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
auto *gv = new llvm::GlobalVariable(
getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
".str", nullptr, llvm::GlobalValue::NotThreadLocal,
ConstGlobalsPtrTy->getAddressSpace());
gv->setSection(AnnotationSection);
gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
AStr = gv;
return gv;
}
llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
SourceManager &SM = getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
if (PLoc.isValid())
return EmitAnnotationString(PLoc.getFilename());
return EmitAnnotationString(SM.getBufferName(Loc));
}
llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
SourceManager &SM = getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(L);
unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
SM.getExpansionLineNumber(L);
return llvm::ConstantInt::get(Int32Ty, LineNo);
}
llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
if (Exprs.empty())
return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
llvm::FoldingSetNodeID ID;
for (Expr *E : Exprs) {
ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
}
llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
if (Lookup)
return Lookup;
llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
LLVMArgs.reserve(Exprs.size());
ConstantEmitter ConstEmiter(*this);
llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
const auto *CE = cast<clang::ConstantExpr>(E);
return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
CE->getType());
});
auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
llvm::GlobalValue::PrivateLinkage, Struct,
".args");
GV->setSection(AnnotationSection);
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
Lookup = Bitcasted;
return Bitcasted;
}
llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
const AnnotateAttr *AA,
SourceLocation L) {
// Get the globals for file name, annotation, and the line number.
llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
*UnitGV = EmitAnnotationUnit(L),
*LineNoCst = EmitAnnotationLineNo(L),
*Args = EmitAnnotationArgs(AA);
llvm::Constant *GVInGlobalsAS = GV;
if (GV->getAddressSpace() !=
getDataLayout().getDefaultGlobalsAddressSpace()) {
GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
GV, GV->getValueType()->getPointerTo(
getDataLayout().getDefaultGlobalsAddressSpace()));
}
// Create the ConstantStruct for the global annotation.
llvm::Constant *Fields[] = {
llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
LineNoCst,
Args,
};
return llvm::ConstantStruct::getAnon(Fields);
}
void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
llvm::GlobalValue *GV) {
assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
// Get the struct elements for these annotations.
for (const auto *I : D->specific_attrs<AnnotateAttr>())
Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
}
bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
SourceLocation Loc) const {
const auto &NoSanitizeL = getContext().getNoSanitizeList();
// NoSanitize by function name.
if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
return true;
// NoSanitize by location. Check "mainfile" prefix.
auto &SM = Context.getSourceManager();
const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
return true;
// Check "src" prefix.
if (Loc.isValid())
return NoSanitizeL.containsLocation(Kind, Loc);
// If location is unknown, this may be a compiler-generated function. Assume
// it's located in the main file.
return NoSanitizeL.containsFile(Kind, MainFile.getName());
}
bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
llvm::GlobalVariable *GV,
SourceLocation Loc, QualType Ty,
StringRef Category) const {
const auto &NoSanitizeL = getContext().getNoSanitizeList();
if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
return true;
auto &SM = Context.getSourceManager();
if (NoSanitizeL.containsMainFile(
Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
return true;
if (NoSanitizeL.containsLocation(Kind, Loc, Category))
return true;
// Check global type.
if (!Ty.isNull()) {
// Drill down the array types: if global variable of a fixed type is
// not sanitized, we also don't instrument arrays of them.
while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
Ty = AT->getElementType();
Ty = Ty.getCanonicalType().getUnqualifiedType();
// Only record types (classes, structs etc.) are ignored.
if (Ty->isRecordType()) {
std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
if (NoSanitizeL.containsType(Kind, TypeStr, Category))
return true;
}
}
return false;
}
bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
StringRef Category) const {
const auto &XRayFilter = getContext().getXRayFilter();
using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
auto Attr = ImbueAttr::NONE;
if (Loc.isValid())
Attr = XRayFilter.shouldImbueLocation(Loc, Category);
if (Attr == ImbueAttr::NONE)
Attr = XRayFilter.shouldImbueFunction(Fn->getName());
switch (Attr) {
case ImbueAttr::NONE:
return false;
case ImbueAttr::ALWAYS:
Fn->addFnAttr("function-instrument", "xray-always");
break;
case ImbueAttr::ALWAYS_ARG1:
Fn->addFnAttr("function-instrument", "xray-always");
Fn->addFnAttr("xray-log-args", "1");
break;
case ImbueAttr::NEVER:
Fn->addFnAttr("function-instrument", "xray-never");
break;
}
return true;
}
ProfileList::ExclusionType
CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
SourceLocation Loc) const {
const auto &ProfileList = getContext().getProfileList();
// If the profile list is empty, then instrument everything.
if (ProfileList.isEmpty())
return ProfileList::Allow;
CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
// First, check the function name.
if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
return *V;
// Next, check the source location.
if (Loc.isValid())
if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
return *V;
// If location is unknown, this may be a compiler-generated function. Assume
// it's located in the main file.
auto &SM = Context.getSourceManager();
if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
return *V;
return ProfileList.getDefault(Kind);
}
ProfileList::ExclusionType
CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
SourceLocation Loc) const {
auto V = isFunctionBlockedByProfileList(Fn, Loc);
if (V != ProfileList::Allow)
return V;
auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
if (NumGroups > 1) {
auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
return ProfileList::Skip;
}
return ProfileList::Allow;
}
bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
// Never defer when EmitAllDecls is specified.
if (LangOpts.EmitAllDecls)
return true;
if (CodeGenOpts.KeepStaticConsts) {
const auto *VD = dyn_cast<VarDecl>(Global);
if (VD && VD->getType().isConstQualified() &&
VD->getStorageDuration() == SD_Static)
return true;
}
return getContext().DeclMustBeEmitted(Global);
}
bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
// In OpenMP 5.0 variables and function may be marked as
// device_type(host/nohost) and we should not emit them eagerly unless we sure
// that they must be emitted on the host/device. To be sure we need to have
// seen a declare target with an explicit mentioning of the function, we know
// we have if the level of the declare target attribute is -1. Note that we
// check somewhere else if we should emit this at all.
if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
OMPDeclareTargetDeclAttr::getActiveAttr(Global);
if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
return false;
}
if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
// Implicit template instantiations may change linkage if they are later
// explicitly instantiated, so they should not be emitted eagerly.
return false;
}
if (const auto *VD = dyn_cast<VarDecl>(Global)) {
if (Context.getInlineVariableDefinitionKind(VD) ==
ASTContext::InlineVariableDefinitionKind::WeakUnknown)
// A definition of an inline constexpr static data member may change
// linkage later if it's redeclared outside the class.
return false;
if (CXX20ModuleInits && VD->getOwningModule() &&
!VD->getOwningModule()->isModuleMapModule()) {
// For CXX20, module-owned initializers need to be deferred, since it is
// not known at this point if they will be run for the current module or
// as part of the initializer for an imported one.
return false;
}
}
// If OpenMP is enabled and threadprivates must be generated like TLS, delay
// codegen for global variables, because they may be marked as threadprivate.
if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
!isTypeConstant(Global->getType(), false) &&
!OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
return false;
return true;
}
ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
StringRef Name = getMangledName(GD);
// The UUID descriptor should be pointer aligned.
CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
// Look for an existing global.
if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
return ConstantAddress(GV, GV->getValueType(), Alignment);
ConstantEmitter Emitter(*this);
llvm::Constant *Init;
APValue &V = GD->getAsAPValue();
if (!V.isAbsent()) {
// If possible, emit the APValue version of the initializer. In particular,
// this gets the type of the constant right.
Init = Emitter.emitForInitializer(
GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
} else {
// As a fallback, directly construct the constant.
// FIXME: This may get padding wrong under esoteric struct layout rules.
// MSVC appears to create a complete type 'struct __s_GUID' that it
// presumably uses to represent these constants.
MSGuidDecl::Parts Parts = GD->getParts();
llvm::Constant *Fields[4] = {
llvm::ConstantInt::get(Int32Ty, Parts.Part1),
llvm::ConstantInt::get(Int16Ty, Parts.Part2),
llvm::ConstantInt::get(Int16Ty, Parts.Part3),
llvm::ConstantDataArray::getRaw(
StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
Int8Ty)};
Init = llvm::ConstantStruct::getAnon(Fields);
}
auto *GV = new llvm::GlobalVariable(
getModule(), Init->getType(),
/*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
if (supportsCOMDAT())
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
setDSOLocal(GV);
if (!V.isAbsent()) {
Emitter.finalize(GV);
return ConstantAddress(GV, GV->getValueType(), Alignment);
}
llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
GV, Ty->getPointerTo(GV->getAddressSpace()));
return ConstantAddress(Addr, Ty, Alignment);
}
ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
const UnnamedGlobalConstantDecl *GCD) {
CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
llvm::GlobalVariable **Entry = nullptr;
Entry = &UnnamedGlobalConstantDeclMap[GCD];
if (*Entry)
return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
ConstantEmitter Emitter(*this);
llvm::Constant *Init;
const APValue &V = GCD->getValue();
assert(!V.isAbsent());
Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
GCD->getType());
auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
/*isConstant=*/true,
llvm::GlobalValue::PrivateLinkage, Init,
".constant");
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
GV->setAlignment(Alignment.getAsAlign());
Emitter.finalize(GV);
*Entry = GV;
return ConstantAddress(GV, GV->getValueType(), Alignment);
}
ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
const TemplateParamObjectDecl *TPO) {
StringRef Name = getMangledName(TPO);
CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
return ConstantAddress(GV, GV->getValueType(), Alignment);
ConstantEmitter Emitter(*this);
llvm::Constant *Init = Emitter.emitForInitializer(
TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
if (!Init) {
ErrorUnsupported(TPO, "template parameter object");
return ConstantAddress::invalid();
}
auto *GV = new llvm::GlobalVariable(
getModule(), Init->getType(),
/*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
if (supportsCOMDAT())
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
Emitter.finalize(GV);
return ConstantAddress(GV, GV->getValueType(), Alignment);
}
ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
const AliasAttr *AA = VD->getAttr<AliasAttr>();
assert(AA && "No alias?");
CharUnits Alignment = getContext().getDeclAlign(VD);
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
// See if there is already something with the target's name in the module.
llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
if (Entry) {
unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
return ConstantAddress(Ptr, DeclTy, Alignment);
}
llvm::Constant *Aliasee;
if (isa<llvm::FunctionType>(DeclTy))
Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
GlobalDecl(cast<FunctionDecl>(VD)),
/*ForVTable=*/false);
else
Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
nullptr);
auto *F = cast<llvm::GlobalValue>(Aliasee);
F->setLinkage(llvm::Function::ExternalWeakLinkage);
WeakRefReferences.insert(F);
return ConstantAddress(Aliasee, DeclTy, Alignment);
}
void CodeGenModule::EmitGlobal(GlobalDecl GD) {
const auto *Global = cast<ValueDecl>(GD.getDecl());
// Weak references don't produce any output by themselves.
if (Global->hasAttr<WeakRefAttr>())
return;
// If this is an alias definition (which otherwise looks like a declaration)
// emit it now.
if (Global->hasAttr<AliasAttr>())
return EmitAliasDefinition(GD);
// IFunc like an alias whose value is resolved at runtime by calling resolver.
if (Global->hasAttr<IFuncAttr>())
return emitIFuncDefinition(GD);
// If this is a cpu_dispatch multiversion function, emit the resolver.
if (Global->hasAttr<CPUDispatchAttr>())
return emitCPUDispatchDefinition(GD);
// If this is CUDA, be selective about which declarations we emit.
if (LangOpts.CUDA) {
if (LangOpts.CUDAIsDevice) {
if (!Global->hasAttr<CUDADeviceAttr>() &&
!Global->hasAttr<CUDAGlobalAttr>() &&
!Global->hasAttr<CUDAConstantAttr>() &&
!Global->hasAttr<CUDASharedAttr>() &&
!Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
!Global->getType()->isCUDADeviceBuiltinTextureType())
return;
} else {
// We need to emit host-side 'shadows' for all global
// device-side variables because the CUDA runtime needs their
// size and host-side address in order to provide access to
// their device-side incarnations.
// So device-only functions are the only things we skip.
if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
Global->hasAttr<CUDADeviceAttr>())
return;
assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
"Expected Variable or Function");
}
}
if (LangOpts.OpenMP) {
// If this is OpenMP, check if it is legal to emit this global normally.
if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
return;
if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
if (MustBeEmitted(Global))
EmitOMPDeclareReduction(DRD);
return;
} else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
if (MustBeEmitted(Global))
EmitOMPDeclareMapper(DMD);
return;
}
}
// Ignore declarations, they will be emitted on their first use.
if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
// Forward declarations are emitted lazily on first use.
if (!FD->doesThisDeclarationHaveABody()) {
if (!FD->doesDeclarationForceExternallyVisibleDefinition())
return;
StringRef MangledName = getMangledName(GD);
// Compute the function info and LLVM type.
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
llvm::Type *Ty = getTypes().GetFunctionType(FI);
GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
/*DontDefer=*/false);
return;
}
} else {
const auto *VD = cast<VarDecl>(Global);
assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
!Context.isMSStaticDataMemberInlineDefinition(VD)) {
if (LangOpts.OpenMP) {
// Emit declaration of the must-be-emitted declare target variable.
if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
bool UnifiedMemoryEnabled =
getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
*Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
!UnifiedMemoryEnabled) {
(void)GetAddrOfGlobalVar(VD);
} else {
assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
((*Res == OMPDeclareTargetDeclAttr::MT_To ||
*Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
UnifiedMemoryEnabled)) &&
"Link clause or to clause with unified memory expected.");
(void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
}
return;
}
}
// If this declaration may have caused an inline variable definition to
// change linkage, make sure that it's emitted.
if (Context.getInlineVariableDefinitionKind(VD) ==
ASTContext::InlineVariableDefinitionKind::Strong)
GetAddrOfGlobalVar(VD);
return;
}
}
// Defer code generation to first use when possible, e.g. if this is an inline
// function. If the global must always be emitted, do it eagerly if possible
// to benefit from cache locality.
if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
// Emit the definition if it can't be deferred.
EmitGlobalDefinition(GD);
return;
}
// If we're deferring emission of a C++ variable with an
// initializer, remember the order in which it appeared in the file.
if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
cast<VarDecl>(Global)->hasInit()) {
DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
CXXGlobalInits.push_back(nullptr);
}
StringRef MangledName = getMangledName(GD);
if (GetGlobalValue(MangledName) != nullptr) {
// The value has already been used and should therefore be emitted.
addDeferredDeclToEmit(GD);
} else if (MustBeEmitted(Global)) {
// The value must be emitted, but cannot be emitted eagerly.
assert(!MayBeEmittedEagerly(Global));
addDeferredDeclToEmit(GD);
EmittedDeferredDecls[MangledName] = GD;
} else {
// Otherwise, remember that we saw a deferred decl with this name. The
// first use of the mangled name will cause it to move into
// DeferredDeclsToEmit.
DeferredDecls[MangledName] = GD;
}
}
// Check if T is a class type with a destructor that's not dllimport.
static bool HasNonDllImportDtor(QualType T) {
if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
return true;
return false;
}
namespace {
struct FunctionIsDirectlyRecursive
: public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
const StringRef Name;
const Builtin::Context &BI;
FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
: Name(N), BI(C) {}
bool VisitCallExpr(const CallExpr *E) {
const FunctionDecl *FD = E->getDirectCallee();
if (!FD)
return false;
AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
if (Attr && Name == Attr->getLabel())
return true;
unsigned BuiltinID = FD->getBuiltinID();
if (!BuiltinID || !BI.isLibFunction(BuiltinID))
return false;
StringRef BuiltinName = BI.getName(BuiltinID);
if (BuiltinName.startswith("__builtin_") &&
Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
return true;
}
return false;
}
bool VisitStmt(const Stmt *S) {
for (const Stmt *Child : S->children())
if (Child && this->Visit(Child))
return true;
return false;
}
};
// Make sure we're not referencing non-imported vars or functions.
struct DLLImportFunctionVisitor
: public RecursiveASTVisitor<DLLImportFunctionVisitor> {
bool SafeToInline = true;
bool shouldVisitImplicitCode() const { return true; }
bool VisitVarDecl(VarDecl *VD) {
if (VD->getTLSKind()) {
// A thread-local variable cannot be imported.
SafeToInline = false;
return SafeToInline;
}
// A variable definition might imply a destructor call.
if (VD->isThisDeclarationADefinition())
SafeToInline = !HasNonDllImportDtor(VD->getType());
return SafeToInline;
}
bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
if (const auto *D = E->getTemporary()->getDestructor())
SafeToInline = D->hasAttr<DLLImportAttr>();
return SafeToInline;
}
bool VisitDeclRefExpr(DeclRefExpr *E) {
ValueDecl *VD = E->getDecl();
if (isa<FunctionDecl>(VD))
SafeToInline = VD->hasAttr<DLLImportAttr>();
else if (VarDecl *V = dyn_cast<VarDecl>(VD))
SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
return SafeToInline;
}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
return SafeToInline;
}
bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
CXXMethodDecl *M = E->getMethodDecl();
if (!M) {
// Call through a pointer to member function. This is safe to inline.
SafeToInline = true;
} else {
SafeToInline = M->hasAttr<DLLImportAttr>();
}
return SafeToInline;
}
bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
return SafeToInline;
}
bool VisitCXXNewExpr(CXXNewExpr *E) {
SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
return SafeToInline;
}
};
}
// isTriviallyRecursive - Check if this function calls another
// decl that, because of the asm attribute or the other decl being a builtin,
// ends up pointing to itself.
bool
CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
StringRef Name;
if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
// asm labels are a special kind of mangling we have to support.
AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
if (!Attr)
return false;
Name = Attr->getLabel();
} else {
Name = FD->getName();
}
FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
const Stmt *Body = FD->getBody();
return Body ? Walker.Visit(Body) : false;
}
bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
return true;
const auto *F = cast<FunctionDecl>(GD.getDecl());
if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
return false;
if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
// Check whether it would be safe to inline this dllimport function.
DLLImportFunctionVisitor Visitor;
Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
if (!Visitor.SafeToInline)
return false;
if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
// Implicit destructor invocations aren't captured in the AST, so the
// check above can't see them. Check for them manually here.
for (const Decl *Member : Dtor->getParent()->decls())
if (isa<FieldDecl>(Member))
if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
return false;
for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
if (HasNonDllImportDtor(B.getType()))
return false;
}
}
// Inline builtins declaration must be emitted. They often are fortified
// functions.
if (F->isInlineBuiltinDeclaration())
return true;
// PR9614. Avoid cases where the source code is lying to us. An available
// externally function should have an equivalent function somewhere else,
// but a function that calls itself through asm label/`__builtin_` trickery is
// clearly not equivalent to the real implementation.
// This happens in glibc's btowc and in some configure checks.
return !isTriviallyRecursive(F);
}
bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
return CodeGenOpts.OptimizationLevel > 0;
}
void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
llvm::GlobalValue *GV) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
if (FD->isCPUSpecificMultiVersion()) {
auto *Spec = FD->getAttr<CPUSpecificAttr>();
for (unsigned I = 0; I < Spec->cpus_size(); ++I)
EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
} else if (FD->isTargetClonesMultiVersion()) {
auto *Clone = FD->getAttr<TargetClonesAttr>();
for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
if (Clone->isFirstOfVersion(I))
EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
// Ensure that the resolver function is also emitted.
GetOrCreateMultiVersionResolver(GD);
} else
EmitGlobalFunctionDefinition(GD, GV);
}
void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
const auto *D = cast<ValueDecl>(GD.getDecl());
PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
Context.getSourceManager(),
"Generating code for declaration");
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
// At -O0, don't generate IR for functions with available_externally
// linkage.
if (!shouldEmitFunction(GD))
return;
llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
std::string Name;
llvm::raw_string_ostream OS(Name);
FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
/*Qualified=*/true);
return Name;
});
if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
// Make sure to emit the definition(s) before we emit the thunks.
// This is necessary for the generation of certain thunks.
if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
ABI->emitCXXStructor(GD);
else if (FD->isMultiVersion())
EmitMultiVersionFunctionDefinition(GD, GV);
else
EmitGlobalFunctionDefinition(GD, GV);
if (Method->isVirtual())
getVTables().EmitThunks(GD);
return;
}
if (FD->isMultiVersion())
return EmitMultiVersionFunctionDefinition(GD, GV);
return EmitGlobalFunctionDefinition(GD, GV);
}
if (const auto *VD = dyn_cast<VarDecl>(D))
return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
}
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
llvm::Function *NewFn);
static unsigned
TargetMVPriority(const TargetInfo &TI,
const CodeGenFunction::MultiVersionResolverOption &RO) {
unsigned Priority = 0;
unsigned NumFeatures = 0;
for (StringRef Feat : RO.Conditions.Features) {
Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
NumFeatures++;
}
if (!RO.Conditions.Architecture.empty())
Priority = std::max(
Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
Priority += TI.multiVersionFeatureCost() * NumFeatures;
return Priority;
}
// Multiversion functions should be at most 'WeakODRLinkage' so that a different
// TU can forward declare the function without causing problems. Particularly
// in the cases of CPUDispatch, this causes issues. This also makes sure we
// work with internal linkage functions, so that the same function name can be
// used with internal linkage in multiple TUs.
llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
GlobalDecl GD) {
const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
if (FD->getFormalLinkage() == InternalLinkage)
return llvm::GlobalValue::InternalLinkage;
return llvm::GlobalValue::WeakODRLinkage;
}
void CodeGenModule::emitMultiVersionFunctions() {
std::vector<GlobalDecl> MVFuncsToEmit;
MultiVersionFuncs.swap(MVFuncsToEmit);
for (GlobalDecl GD : MVFuncsToEmit) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
assert(FD && "Expected a FunctionDecl");
SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
if (FD->isTargetMultiVersion()) {
getContext().forEachMultiversionedFunctionVersion(
FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
GlobalDecl CurGD{
(CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
StringRef MangledName = getMangledName(CurGD);
llvm::Constant *Func = GetGlobalValue(MangledName);
if (!Func) {
if (CurFD->isDefined()) {
EmitGlobalFunctionDefinition(CurGD, nullptr);
Func = GetGlobalValue(MangledName);
} else {
const CGFunctionInfo &FI =
getTypes().arrangeGlobalDeclaration(GD);
llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
/*DontDefer=*/false, ForDefinition);
}
assert(Func && "This should have just been created");
}
if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
const auto *TA = CurFD->getAttr<TargetAttr>();
llvm::SmallVector<StringRef, 8> Feats;
TA->getAddedFeatures(Feats);
Options.emplace_back(cast<llvm::Function>(Func),
TA->getArchitecture(), Feats);
} else {
const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
llvm::SmallVector<StringRef, 8> Feats;
TVA->getFeatures(Feats);
Options.emplace_back(cast<llvm::Function>(Func),
/*Architecture*/ "", Feats);
}
});
} else if (FD->isTargetClonesMultiVersion()) {
const auto *TC = FD->getAttr<TargetClonesAttr>();
for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
++VersionIndex) {
if (!TC->isFirstOfVersion(VersionIndex))
continue;
GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
VersionIndex};
StringRef Version = TC->getFeatureStr(VersionIndex);
StringRef MangledName = getMangledName(CurGD);
llvm::Constant *Func = GetGlobalValue(MangledName);
if (!Func) {
if (FD->isDefined()) {
EmitGlobalFunctionDefinition(CurGD, nullptr);
Func = GetGlobalValue(MangledName);
} else {
const CGFunctionInfo &FI =
getTypes().arrangeGlobalDeclaration(CurGD);
llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
/*DontDefer=*/false, ForDefinition);
}
assert(Func && "This should have just been created");
}
StringRef Architecture;
llvm::SmallVector<StringRef, 1> Feature;
if (getTarget().getTriple().isAArch64()) {
if (Version != "default") {
llvm::SmallVector<StringRef, 8> VerFeats;
Version.split(VerFeats, "+");
for (auto &CurFeat : VerFeats)
Feature.push_back(CurFeat.trim());
}
} else {
if (Version.startswith("arch="))
Architecture = Version.drop_front(sizeof("arch=") - 1);
else if (Version != "default")
Feature.push_back(Version);
}
Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
}
} else {
assert(0 && "Expected a target or target_clones multiversion function");
continue;
}
llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
ResolverConstant = IFunc->getResolver();
llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
if (supportsCOMDAT())
ResolverFunc->setComdat(
getModule().getOrInsertComdat(ResolverFunc->getName()));
const TargetInfo &TI = getTarget();
llvm::stable_sort(
Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
const CodeGenFunction::MultiVersionResolverOption &RHS) {
return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
});
CodeGenFunction CGF(*this);
CGF.EmitMultiVersionResolver(ResolverFunc, Options);
}
// Ensure that any additions to the deferred decls list caused by emitting a
// variant are emitted. This can happen when the variant itself is inline and
// calls a function without linkage.
if (!MVFuncsToEmit.empty())
EmitDeferred();
// Ensure that any additions to the multiversion funcs list from either the
// deferred decls or the multiversion functions themselves are emitted.
if (!MultiVersionFuncs.empty())
emitMultiVersionFunctions();
}
void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
assert(FD && "Not a FunctionDecl?");
assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
const auto *DD = FD->getAttr<CPUDispatchAttr>();
assert(DD && "Not a cpu_dispatch Function?");
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
StringRef ResolverName = getMangledName(GD);
UpdateMultiVersionNames(GD, FD, ResolverName);
llvm::Type *ResolverType;
GlobalDecl ResolverGD;
if (getTarget().supportsIFunc()) {
ResolverType = llvm::FunctionType::get(
llvm::PointerType::get(DeclTy,
getTypes().getTargetAddressSpace(FD->getType())),
false);
}
else {
ResolverType = DeclTy;
ResolverGD = GD;
}
auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
if (supportsCOMDAT())
ResolverFunc->setComdat(
getModule().getOrInsertComdat(ResolverFunc->getName()));
SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
const TargetInfo &Target = getTarget();
unsigned Index = 0;
for (const IdentifierInfo *II : DD->cpus()) {
// Get the name of the target function so we can look it up/create it.
std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
getCPUSpecificMangling(*this, II->getName());
llvm::Constant *Func = GetGlobalValue(MangledName);
if (!Func) {
GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
if (ExistingDecl.getDecl() &&
ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
Func = GetGlobalValue(MangledName);
} else {
if (!ExistingDecl.getDecl())
ExistingDecl = GD.getWithMultiVersionIndex(Index);
Func = GetOrCreateLLVMFunction(
MangledName, DeclTy, ExistingDecl,
/*ForVTable=*/false, /*DontDefer=*/true,
/*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
}
}
llvm::SmallVector<StringRef, 32> Features;
Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
llvm::transform(Features, Features.begin(),
[](StringRef Str) { return Str.substr(1); });
llvm::erase_if(Features, [&Target](StringRef Feat) {
return !Target.validateCpuSupports(Feat);
});
Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
++Index;
}
llvm::stable_sort(
Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
const CodeGenFunction::MultiVersionResolverOption &RHS) {
return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
});
// If the list contains multiple 'default' versions, such as when it contains
// 'pentium' and 'generic', don't emit the call to the generic one (since we
// always run on at least a 'pentium'). We do this by deleting the 'least
// advanced' (read, lowest mangling letter).
while (Options.size() > 1 &&
llvm::X86::getCpuSupportsMask(
(Options.end() - 2)->Conditions.Features) == 0) {
StringRef LHSName = (Options.end() - 2)->Function->getName();
StringRef RHSName = (Options.end() - 1)->Function->getName();
if (LHSName.compare(RHSName) < 0)
Options.erase(Options.end() - 2);
else
Options.erase(Options.end() - 1);
}
CodeGenFunction CGF(*this);
CGF.EmitMultiVersionResolver(ResolverFunc, Options);
if (getTarget().supportsIFunc()) {
llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
// Fix up function declarations that were created for cpu_specific before
// cpu_dispatch was known
if (!isa<llvm::GlobalIFunc>(IFunc)) {
assert(cast<llvm::Function>(IFunc)->isDeclaration());
auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
&getModule());
GI->takeName(IFunc);
IFunc->replaceAllUsesWith(GI);
IFunc->eraseFromParent();
IFunc = GI;
}
std::string AliasName = getMangledNameImpl(
*this, GD, FD, /*OmitMultiVersionMangling=*/true);
llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
if (!AliasFunc) {
auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
&getModule());
SetCommonAttributes(GD, GA);
}
}
}
/// If a dispatcher for the specified mangled name is not in the module, create
/// and return an llvm Function with the specified type.
llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
assert(FD && "Not a FunctionDecl?");
std::string MangledName =
getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
// Holds the name of the resolver, in ifunc mode this is the ifunc (which has
// a separate resolver).
std::string ResolverName = MangledName;
if (getTarget().supportsIFunc())
ResolverName += ".ifunc";
else if (FD->isTargetMultiVersion())
ResolverName += ".resolver";
// If the resolver has already been created, just return it.
if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
return ResolverGV;
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
// The resolver needs to be created. For target and target_clones, defer
// creation until the end of the TU.
if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
MultiVersionFuncs.push_back(GD);
// For cpu_specific, don't create an ifunc yet because we don't know if the
// cpu_dispatch will be emitted in this translation unit.
if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
llvm::Type *ResolverType = llvm::FunctionType::get(
llvm::PointerType::get(DeclTy,
getTypes().getTargetAddressSpace(FD->getType())),
false);
llvm::Constant *Resolver = GetOrCreateLLVMFunction(
MangledName + ".resolver", ResolverType, GlobalDecl{},
/*ForVTable=*/false);
llvm::GlobalIFunc *GIF =
llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
"", Resolver, &getModule());
GIF->setName(ResolverName);
SetCommonAttributes(FD, GIF);
return GIF;
}
llvm::Constant *Resolver = GetOrCreateLLVMFunction(
ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
assert(isa<llvm::GlobalValue>(Resolver) &&
"Resolver should be created for the first time");
SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
return Resolver;
}
/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
/// module, create and return an llvm Function with the specified type. If there
/// is something in the module with the specified name, return it potentially
/// bitcasted to the right type.
///
/// If D is non-null, it specifies a decl that correspond to this. This is used
/// to set the attributes on the function when it is first created.
llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
ForDefinition_t IsForDefinition) {
const Decl *D = GD.getDecl();
// Any attempts to use a MultiVersion function should result in retrieving
// the iFunc instead. Name Mangling will handle the rest of the changes.
if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
// For the device mark the function as one that should be emitted.
if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
!OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
!DontDefer && !IsForDefinition) {
if (const FunctionDecl *FDDef = FD->getDefinition()) {
GlobalDecl GDDef;
if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
GDDef = GlobalDecl(CD, GD.getCtorType());
else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
GDDef = GlobalDecl(DD, GD.getDtorType());
else
GDDef = GlobalDecl(FDDef);
EmitGlobal(GDDef);
}
}
if (FD->isMultiVersion()) {
UpdateMultiVersionNames(GD, FD, MangledName);
if (!IsForDefinition)
return GetOrCreateMultiVersionResolver(GD);
}
}
// Lookup the entry, lazily creating it if necessary.
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (Entry) {
if (WeakRefReferences.erase(Entry)) {
const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
if (FD && !FD->hasAttr<WeakAttr>())
Entry->setLinkage(llvm::Function::ExternalLinkage);
}
// Handle dropped DLL attributes.
if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
!shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
setDSOLocal(Entry);
}
// If there are two attempts to define the same mangled name, issue an
// error.
if (IsForDefinition && !Entry->isDeclaration()) {
GlobalDecl OtherGD;
// Check that GD is not yet in DiagnosedConflictingDefinitions is required
// to make sure that we issue an error only once.
if (lookupRepresentativeDecl(MangledName, OtherGD) &&
(GD.getCanonicalDecl().getDecl() !=
OtherGD.getCanonicalDecl().getDecl()) &&
DiagnosedConflictingDefinitions.insert(GD).second) {
getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
<< MangledName;
getDiags().Report(OtherGD.getDecl()->getLocation(),
diag::note_previous_definition);
}
}
if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
(Entry->getValueType() == Ty)) {
return Entry;
}
// Make sure the result is of the correct type.
// (If function is requested for a definition, we always need to create a new
// function, not just return a bitcast.)
if (!IsForDefinition)
return llvm::ConstantExpr::getBitCast(
Entry, Ty->getPointerTo(Entry->getAddressSpace()));
}
// This function doesn't have a complete type (for example, the return
// type is an incomplete struct). Use a fake type instead, and make
// sure not to try to set attributes.
bool IsIncompleteFunction = false;
llvm::FunctionType *FTy;
if (isa<llvm::FunctionType>(Ty)) {
FTy = cast<llvm::FunctionType>(Ty);
} else {
FTy = llvm::FunctionType::get(VoidTy, false);
IsIncompleteFunction = true;
}
llvm::Function *F =
llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
Entry ? StringRef() : MangledName, &getModule());
// If we already created a function with the same mangled name (but different
// type) before, take its name and add it to the list of functions to be
// replaced with F at the end of CodeGen.
//
// This happens if there is a prototype for a function (e.g. "int f()") and
// then a definition of a different type (e.g. "int f(int x)").
if (Entry) {
F->takeName(Entry);
// This might be an implementation of a function without a prototype, in
// which case, try to do special replacement of calls which match the new
// prototype. The really key thing here is that we also potentially drop
// arguments from the call site so as to make a direct call, which makes the
// inliner happier and suppresses a number of optimizer warnings (!) about
// dropping arguments.
if (!Entry->use_empty()) {
ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
Entry->removeDeadConstantUsers();
}
llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
addGlobalValReplacement(Entry, BC);
}
assert(F->getName() == MangledName && "name was uniqued!");
if (D)
SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
if (ExtraAttrs.hasFnAttrs()) {
llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
F->addFnAttrs(B);
}
if (!DontDefer) {
// All MSVC dtors other than the base dtor are linkonce_odr and delegate to
// each other bottoming out with the base dtor. Therefore we emit non-base
// dtors on usage, even if there is no dtor definition in the TU.
if (isa_and_nonnull<CXXDestructorDecl>(D) &&
getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
GD.getDtorType()))
addDeferredDeclToEmit(GD);
// This is the first use or definition of a mangled name. If there is a
// deferred decl with this name, remember that we need to emit it at the end
// of the file.
auto DDI = DeferredDecls.find(MangledName);
if (DDI != DeferredDecls.end()) {
// Move the potentially referenced deferred decl to the
// DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
// don't need it anymore).
addDeferredDeclToEmit(DDI->second);
EmittedDeferredDecls[DDI->first] = DDI->second;
DeferredDecls.erase(DDI);
// Otherwise, there are cases we have to worry about where we're
// using a declaration for which we must emit a definition but where
// we might not find a top-level definition:
// - member functions defined inline in their classes
// - friend functions defined inline in some class
// - special member functions with implicit definitions
// If we ever change our AST traversal to walk into class methods,
// this will be unnecessary.
//
// We also don't emit a definition for a function if it's going to be an
// entry in a vtable, unless it's already marked as used.
} else if (getLangOpts().CPlusPlus && D) {
// Look for a declaration that's lexically in a record.
for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
FD = FD->getPreviousDecl()) {
if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
if (FD->doesThisDeclarationHaveABody()) {
addDeferredDeclToEmit(GD.getWithDecl(FD));
break;
}
}
}
}
}
// Make sure the result is of the requested type.
if (!IsIncompleteFunction) {
assert(F->getFunctionType() == Ty);
return F;
}
return llvm::ConstantExpr::getBitCast(F,
Ty->getPointerTo(F->getAddressSpace()));
}
/// GetAddrOfFunction - Return the address of the given function. If Ty is
/// non-null, then this function will use the specified type if it has to
/// create it (this occurs when we see a definition of the function).
llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
llvm::Type *Ty,
bool ForVTable,
bool DontDefer,
ForDefinition_t IsForDefinition) {
assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
"consteval function should never be emitted");
// If there was no specific requested type, just convert it now.
if (!Ty) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
Ty = getTypes().ConvertType(FD->getType());
}
// Devirtualized destructor calls may come through here instead of via
// getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
// of the complete destructor when necessary.
if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
if (getTarget().getCXXABI().isMicrosoft() &&
GD.getDtorType() == Dtor_Complete &&
DD->getParent()->getNumVBases() == 0)
GD = GlobalDecl(DD, Dtor_Base);
}
StringRef MangledName = getMangledName(GD);
auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
/*IsThunk=*/false, llvm::AttributeList(),
IsForDefinition);
// Returns kernel handle for HIP kernel stub function.
if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
auto *Handle = getCUDARuntime().getKernelHandle(
cast<llvm::Function>(F->stripPointerCasts()), GD);
if (IsForDefinition)
return F;
return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
}
return F;
}
llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
llvm::GlobalValue *F =
cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
return llvm::ConstantExpr::getBitCast(
llvm::NoCFIValue::get(F),
llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
}
static const FunctionDecl *
GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
IdentifierInfo &CII = C.Idents.get(Name);
for (const auto *Result : DC->lookup(&CII))
if (const auto *FD = dyn_cast<FunctionDecl>(Result))
return FD;
if (!C.getLangOpts().CPlusPlus)
return nullptr;
// Demangle the premangled name from getTerminateFn()
IdentifierInfo &CXXII =
(Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
? C.Idents.get("terminate")
: C.Idents.get(Name);
for (const auto &N : {"__cxxabiv1", "std"}) {
IdentifierInfo &NS = C.Idents.get(N);
for (const auto *Result : DC->lookup(&NS)) {
const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
for (const auto *Result : LSD->lookup(&NS))
if ((ND = dyn_cast<NamespaceDecl>(Result)))
break;
if (ND)
for (const auto *Result : ND->lookup(&CXXII))
if (const auto *FD = dyn_cast<FunctionDecl>(Result))
return FD;
}
}
return nullptr;
}
/// CreateRuntimeFunction - Create a new runtime function with the specified
/// type and name.
llvm::FunctionCallee
CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
llvm::AttributeList ExtraAttrs, bool Local,
bool AssumeConvergent) {
if (AssumeConvergent) {
ExtraAttrs =
ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
}
llvm::Constant *C =
GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
/*DontDefer=*/false, /*IsThunk=*/false,
ExtraAttrs);
if (auto *F = dyn_cast<llvm::Function>(C)) {
if (F->empty()) {
F->setCallingConv(getRuntimeCC());
// In Windows Itanium environments, try to mark runtime functions
// dllimport. For Mingw and MSVC, don't. We don't really know if the user
// will link their standard library statically or dynamically. Marking
// functions imported when they are not imported can cause linker errors
// and warnings.
if (!Local && getTriple().isWindowsItaniumEnvironment() &&
!getCodeGenOpts().LTOVisibilityPublicStd) {
const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
if (!FD || FD->hasAttr<DLLImportAttr>()) {
F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
F->setLinkage(llvm::GlobalValue::ExternalLinkage);
}
}
setDSOLocal(F);
}
}
return {FTy, C};
}
/// isTypeConstant - Determine whether an object of this type can be emitted
/// as a constant.
///
/// If ExcludeCtor is true, the duration when the object's constructor runs
/// will not be considered. The caller will need to verify that the object is
/// not written to during its construction.
bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
if (!Ty.isConstant(Context) && !Ty->isReferenceType())
return false;
if (Context.getLangOpts().CPlusPlus) {
if (const CXXRecordDecl *Record
= Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
return ExcludeCtor && !Record->hasMutableFields() &&
Record->hasTrivialDestructor();
}
return true;
}
/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
/// create and return an llvm GlobalVariable with the specified type and address
/// space. If there is something in the module with the specified name, return
/// it potentially bitcasted to the right type.
///
/// If D is non-null, it specifies a decl that correspond to this. This is used
/// to set the attributes on the global when it is first created.
///
/// If IsForDefinition is true, it is guaranteed that an actual global with
/// type Ty will be returned, not conversion of a variable with the same
/// mangled name but some other type.
llvm::Constant *
CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
LangAS AddrSpace, const VarDecl *D,
ForDefinition_t IsForDefinition) {
// Lookup the entry, lazily creating it if necessary.
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
if (Entry) {
if (WeakRefReferences.erase(Entry)) {
if (D && !D->hasAttr<WeakAttr>())
Entry->setLinkage(llvm::Function::ExternalLinkage);
}
// Handle dropped DLL attributes.
if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
!shouldMapVisibilityToDLLExport(D))
Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
return Entry;
// If there are two attempts to define the same mangled name, issue an
// error.
if (IsForDefinition && !Entry->isDeclaration()) {
GlobalDecl OtherGD;
const VarDecl *OtherD;
// Check that D is not yet in DiagnosedConflictingDefinitions is required
// to make sure that we issue an error only once.
if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
(D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
(OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
OtherD->hasInit() &&
DiagnosedConflictingDefinitions.insert(D).second) {
getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
<< MangledName;
getDiags().Report(OtherGD.getDecl()->getLocation(),
diag::note_previous_definition);
}
}
// Make sure the result is of the correct type.
if (Entry->getType()->getAddressSpace() != TargetAS) {
return llvm::ConstantExpr::getAddrSpaceCast(Entry,
Ty->getPointerTo(TargetAS));
}
// (If global is requested for a definition, we always need to create a new
// global, not just return a bitcast.)
if (!IsForDefinition)
return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
}
auto DAddrSpace = GetGlobalVarAddressSpace(D);
auto *GV = new llvm::GlobalVariable(
getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
getContext().getTargetAddressSpace(DAddrSpace));
// If we already created a global with the same mangled name (but different
// type) before, take its name and remove it from its parent.
if (Entry) {
GV->takeName(Entry);
if (!Entry->use_empty()) {
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(GV, Entry->getType());
Entry->replaceAllUsesWith(NewPtrForOldDecl);
}
Entry->eraseFromParent();
}
// This is the first use or definition of a mangled name. If there is a
// deferred decl with this name, remember that we need to emit it at the end
// of the file.
auto DDI = DeferredDecls.find(MangledName);
if (DDI != DeferredDecls.end()) {
// Move the potentially referenced deferred decl to the DeferredDeclsToEmit
// list, and remove it from DeferredDecls (since we don't need it anymore).
addDeferredDeclToEmit(DDI->second);
EmittedDeferredDecls[DDI->first] = DDI->second;
DeferredDecls.erase(DDI);
}
// Handle things which are present even on external declarations.
if (D) {
if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
// FIXME: This code is overly simple and should be merged with other global
// handling.
GV->setConstant(isTypeConstant(D->getType(), false));
GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
setLinkageForGV(GV, D);
if (D->getTLSKind()) {
if (D->getTLSKind() == VarDecl::TLS_Dynamic)
CXXThreadLocals.push_back(D);
setTLSMode(GV, *D);
}
setGVProperties(GV, D);
// If required by the ABI, treat declarations of static data members with
// inline initializers as definitions.
if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
EmitGlobalVarDefinition(D);
}
// Emit section information for extern variables.
if (D->hasExternalStorage()) {
if (const SectionAttr *SA = D->getAttr<SectionAttr>())
GV->setSection(SA->getName());
}
// Handle XCore specific ABI requirements.
if (getTriple().getArch() == llvm::Triple::xcore &&
D->getLanguageLinkage() == CLanguageLinkage &&
D->getType().isConstant(Context) &&
isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
GV->setSection(".cp.rodata");
// Check if we a have a const declaration with an initializer, we may be
// able to emit it as available_externally to expose it's value to the
// optimizer.
if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
D->getType().isConstQualified() && !GV->hasInitializer() &&
!D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
const auto *Record =
Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
bool HasMutableFields = Record && Record->hasMutableFields();
if (!HasMutableFields) {
const VarDecl *InitDecl;
const Expr *InitExpr = D->getAnyInitializer(InitDecl);
if (InitExpr) {
ConstantEmitter emitter(*this);
llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
if (Init) {
auto *InitType = Init->getType();
if (GV->getValueType() != InitType) {
// The type of the initializer does not match the definition.
// This happens when an initializer has a different type from
// the type of the global (because of padding at the end of a
// structure for instance).
GV->setName(StringRef());
// Make a new global with the correct type, this is now guaranteed
// to work.
auto *NewGV = cast<llvm::GlobalVariable>(
GetAddrOfGlobalVar(D, InitType, IsForDefinition)
->stripPointerCasts());
// Erase the old global, since it is no longer used.
GV->eraseFromParent();
GV = NewGV;
} else {
GV->setInitializer(Init);
GV->setConstant(true);
GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
}
emitter.finalize(GV);
}
}
}
}
}
if (GV->isDeclaration()) {
getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
// External HIP managed variables needed to be recorded for transformation
// in both device and host compilations.
if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
D->hasExternalStorage())
getCUDARuntime().handleVarRegistration(D, *GV);
}
if (D)
SanitizerMD->reportGlobal(GV, *D);
LangAS ExpectedAS =
D ? D->getType().getAddressSpace()
: (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
if (DAddrSpace != ExpectedAS) {
return getTargetCodeGenInfo().performAddrSpaceCast(
*this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
}
return GV;
}
llvm::Constant *
CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
const Decl *D = GD.getDecl();
if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
/*DontDefer=*/false, IsForDefinition);
if (isa<CXXMethodDecl>(D)) {
auto FInfo =
&getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
auto Ty = getTypes().GetFunctionType(*FInfo);
return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
IsForDefinition);
}
if (isa<FunctionDecl>(D)) {
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
IsForDefinition);
}
return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
}
llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
llvm::Align Alignment) {
llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
llvm::GlobalVariable *OldGV = nullptr;
if (GV) {
// Check if the variable has the right type.
if (GV->getValueType() == Ty)
return GV;
// Because C++ name mangling, the only way we can end up with an already
// existing global with the same name is if it has been declared extern "C".
assert(GV->isDeclaration() && "Declaration has wrong type!");
OldGV = GV;
}
// Create a new variable.
GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
Linkage, nullptr, Name);
if (OldGV) {
// Replace occurrences of the old variable if needed.
GV->takeName(OldGV);
if (!OldGV->use_empty()) {
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
OldGV->replaceAllUsesWith(NewPtrForOldDecl);
}
OldGV->eraseFromParent();
}
if (supportsCOMDAT() && GV->isWeakForLinker() &&
!GV->hasAvailableExternallyLinkage())
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
GV->setAlignment(Alignment);
return GV;
}
/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
/// given global variable. If Ty is non-null and if the global doesn't exist,
/// then it will be created with the specified type instead of whatever the
/// normal requested type would be. If IsForDefinition is true, it is guaranteed
/// that an actual global with type Ty will be returned, not conversion of a
/// variable with the same mangled name but some other type.
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
llvm::Type *Ty,
ForDefinition_t IsForDefinition) {
assert(D->hasGlobalStorage() && "Not a global variable");
QualType ASTTy = D->getType();
if (!Ty)
Ty = getTypes().ConvertTypeForMem(ASTTy);
StringRef MangledName = getMangledName(D);
return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
IsForDefinition);
}
/// CreateRuntimeVariable - Create a new runtime global variable with the
/// specified type and name.
llvm::Constant *
CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
StringRef Name) {
LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
: LangAS::Default;
auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
return Ret;
}
void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
assert(!D->getInit() && "Cannot emit definite definitions here!");
StringRef MangledName = getMangledName(D);
llvm::GlobalValue *GV = GetGlobalValue(MangledName);
// We already have a definition, not declaration, with the same mangled name.
// Emitting of declaration is not required (and actually overwrites emitted
// definition).
if (GV && !GV->isDeclaration())
return;
// If we have not seen a reference to this variable yet, place it into the
// deferred declarations table to be emitted if needed later.
if (!MustBeEmitted(D) && !GV) {
DeferredDecls[MangledName] = D;
return;
}
// The tentative definition is the only definition.
EmitGlobalVarDefinition(D);
}
void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
EmitExternalVarDeclaration(D);
}
CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
return Context.toCharUnitsFromBits(
getDataLayout().getTypeStoreSizeInBits(Ty));
}
LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
if (LangOpts.OpenCL) {
LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
assert(AS == LangAS::opencl_global ||
AS == LangAS::opencl_global_device ||
AS == LangAS::opencl_global_host ||
AS == LangAS::opencl_constant ||
AS == LangAS::opencl_local ||
AS >= LangAS::FirstTargetAddressSpace);
return AS;
}
if (LangOpts.SYCLIsDevice &&
(!D || D->getType().getAddressSpace() == LangAS::Default))
return LangAS::sycl_global;
if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
if (D && D->hasAttr<CUDAConstantAttr>())
return LangAS::cuda_constant;
else if (D && D->hasAttr<CUDASharedAttr>())
return LangAS::cuda_shared;
else if (D && D->hasAttr<CUDADeviceAttr>())
return LangAS::cuda_device;
else if (D && D->getType().isConstQualified())
return LangAS::cuda_constant;
else
return LangAS::cuda_device;
}
if (LangOpts.OpenMP) {
LangAS AS;
if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
return AS;
}
return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
}
LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
// OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
if (LangOpts.OpenCL)
return LangAS::opencl_constant;
if (LangOpts.SYCLIsDevice)
return LangAS::sycl_global;
if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
// For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
// instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
// with OpVariable instructions with Generic storage class which is not
// allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
// UniformConstant storage class is not viable as pointers to it may not be
// casted to Generic pointers which are used to model HIP's "flat" pointers.
return LangAS::cuda_device;
if (auto AS = getTarget().getConstantAddressSpace())
return *AS;
return LangAS::Default;
}
// In address space agnostic languages, string literals are in default address
// space in AST. However, certain targets (e.g. amdgcn) request them to be
// emitted in constant address space in LLVM IR. To be consistent with other
// parts of AST, string literal global variables in constant address space
// need to be casted to default address space before being put into address
// map and referenced by other part of CodeGen.
// In OpenCL, string literals are in constant address space in AST, therefore
// they should not be casted to default address space.
static llvm::Constant *
castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
llvm::GlobalVariable *GV) {
llvm::Constant *Cast = GV;
if (!CGM.getLangOpts().OpenCL) {
auto AS = CGM.GetGlobalConstantAddressSpace();
if (AS != LangAS::Default)
Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
CGM, GV, AS, LangAS::Default,
GV->getValueType()->getPointerTo(
CGM.getContext().getTargetAddressSpace(LangAS::Default)));
}
return Cast;
}
template<typename SomeDecl>
void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
llvm::GlobalValue *GV) {
if (!getLangOpts().CPlusPlus)
return;
// Must have 'used' attribute, or else inline assembly can't rely on
// the name existing.
if (!D->template hasAttr<UsedAttr>())
return;
// Must have internal linkage and an ordinary name.
if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
return;
// Must be in an extern "C" context. Entities declared directly within
// a record are not extern "C" even if the record is in such a context.
const SomeDecl *First = D->getFirstDecl();
if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
return;
// OK, this is an internal linkage entity inside an extern "C" linkage
// specification. Make a note of that so we can give it the "expected"
// mangled name if nothing else is using that name.
std::pair<StaticExternCMap::iterator, bool> R =
StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
// If we have multiple internal linkage entities with the same name
// in extern "C" regions, none of them gets that name.
if (!R.second)
R.first->second = nullptr;
}
static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
if (!CGM.supportsCOMDAT())
return false;
if (D.hasAttr<SelectAnyAttr>())
return true;
GVALinkage Linkage;
if (auto *VD = dyn_cast<VarDecl>(&D))
Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
else
Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
switch (Linkage) {
case GVA_Internal:
case GVA_AvailableExternally:
case GVA_StrongExternal:
return false;
case GVA_DiscardableODR:
case GVA_StrongODR:
return true;
}
llvm_unreachable("No such linkage");
}
void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
llvm::GlobalObject &GO) {
if (!shouldBeInCOMDAT(*this, D))
return;
GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
}
/// Pass IsTentative as true if you want to create a tentative definition.
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
bool IsTentative) {
// OpenCL global variables of sampler type are translated to function calls,
// therefore no need to be translated.
QualType ASTTy = D->getType();
if (getLangOpts().OpenCL && ASTTy->isSamplerT())
return;
// If this is OpenMP device, check if it is legal to emit this global
// normally.
if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
OpenMPRuntime->emitTargetGlobalVariable(D))
return;
llvm::TrackingVH<llvm::Constant> Init;
bool NeedsGlobalCtor = false;
// Whether the definition of the variable is available externally.
// If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
// since this is the job for its original source.
bool IsDefinitionAvailableExternally =
getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
bool NeedsGlobalDtor =
!IsDefinitionAvailableExternally &&
D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
const VarDecl *InitDecl;
const Expr *InitExpr = D->getAnyInitializer(InitDecl);
std::optional<ConstantEmitter> emitter;
// CUDA E.2.4.1 "__shared__ variables cannot have an initialization
// as part of their declaration." Sema has already checked for
// error cases, so we just need to set Init to UndefValue.
bool IsCUDASharedVar =
getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
// Shadows of initialized device-side global variables are also left
// undefined.
// Managed Variables should be initialized on both host side and device side.
bool IsCUDAShadowVar =
!getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
(D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
D->hasAttr<CUDASharedAttr>());
bool IsCUDADeviceShadowVar =
getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
(D->getType()->isCUDADeviceBuiltinSurfaceType() ||
D->getType()->isCUDADeviceBuiltinTextureType());
if (getLangOpts().CUDA &&
(IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
else if (D->hasAttr<LoaderUninitializedAttr>())
Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
else if (!InitExpr) {
// This is a tentative definition; tentative definitions are
// implicitly initialized with { 0 }.
//
// Note that tentative definitions are only emitted at the end of
// a translation unit, so they should never have incomplete
// type. In addition, EmitTentativeDefinition makes sure that we
// never attempt to emit a tentative definition if a real one
// exists. A use may still exists, however, so we still may need
// to do a RAUW.
assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
Init = EmitNullConstant(D->getType());
} else {
initializedGlobalDecl = GlobalDecl(D);
emitter.emplace(*this);
llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
if (!Initializer) {
QualType T = InitExpr->getType();
if (D->getType()->isReferenceType())
T = D->getType();
if (getLangOpts().CPlusPlus) {
if (InitDecl->hasFlexibleArrayInit(getContext()))
ErrorUnsupported(D, "flexible array initializer");
Init = EmitNullConstant(T);
if (!IsDefinitionAvailableExternally)
NeedsGlobalCtor = true;
} else {
ErrorUnsupported(D, "static initializer");
Init = llvm::UndefValue::get(getTypes().ConvertType(T));
}
} else {
Init = Initializer;
// We don't need an initializer, so remove the entry for the delayed
// initializer position (just in case this entry was delayed) if we
// also don't need to register a destructor.
if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
DelayedCXXInitPosition.erase(D);
#ifndef NDEBUG
CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
InitDecl->getFlexibleArrayInitChars(getContext());
CharUnits CstSize = CharUnits::fromQuantity(
getDataLayout().getTypeAllocSize(Init->getType()));
assert(VarSize == CstSize && "Emitted constant has unexpected size");
#endif
}
}
llvm::Type* InitType = Init->getType();
llvm::Constant *Entry =
GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
// Strip off pointer casts if we got them.
Entry = Entry->stripPointerCasts();
// Entry is now either a Function or GlobalVariable.
auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
// We have a definition after a declaration with the wrong type.
// We must make a new GlobalVariable* and update everything that used OldGV
// (a declaration or tentative definition) with the new GlobalVariable*
// (which will be a definition).
//
// This happens if there is a prototype for a global (e.g.
// "extern int x[];") and then a definition of a different type (e.g.
// "int x[10];"). This also happens when an initializer has a different type
// from the type of the global (this happens with unions).
if (!GV || GV->getValueType() != InitType ||
GV->getType()->getAddressSpace() !=
getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
// Move the old entry aside so that we'll create a new one.
Entry->setName(StringRef());
// Make a new global with the correct type, this is now guaranteed to work.
GV = cast<llvm::GlobalVariable>(
GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
->stripPointerCasts());
// Replace all uses of the old global with the new global
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
Entry->getType());
Entry->replaceAllUsesWith(NewPtrForOldDecl);
// Erase the old global, since it is no longer used.
cast<llvm::GlobalValue>(Entry)->eraseFromParent();
}
MaybeHandleStaticInExternC(D, GV);
if (D->hasAttr<AnnotateAttr>())
AddGlobalAnnotations(D, GV);
// Set the llvm linkage type as appropriate.
llvm::GlobalValue::LinkageTypes Linkage =
getLLVMLinkageVarDefinition(D, GV->isConstant());
// CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
// the device. [...]"
// CUDA B.2.2 "The __constant__ qualifier, optionally used together with
// __device__, declares a variable that: [...]
// Is accessible from all the threads within the grid and from the host
// through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
// / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
if (GV && LangOpts.CUDA) {
if (LangOpts.CUDAIsDevice) {
if (Linkage != llvm::GlobalValue::InternalLinkage &&
(D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
D->getType()->isCUDADeviceBuiltinSurfaceType() ||
D->getType()->isCUDADeviceBuiltinTextureType()))
GV->setExternallyInitialized(true);
} else {
getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
}
getCUDARuntime().handleVarRegistration(D, *GV);
}
GV->setInitializer(Init);
if (emitter)
emitter->finalize(GV);
// If it is safe to mark the global 'constant', do so now.
GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
isTypeConstant(D->getType(), true));
// If it is in a read-only section, mark it 'constant'.
if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
GV->setConstant(true);
}
CharUnits AlignVal = getContext().getDeclAlign(D);
// Check for alignment specifed in an 'omp allocate' directive.
if (std::optional<CharUnits> AlignValFromAllocate =
getOMPAllocateAlignment(D))
AlignVal = *AlignValFromAllocate;
GV->setAlignment(AlignVal.getAsAlign());
// On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
// function is only defined alongside the variable, not also alongside
// callers. Normally, all accesses to a thread_local go through the
// thread-wrapper in order to ensure initialization has occurred, underlying
// variable will never be used other than the thread-wrapper, so it can be
// converted to internal linkage.
//
// However, if the variable has the 'constinit' attribute, it _can_ be
// referenced directly, without calling the thread-wrapper, so the linkage
// must not be changed.
//
// Additionally, if the variable isn't plain external linkage, e.g. if it's
// weak or linkonce, the de-duplication semantics are important to preserve,
// so we don't change the linkage.
if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
Linkage == llvm::GlobalValue::ExternalLinkage &&
Context.getTargetInfo().getTriple().isOSDarwin() &&
!D->hasAttr<ConstInitAttr>())
Linkage = llvm::GlobalValue::InternalLinkage;
GV->setLinkage(Linkage);
if (D->hasAttr<DLLImportAttr>())
GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
else if (D->hasAttr<DLLExportAttr>())
GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
else
GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
if (Linkage == llvm::GlobalVariable::CommonLinkage) {
// common vars aren't constant even if declared const.
GV->setConstant(false);
// Tentative definition of global variables may be initialized with
// non-zero null pointers. In this case they should have weak linkage
// since common linkage must have zero initializer and must not have
// explicit section therefore cannot have non-zero initial value.
if (!GV->getInitializer()->isNullValue())
GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
}
setNonAliasAttributes(D, GV);
if (D->getTLSKind() && !GV->isThreadLocal()) {
if (D->getTLSKind() == VarDecl::TLS_Dynamic)
CXXThreadLocals.push_back(D);
setTLSMode(GV, *D);
}
maybeSetTrivialComdat(*D, *GV);
// Emit the initializer function if necessary.
if (NeedsGlobalCtor || NeedsGlobalDtor)
EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
// Emit global variable debug information.
if (CGDebugInfo *DI = getModuleDebugInfo())
if (getCodeGenOpts().hasReducedDebugInfo())
DI->EmitGlobalVariable(GV, D);
}
void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
if (CGDebugInfo *DI = getModuleDebugInfo())
if (getCodeGenOpts().hasReducedDebugInfo()) {
QualType ASTTy = D->getType();
llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
llvm::Constant *GV =
GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
DI->EmitExternalVariable(
cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
}
}
static bool isVarDeclStrongDefinition(const ASTContext &Context,
CodeGenModule &CGM, const VarDecl *D,
bool NoCommon) {
// Don't give variables common linkage if -fno-common was specified unless it
// was overridden by a NoCommon attribute.
if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
return true;
// C11 6.9.2/2:
// A declaration of an identifier for an object that has file scope without
// an initializer, and without a storage-class specifier or with the
// storage-class specifier static, constitutes a tentative definition.
if (D->getInit() || D->hasExternalStorage())
return true;
// A variable cannot be both common and exist in a section.
if (D->hasAttr<SectionAttr>())
return true;
// A variable cannot be both common and exist in a section.
// We don't try to determine which is the right section in the front-end.
// If no specialized section name is applicable, it will resort to default.
if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
D->hasAttr<PragmaClangDataSectionAttr>() ||
D->hasAttr<PragmaClangRelroSectionAttr>() ||
D->hasAttr<PragmaClangRodataSectionAttr>())
return true;
// Thread local vars aren't considered common linkage.
if (D->getTLSKind())
return true;
// Tentative definitions marked with WeakImportAttr are true definitions.
if (D->hasAttr<WeakImportAttr>())
return true;
// A variable cannot be both common and exist in a comdat.
if (shouldBeInCOMDAT(CGM, *D))
return true;
// Declarations with a required alignment do not have common linkage in MSVC
// mode.
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
if (D->hasAttr<AlignedAttr>())
return true;
QualType VarType = D->getType();
if (Context.isAlignmentRequired(VarType))
return true;
if (const auto *RT = VarType->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
for (const FieldDecl *FD : RD->fields()) {
if (FD->isBitField())
continue;
if (FD->hasAttr<AlignedAttr>())
return true;
if (Context.isAlignmentRequired(FD->getType()))
return true;
}
}
}
// Microsoft's link.exe doesn't support alignments greater than 32 bytes for
// common symbols, so symbols with greater alignment requirements cannot be
// common.
// Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
// alignments for common symbols via the aligncomm directive, so this
// restriction only applies to MSVC environments.
if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
Context.getTypeAlignIfKnown(D->getType()) >
Context.toBits(CharUnits::fromQuantity(32)))
return true;
return false;
}
llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
if (Linkage == GVA_Internal)
return llvm::Function::InternalLinkage;
if (D->hasAttr<WeakAttr>())
return llvm::GlobalVariable::WeakAnyLinkage;
if (const auto *FD = D->getAsFunction())
if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
return llvm::GlobalVariable::LinkOnceAnyLinkage;
// We are guaranteed to have a strong definition somewhere else,
// so we can use available_externally linkage.
if (Linkage == GVA_AvailableExternally)
return llvm::GlobalValue::AvailableExternallyLinkage;
// Note that Apple's kernel linker doesn't support symbol
// coalescing, so we need to avoid linkonce and weak linkages there.
// Normally, this means we just map to internal, but for explicit
// instantiations we'll map to external.
// In C++, the compiler has to emit a definition in every translation unit
// that references the function. We should use linkonce_odr because
// a) if all references in this translation unit are optimized away, we
// don't need to codegen it. b) if the function persists, it needs to be
// merged with other definitions. c) C++ has the ODR, so we know the
// definition is dependable.
if (Linkage == GVA_DiscardableODR)
return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
: llvm::Function::InternalLinkage;
// An explicit instantiation of a template has weak linkage, since
// explicit instantiations can occur in multiple translation units
// and must all be equivalent. However, we are not allowed to
// throw away these explicit instantiations.
//
// CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
// so say that CUDA templates are either external (for kernels) or internal.
// This lets llvm perform aggressive inter-procedural optimizations. For
// -fgpu-rdc case, device function calls across multiple TU's are allowed,
// therefore we need to follow the normal linkage paradigm.
if (Linkage == GVA_StrongODR) {
if (getLangOpts().AppleKext)
return llvm::Function::ExternalLinkage;
if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
!getLangOpts().GPURelocatableDeviceCode)
return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
: llvm::Function::InternalLinkage;
return llvm::Function::WeakODRLinkage;
}
// C++ doesn't have tentative definitions and thus cannot have common
// linkage.
if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
!isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
CodeGenOpts.NoCommon))
return llvm::GlobalVariable::CommonLinkage;
// selectany symbols are externally visible, so use weak instead of
// linkonce. MSVC optimizes away references to const selectany globals, so
// all definitions should be the same and ODR linkage should be used.
// http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
if (D->hasAttr<SelectAnyAttr>())
return llvm::GlobalVariable::WeakODRLinkage;
// Otherwise, we have strong external linkage.
assert(Linkage == GVA_StrongExternal);
return llvm::GlobalVariable::ExternalLinkage;
}
llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
const VarDecl *VD, bool IsConstant) {
GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
}
/// Replace the uses of a function that was declared with a non-proto type.
/// We want to silently drop extra arguments from call sites
static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
llvm::Function *newFn) {
// Fast path.
if (old->use_empty()) return;
llvm::Type *newRetTy = newFn->getReturnType();
SmallVector<llvm::Value*, 4> newArgs;
for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
ui != ue; ) {
llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
llvm::User *user = use->getUser();
// Recognize and replace uses of bitcasts. Most calls to
// unprototyped functions will use bitcasts.
if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
if (bitcast->getOpcode() == llvm::Instruction::BitCast)
replaceUsesOfNonProtoConstant(bitcast, newFn);
continue;
}
// Recognize calls to the function.
llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
if (!callSite) continue;
if (!callSite->isCallee(&*use))
continue;
// If the return types don't match exactly, then we can't
// transform this call unless it's dead.
if (callSite->getType() != newRetTy && !callSite->use_empty())
continue;
// Get the call site's attribute list.
SmallVector<llvm::AttributeSet, 8> newArgAttrs;
llvm::AttributeList oldAttrs = callSite->getAttributes();
// If the function was passed too few arguments, don't transform.
unsigned newNumArgs = newFn->arg_size();
if (callSite->arg_size() < newNumArgs)
continue;
// If extra arguments were passed, we silently drop them.
// If any of the types mismatch, we don't transform.
unsigned argNo = 0;
bool dontTransform = false;
for (llvm::Argument &A : newFn->args()) {
if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
dontTransform = true;
break;
}
// Add any parameter attributes.
newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
argNo++;
}
if (dontTransform)
continue;
// Okay, we can transform this. Create the new call instruction and copy
// over the required information.
newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
// Copy over any operand bundles.
SmallVector<llvm::OperandBundleDef, 1> newBundles;
callSite->getOperandBundlesAsDefs(newBundles);
llvm::CallBase *newCall;
if (isa<llvm::CallInst>(callSite)) {
newCall =
llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
} else {
auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
oldInvoke->getUnwindDest(), newArgs,
newBundles, "", callSite);
}
newArgs.clear(); // for the next iteration
if (!newCall->getType()->isVoidTy())
newCall->takeName(callSite);
newCall->setAttributes(
llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
oldAttrs.getRetAttrs(), newArgAttrs));
newCall->setCallingConv(callSite->getCallingConv());
// Finally, remove the old call, replacing any uses with the new one.
if (!callSite->use_empty())
callSite->replaceAllUsesWith(newCall);
// Copy debug location attached to CI.
if (callSite->getDebugLoc())
newCall->setDebugLoc(callSite->getDebugLoc());
callSite->eraseFromParent();
}
}
/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
/// implement a function with no prototype, e.g. "int foo() {}". If there are
/// existing call uses of the old function in the module, this adjusts them to
/// call the new function directly.
///
/// This is not just a cleanup: the always_inline pass requires direct calls to
/// functions to be able to inline them. If there is a bitcast in the way, it
/// won't inline them. Instcombine normally deletes these calls, but it isn't
/// run at -O0.
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
llvm::Function *NewFn) {
// If we're redefining a global as a function, don't transform it.
if (!isa<llvm::Function>(Old)) return;
replaceUsesOfNonProtoConstant(Old, NewFn);
}
void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
auto DK = VD->isThisDeclarationADefinition();
if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
return;
TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
// If we have a definition, this might be a deferred decl. If the
// instantiation is explicit, make sure we emit it at the end.
if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
GetAddrOfGlobalVar(VD);
EmitTopLevelDecl(VD);
}
void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
llvm::GlobalValue *GV) {
const auto *D = cast<FunctionDecl>(GD.getDecl());
// Compute the function info and LLVM type.
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
// Get or create the prototype for the function.
if (!GV || (GV->getValueType() != Ty))
GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
/*DontDefer=*/true,
ForDefinition));
// Already emitted.
if (!GV->isDeclaration())
return;
// We need to set linkage and visibility on the function before
// generating code for it because various parts of IR generation
// want to propagate this information down (e.g. to local static
// declarations).
auto *Fn = cast<llvm::Function>(GV);
setFunctionLinkage(GD, Fn);
// FIXME: this is redundant with part of setFunctionDefinitionAttributes
setGVProperties(Fn, GD);
MaybeHandleStaticInExternC(D, Fn);
maybeSetTrivialComdat(*D, *Fn);
// Set CodeGen attributes that represent floating point environment.
setLLVMFunctionFEnvAttributes(D, Fn);
CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
setNonAliasAttributes(GD, Fn);
SetLLVMFunctionAttributesForDefinition(D, Fn);
if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
AddGlobalCtor(Fn, CA->getPriority());
if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
AddGlobalDtor(Fn, DA->getPriority(), true);
if (D->hasAttr<AnnotateAttr>())
AddGlobalAnnotations(D, Fn);
}
void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
const auto *D = cast<ValueDecl>(GD.getDecl());
const AliasAttr *AA = D->getAttr<AliasAttr>();
assert(AA && "Not an alias?");
StringRef MangledName = getMangledName(GD);
if (AA->getAliasee() == MangledName) {
Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
return;
}
// If there is a definition in the module, then it wins over the alias.
// This is dubious, but allow it to be safe. Just ignore the alias.
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (Entry && !Entry->isDeclaration())
return;
Aliases.push_back(GD);
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
// Create a reference to the named value. This ensures that it is emitted
// if a deferred decl.
llvm::Constant *Aliasee;
llvm::GlobalValue::LinkageTypes LT;
if (isa<llvm::FunctionType>(DeclTy)) {
Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
/*ForVTable=*/false);
LT = getFunctionLinkage(GD);
} else {
Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
/*D=*/nullptr);
if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
else
LT = getFunctionLinkage(GD);
}
// Create the new alias itself, but don't set a name yet.
unsigned AS = Aliasee->getType()->getPointerAddressSpace();
auto *GA =
llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
if (Entry) {
if (GA->getAliasee() == Entry) {
Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
return;
}
assert(Entry->isDeclaration());
// If there is a declaration in the module, then we had an extern followed
// by the alias, as in:
// extern int test6();
// ...
// int test6() __attribute__((alias("test7")));
//
// Remove it and replace uses of it with the alias.
GA->takeName(Entry);
Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
Entry->getType()));
Entry->eraseFromParent();
} else {
GA->setName(MangledName);
}
// Set attributes which are particular to an alias; this is a
// specialization of the attributes which may be set on a global
// variable/function.
if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
D->isWeakImported()) {
GA->setLinkage(llvm::Function::WeakAnyLinkage);
}
if (const auto *VD = dyn_cast<VarDecl>(D))
if (VD->getTLSKind())
setTLSMode(GA, *VD);
SetCommonAttributes(GD, GA);
// Emit global alias debug information.
if (isa<VarDecl>(D))
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
}
void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
const auto *D = cast<ValueDecl>(GD.getDecl());
const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
assert(IFA && "Not an ifunc?");
StringRef MangledName = getMangledName(GD);
if (IFA->getResolver() == MangledName) {
Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
return;
}
// Report an error if some definition overrides ifunc.
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (Entry && !Entry->isDeclaration()) {
GlobalDecl OtherGD;
if (lookupRepresentativeDecl(MangledName, OtherGD) &&
DiagnosedConflictingDefinitions.insert(GD).second) {
Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
<< MangledName;
Diags.Report(OtherGD.getDecl()->getLocation(),
diag::note_previous_definition);
}
return;
}
Aliases.push_back(GD);
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
llvm::Constant *Resolver =
GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
/*ForVTable=*/false);
llvm::GlobalIFunc *GIF =
llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
"", Resolver, &getModule());
if (Entry) {
if (GIF->getResolver() == Entry) {
Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
return;
}
assert(Entry->isDeclaration());
// If there is a declaration in the module, then we had an extern followed
// by the ifunc, as in:
// extern int test();
// ...
// int test() __attribute__((ifunc("resolver")));
//
// Remove it and replace uses of it with the ifunc.
GIF->takeName(Entry);
Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
Entry->getType()));
Entry->eraseFromParent();
} else
GIF->setName(MangledName);
SetCommonAttributes(GD, GIF);
}
llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
ArrayRef<llvm::Type*> Tys) {
return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
Tys);
}
static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
const StringLiteral *Literal, bool TargetIsLSB,
bool &IsUTF16, unsigned &StringLength) {
StringRef String = Literal->getString();
unsigned NumBytes = String.size();
// Check for simple case.
if (!Literal->containsNonAsciiOrNull()) {
StringLength = NumBytes;
return *Map.insert(std::make_pair(String, nullptr)).first;
}
// Otherwise, convert the UTF8 literals into a string of shorts.
IsUTF16 = true;
SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
llvm::UTF16 *ToPtr = &ToBuf[0];
(void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
ToPtr + NumBytes, llvm::strictConversion);
// ConvertUTF8toUTF16 returns the length in ToPtr.
StringLength = ToPtr - &ToBuf[0];
// Add an explicit null.
*ToPtr = 0;
return *Map.insert(std::make_pair(
StringRef(reinterpret_cast<const char *>(ToBuf.data()),
(StringLength + 1) * 2),
nullptr)).first;
}
ConstantAddress
CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
unsigned StringLength = 0;
bool isUTF16 = false;
llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
GetConstantCFStringEntry(CFConstantStringMap, Literal,
getDataLayout().isLittleEndian(), isUTF16,
StringLength);
if (auto *C = Entry.second)
return ConstantAddress(
C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
const ASTContext &Context = getContext();
const llvm::Triple &Triple = getTriple();
const auto CFRuntime = getLangOpts().CFRuntime;
const bool IsSwiftABI =
static_cast<unsigned>(CFRuntime) >=
static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
// If we don't already have it, get __CFConstantStringClassReference.
if (!CFConstantStringClassRef) {
const char *CFConstantStringClassName = "__CFConstantStringClassReference";
llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
Ty = llvm::ArrayType::get(Ty, 0);
switch (CFRuntime) {
default: break;
case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
case LangOptions::CoreFoundationABI::Swift5_0:
CFConstantStringClassName =
Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
: "$s10Foundation19_NSCFConstantStringCN";
Ty = IntPtrTy;
break;
case LangOptions::CoreFoundationABI::Swift4_2:
CFConstantStringClassName =
Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
: "$S10Foundation19_NSCFConstantStringCN";
Ty = IntPtrTy;
break;
case LangOptions::CoreFoundationABI::Swift4_1:
CFConstantStringClassName =
Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
: "__T010Foundation19_NSCFConstantStringCN";
Ty = IntPtrTy;
break;
}
llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
llvm::GlobalValue *GV = nullptr;
if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
IdentifierInfo &II = Context.Idents.get(GV->getName());
TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
const VarDecl *VD = nullptr;
for (const auto *Result : DC->lookup(&II))
if ((VD = dyn_cast<VarDecl>(Result)))
break;
if (Triple.isOSBinFormatELF()) {
if (!VD)
GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
} else {
GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
if (!VD || !VD->hasAttr<DLLExportAttr>())
GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
else
GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
}
setDSOLocal(GV);
}
}
// Decay array -> ptr
CFConstantStringClassRef =
IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
: llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
}
QualType CFTy = Context.getCFConstantStringType();
auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
ConstantInitBuilder Builder(*this);
auto Fields = Builder.beginStruct(STy);
// Class pointer.
Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
// Flags.
if (IsSwiftABI) {
Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
} else {
Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
}
// String pointer.
llvm::Constant *C = nullptr;
if (isUTF16) {
auto Arr = llvm::ArrayRef(
reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
Entry.first().size() / 2);
C = llvm::ConstantDataArray::get(VMContext, Arr);
} else {
C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
}
// Note: -fwritable-strings doesn't make the backing store strings of
// CFStrings writable. (See <rdar://problem/10657500>)
auto *GV =
new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
llvm::GlobalValue::PrivateLinkage, C, ".str");
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
// Don't enforce the target's minimum global alignment, since the only use
// of the string is via this class initializer.
CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
: Context.getTypeAlignInChars(Context.CharTy);
GV->setAlignment(Align.getAsAlign());
// FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
// Without it LLVM can merge the string with a non unnamed_addr one during
// LTO. Doing that changes the section it ends in, which surprises ld64.
if (Triple.isOSBinFormatMachO())
GV->setSection(isUTF16 ? "__TEXT,__ustring"
: "__TEXT,__cstring,cstring_literals");
// Make sure the literal ends up in .rodata to allow for safe ICF and for
// the static linker to adjust permissions to read-only later on.
else if (Triple.isOSBinFormatELF())
GV->setSection(".rodata");
// String.
llvm::Constant *Str =
llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
if (isUTF16)
// Cast the UTF16 string to the correct type.
Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
Fields.add(Str);
// String length.
llvm::IntegerType *LengthTy =
llvm::IntegerType::get(getModule().getContext(),
Context.getTargetInfo().getLongWidth());
if (IsSwiftABI) {
if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
LengthTy = Int32Ty;
else
LengthTy = IntPtrTy;
}
Fields.addInt(LengthTy, StringLength);
// Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
// properly aligned on 32-bit platforms.
CharUnits Alignment =
IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
// The struct.
GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
/*isConstant=*/false,
llvm::GlobalVariable::PrivateLinkage);
GV->addAttribute("objc_arc_inert");
switch (Triple.getObjectFormat()) {
case llvm::Triple::UnknownObjectFormat:
llvm_unreachable("unknown file format");
case llvm::Triple::DXContainer:
case llvm::Triple::GOFF:
case llvm::Triple::SPIRV:
case llvm::Triple::XCOFF:
llvm_unreachable("unimplemented");
case llvm::Triple::COFF:
case llvm::Triple::ELF:
case llvm::Triple::Wasm:
GV->setSection("cfstring");
break;
case llvm::Triple::MachO:
GV->setSection("__DATA,__cfstring");
break;
}
Entry.second = GV;
return ConstantAddress(GV, GV->getValueType(), Alignment);
}
bool CodeGenModule::getExpressionLocationsEnabled() const {
return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
}
QualType CodeGenModule::getObjCFastEnumerationStateType() {
if (ObjCFastEnumerationStateType.isNull()) {
RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
D->startDefinition();
QualType FieldTypes[] = {
Context.UnsignedLongTy,
Context.getPointerType(Context.getObjCIdType()),
Context.getPointerType(Context.UnsignedLongTy),
Context.getConstantArrayType(Context.UnsignedLongTy,
llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
};
for (size_t i = 0; i < 4; ++i) {
FieldDecl *Field = FieldDecl::Create(Context,
D,
SourceLocation(),
SourceLocation(), nullptr,
FieldTypes[i], /*TInfo=*/nullptr,
/*BitWidth=*/nullptr,
/*Mutable=*/false,
ICIS_NoInit);
Field->setAccess(AS_public);
D->addDecl(Field);
}
D->completeDefinition();
ObjCFastEnumerationStateType = Context.getTagDeclType(D);
}
return ObjCFastEnumerationStateType;
}
llvm::Constant *
CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
assert(!E->getType()->isPointerType() && "Strings are always arrays");
// Don't emit it as the address of the string, emit the string data itself
// as an inline array.
if (E->getCharByteWidth() == 1) {
SmallString<64> Str(E->getString());
// Resize the string to the right size, which is indicated by its type.
const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
Str.resize(CAT->getSize().getZExtValue());
return llvm::ConstantDataArray::getString(VMContext, Str, false);
}
auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
llvm::Type *ElemTy = AType->getElementType();
unsigned NumElements = AType->getNumElements();
// Wide strings have either 2-byte or 4-byte elements.
if (ElemTy->getPrimitiveSizeInBits() == 16) {
SmallVector<uint16_t, 32> Elements;
Elements.reserve(NumElements);
for(unsigned i = 0, e = E->getLength(); i != e; ++i)
Elements.push_back(E->getCodeUnit(i));
Elements.resize(NumElements);
return llvm::ConstantDataArray::get(VMContext, Elements);
}
assert(ElemTy->getPrimitiveSizeInBits() == 32);
SmallVector<uint32_t, 32> Elements;
Elements.reserve(NumElements);
for(unsigned i = 0, e = E->getLength(); i != e; ++i)
Elements.push_back(E->getCodeUnit(i));
Elements.resize(NumElements);
return llvm::ConstantDataArray::get(VMContext, Elements);
}
static llvm::GlobalVariable *
GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
CodeGenModule &CGM, StringRef GlobalName,
CharUnits Alignment) {
unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
CGM.GetGlobalConstantAddressSpace());
llvm::Module &M = CGM.getModule();
// Create a global variable for this string
auto *GV = new llvm::GlobalVariable(
M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
GV->setAlignment(Alignment.getAsAlign());
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
if (GV->isWeakForLinker()) {
assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
GV->setComdat(M.getOrInsertComdat(GV->getName()));
}
CGM.setDSOLocal(GV);
return GV;
}
/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
/// constant array for the given string literal.
ConstantAddress
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
StringRef Name) {
CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
llvm::GlobalVariable **Entry = nullptr;
if (!LangOpts.WritableStrings) {
Entry = &ConstantStringMap[C];
if (auto GV = *Entry) {
if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
GV->setAlignment(Alignment.getAsAlign());
return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
GV->getValueType(), Alignment);
}
}
SmallString<256> MangledNameBuffer;
StringRef GlobalVariableName;
llvm::GlobalValue::LinkageTypes LT;
// Mangle the string literal if that's how the ABI merges duplicate strings.
// Don't do it if they are writable, since we don't want writes in one TU to
// affect strings in another.
if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
!LangOpts.WritableStrings) {
llvm::raw_svector_ostream Out(MangledNameBuffer);
getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
LT = llvm::GlobalValue::LinkOnceODRLinkage;
GlobalVariableName = MangledNameBuffer;
} else {
LT = llvm::GlobalValue::PrivateLinkage;
GlobalVariableName = Name;
}
auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
CGDebugInfo *DI = getModuleDebugInfo();
if (DI && getCodeGenOpts().hasReducedDebugInfo())
DI->AddStringLiteralDebugInfo(GV, S);
if (Entry)
*Entry = GV;
SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
GV->getValueType(), Alignment);
}
/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
/// array for the given ObjCEncodeExpr node.
ConstantAddress
CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
std::string Str;
getContext().getObjCEncodingForType(E->getEncodedType(), Str);
return GetAddrOfConstantCString(Str);
}
/// GetAddrOfConstantCString - Returns a pointer to a character array containing
/// the literal and a terminating '\0' character.
/// The result has pointer to array type.
ConstantAddress CodeGenModule::GetAddrOfConstantCString(
const std::string &Str, const char *GlobalName) {
StringRef StrWithNull(Str.c_str(), Str.size() + 1);
CharUnits Alignment =
getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
llvm::Constant *C =
llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
// Don't share any string literals if strings aren't constant.
llvm::GlobalVariable **Entry = nullptr;
if (!LangOpts.WritableStrings) {
Entry = &ConstantStringMap[C];
if (auto GV = *Entry) {
if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
GV->setAlignment(Alignment.getAsAlign());
return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
GV->getValueType(), Alignment);
}
}
// Get the default prefix if a name wasn't specified.
if (!GlobalName)
GlobalName = ".str";
// Create a global variable for this.
auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
GlobalName, Alignment);
if (Entry)
*Entry = GV;
return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
GV->getValueType(), Alignment);
}
ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
const MaterializeTemporaryExpr *E, const Expr *Init) {
assert((E->getStorageDuration() == SD_Static ||
E->getStorageDuration() == SD_Thread) && "not a global temporary");
const auto *VD = cast<VarDecl>(E->getExtendingDecl());
// If we're not materializing a subobject of the temporary, keep the
// cv-qualifiers from the type of the MaterializeTemporaryExpr.
QualType MaterializedType = Init->getType();
if (Init == E->getSubExpr())
MaterializedType = E->getType();
CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
if (!InsertResult.second) {
// We've seen this before: either we already created it or we're in the
// process of doing so.
if (!InsertResult.first->second) {
// We recursively re-entered this function, probably during emission of
// the initializer. Create a placeholder. We'll clean this up in the
// outer call, at the end of this function.
llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
InsertResult.first->second = new llvm::GlobalVariable(
getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
nullptr);
}
return ConstantAddress(InsertResult.first->second,
llvm::cast<llvm::GlobalVariable>(
InsertResult.first->second->stripPointerCasts())
->getValueType(),
Align);
}
// FIXME: If an externally-visible declaration extends multiple temporaries,
// we need to give each temporary the same name in every translation unit (and
// we also need to make the temporaries externally-visible).
SmallString<256> Name;
llvm::raw_svector_ostream Out(Name);
getCXXABI().getMangleContext().mangleReferenceTemporary(
VD, E->getManglingNumber(), Out);
APValue *Value = nullptr;
if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
// If the initializer of the extending declaration is a constant
// initializer, we should have a cached constant initializer for this
// temporary. Note that this might have a different value from the value
// computed by evaluating the initializer if the surrounding constant
// expression modifies the temporary.
Value = E->getOrCreateValue(false);
}
// Try evaluating it now, it might have a constant initializer.
Expr::EvalResult EvalResult;
if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
!EvalResult.hasSideEffects())
Value = &EvalResult.Val;
LangAS AddrSpace =
VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
std::optional<ConstantEmitter> emitter;
llvm::Constant *InitialValue = nullptr;
bool Constant = false;
llvm::Type *Type;
if (Value) {
// The temporary has a constant initializer, use it.
emitter.emplace(*this);
InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
MaterializedType);
Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
Type = InitialValue->getType();
} else {
// No initializer, the initialization will be provided when we
// initialize the declaration which performed lifetime extension.
Type = getTypes().ConvertTypeForMem(MaterializedType);
}
// Create a global variable for this lifetime-extended temporary.
llvm::GlobalValue::LinkageTypes Linkage =
getLLVMLinkageVarDefinition(VD, Constant);
if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
const VarDecl *InitVD;
if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
// Temporaries defined inside a class get linkonce_odr linkage because the
// class can be defined in multiple translation units.
Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
} else {
// There is no need for this temporary to have external linkage if the
// VarDecl has external linkage.
Linkage = llvm::GlobalVariable::InternalLinkage;
}
}
auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
auto *GV = new llvm::GlobalVariable(
getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
/*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
if (emitter) emitter->finalize(GV);
// Don't assign dllimport or dllexport to local linkage globals.
if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
setGVProperties(GV, VD);
if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
// The reference temporary should never be dllexport.
GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
}
GV->setAlignment(Align.getAsAlign());
if (supportsCOMDAT() && GV->isWeakForLinker())
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
if (VD->getTLSKind())
setTLSMode(GV, *VD);
llvm::Constant *CV = GV;
if (AddrSpace != LangAS::Default)
CV = getTargetCodeGenInfo().performAddrSpaceCast(
*this, GV, AddrSpace, LangAS::Default,
Type->getPointerTo(
getContext().getTargetAddressSpace(LangAS::Default)));
// Update the map with the new temporary. If we created a placeholder above,
// replace it with the new global now.
llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
if (Entry) {
Entry->replaceAllUsesWith(
llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
}
Entry = CV;
return ConstantAddress(CV, Type, Align);
}
/// EmitObjCPropertyImplementations - Emit information for synthesized
/// properties for an implementation.
void CodeGenModule::EmitObjCPropertyImplementations(const
ObjCImplementationDecl *D) {
for (const auto *PID : D->property_impls()) {
// Dynamic is just for type-checking.
if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
ObjCPropertyDecl *PD = PID->getPropertyDecl();
// Determine which methods need to be implemented, some may have
// been overridden. Note that ::isPropertyAccessor is not the method
// we want, that just indicates if the decl came from a
// property. What we want to know is if the method is defined in
// this implementation.
auto *Getter = PID->getGetterMethodDecl();
if (!Getter || Getter->isSynthesizedAccessorStub())
CodeGenFunction(*this).GenerateObjCGetter(
const_cast<ObjCImplementationDecl *>(D), PID);
auto *Setter = PID->getSetterMethodDecl();
if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
CodeGenFunction(*this).GenerateObjCSetter(
const_cast<ObjCImplementationDecl *>(D), PID);
}
}
}
static bool needsDestructMethod(ObjCImplementationDecl *impl) {
const ObjCInterfaceDecl *iface = impl->getClassInterface();
for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
ivar; ivar = ivar->getNextIvar())
if (ivar->getType().isDestructedType())
return true;
return false;
}
static bool AllTrivialInitializers(CodeGenModule &CGM,
ObjCImplementationDecl *D) {
CodeGenFunction CGF(CGM);
for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
E = D->init_end(); B != E; ++B) {
CXXCtorInitializer *CtorInitExp = *B;
Expr *Init = CtorInitExp->getInit();
if (!CGF.isTrivialInitializer(Init))
return false;
}
return true;
}
/// EmitObjCIvarInitializations - Emit information for ivar initialization
/// for an implementation.
void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
// We might need a .cxx_destruct even if we don't have any ivar initializers.
if (needsDestructMethod(D)) {
IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
getContext(), D->getLocation(), D->getLocation(), cxxSelector,
getContext().VoidTy, nullptr, D,
/*isInstance=*/true, /*isVariadic=*/false,
/*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
/*isImplicitlyDeclared=*/true,
/*isDefined=*/false, ObjCMethodDecl::Required);
D->addInstanceMethod(DTORMethod);
CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
D->setHasDestructors(true);
}
// If the implementation doesn't have any ivar initializers, we don't need
// a .cxx_construct.
if (D->getNumIvarInitializers() == 0 ||
AllTrivialInitializers(*this, D))
return;
IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
// The constructor returns 'self'.
ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
getContext(), D->getLocation(), D->getLocation(), cxxSelector,
getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
/*isVariadic=*/false,
/*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
/*isImplicitlyDeclared=*/true,
/*isDefined=*/false, ObjCMethodDecl::Required);
D->addInstanceMethod(CTORMethod);
CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
D->setHasNonZeroConstructors(true);
}
// EmitLinkageSpec - Emit all declarations in a linkage spec.
void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
ErrorUnsupported(LSD, "linkage spec");
return;
}
EmitDeclContext(LSD);
}
void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
std::unique_ptr<CodeGenFunction> &CurCGF =
GlobalTopLevelStmtBlockInFlight.first;
// We emitted a top-level stmt but after it there is initialization.
// Stop squashing the top-level stmts into a single function.
if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
CurCGF->FinishFunction(D->getEndLoc());
CurCGF = nullptr;
}
if (!CurCGF) {
// void __stmts__N(void)
// FIXME: Ask the ABI name mangler to pick a name.
std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
FunctionArgList Args;
QualType RetTy = getContext().VoidTy;
const CGFunctionInfo &FnInfo =
getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
llvm::Function *Fn = llvm::Function::Create(
FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
CurCGF.reset(new CodeGenFunction(*this));
GlobalTopLevelStmtBlockInFlight.second = D;
CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
D->getBeginLoc(), D->getBeginLoc());
CXXGlobalInits.push_back(Fn);
}
CurCGF->EmitStmt(D->getStmt());
}
void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
for (auto *I : DC->decls()) {
// Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
// are themselves considered "top-level", so EmitTopLevelDecl on an
// ObjCImplDecl does not recursively visit them. We need to do that in
// case they're nested inside another construct (LinkageSpecDecl /
// ExportDecl) that does stop them from being considered "top-level".
if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
for (auto *M : OID->methods())
EmitTopLevelDecl(M);
}
EmitTopLevelDecl(I);
}
}
/// EmitTopLevelDecl - Emit code for a single top level declaration.
void CodeGenModule::EmitTopLevelDecl(Decl *D) {
// Ignore dependent declarations.
if (D->isTemplated())
return;
// Consteval function shouldn't be emitted.
if (auto *FD = dyn_cast<FunctionDecl>(D))
if (FD->isConsteval())
return;
switch (D->getKind()) {
case Decl::CXXConversion:
case Decl::CXXMethod:
case Decl::Function:
EmitGlobal(cast<FunctionDecl>(D));
// Always provide some coverage mapping
// even for the functions that aren't emitted.
AddDeferredUnusedCoverageMapping(D);
break;
case Decl::CXXDeductionGuide:
// Function-like, but does not result in code emission.
break;
case Decl::Var:
case Decl::Decomposition:
case Decl::VarTemplateSpecialization:
EmitGlobal(cast<VarDecl>(D));
if (auto *DD = dyn_cast<DecompositionDecl>(D))
for (auto *B : DD->bindings())
if (auto *HD = B->getHoldingVar())
EmitGlobal(HD);
break;
// Indirect fields from global anonymous structs and unions can be
// ignored; only the actual variable requires IR gen support.
case Decl::IndirectField:
break;
// C++ Decls
case Decl::Namespace:
EmitDeclContext(cast<NamespaceDecl>(D));
break;
case Decl::ClassTemplateSpecialization: {
const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
if (CGDebugInfo *DI = getModuleDebugInfo())
if (Spec->getSpecializationKind() ==
TSK_ExplicitInstantiationDefinition &&
Spec->hasDefinition())
DI->completeTemplateDefinition(*Spec);
} [[fallthrough]];
case Decl::CXXRecord: {
CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
if (CGDebugInfo *DI = getModuleDebugInfo()) {
if (CRD->hasDefinition())
DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
if (auto *ES = D->getASTContext().getExternalSource())
if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
DI->completeUnusedClass(*CRD);
}
// Emit any static data members, they may be definitions.
for (auto *I : CRD->decls())
if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
EmitTopLevelDecl(I);
break;
}
// No code generation needed.
case Decl::UsingShadow:
case Decl::ClassTemplate:
case Decl::VarTemplate:
case Decl::Concept:
case Decl::VarTemplatePartialSpecialization:
case Decl::FunctionTemplate:
case Decl::TypeAliasTemplate:
case Decl::Block:
case Decl::Empty:
case Decl::Binding:
break;
case Decl::Using: // using X; [C++]
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitUsingDecl(cast<UsingDecl>(*D));
break;
case Decl::UsingEnum: // using enum X; [C++]
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
break;
case Decl::NamespaceAlias:
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
break;
case Decl::UsingDirective: // using namespace X; [C++]
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
break;
case Decl::CXXConstructor:
getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
break;
case Decl::CXXDestructor:
getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
break;
case Decl::StaticAssert:
// Nothing to do.
break;
// Objective-C Decls
// Forward declarations, no (immediate) code generation.
case Decl::ObjCInterface:
case Decl::ObjCCategory:
break;
case Decl::ObjCProtocol: {
auto *Proto = cast<ObjCProtocolDecl>(D);
if (Proto->isThisDeclarationADefinition())
ObjCRuntime->GenerateProtocol(Proto);
break;
}
case Decl::ObjCCategoryImpl:
// Categories have properties but don't support synthesize so we
// can ignore them here.
ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
break;
case Decl::ObjCImplementation: {
auto *OMD = cast<ObjCImplementationDecl>(D);
EmitObjCPropertyImplementations(OMD);
EmitObjCIvarInitializations(OMD);
ObjCRuntime->GenerateClass(OMD);
// Emit global variable debug information.
if (CGDebugInfo *DI = getModuleDebugInfo())
if (getCodeGenOpts().hasReducedDebugInfo())
DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
OMD->getClassInterface()), OMD->getLocation());
break;
}
case Decl::ObjCMethod: {
auto *OMD = cast<ObjCMethodDecl>(D);
// If this is not a prototype, emit the body.
if (OMD->getBody())
CodeGenFunction(*this).GenerateObjCMethod(OMD);
break;
}
case Decl::ObjCCompatibleAlias:
ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
break;
case Decl::PragmaComment: {
const auto *PCD = cast<PragmaCommentDecl>(D);
switch (PCD->getCommentKind()) {
case PCK_Unknown:
llvm_unreachable("unexpected pragma comment kind");
case PCK_Linker:
AppendLinkerOptions(PCD->getArg());
break;
case PCK_Lib:
AddDependentLib(PCD->getArg());
break;
case PCK_Compiler:
case PCK_ExeStr:
case PCK_User:
break; // We ignore all of these.
}
break;
}
case Decl::PragmaDetectMismatch: {
const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
AddDetectMismatch(PDMD->getName(), PDMD->getValue());
break;
}
case Decl::LinkageSpec:
EmitLinkageSpec(cast<LinkageSpecDecl>(D));
break;
case Decl::FileScopeAsm: {
// File-scope asm is ignored during device-side CUDA compilation.
if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
break;
// File-scope asm is ignored during device-side OpenMP compilation.
if (LangOpts.OpenMPIsDevice)
break;
// File-scope asm is ignored during device-side SYCL compilation.
if (LangOpts.SYCLIsDevice)
break;
auto *AD = cast<FileScopeAsmDecl>(D);
getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
break;
}
case Decl::TopLevelStmt:
EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
break;
case Decl::Import: {
auto *Import = cast<ImportDecl>(D);
// If we've already imported this module, we're done.
if (!ImportedModules.insert(Import->getImportedModule()))
break;
// Emit debug information for direct imports.
if (!Import->getImportedOwningModule()) {
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitImportDecl(*Import);
}
// For C++ standard modules we are done - we will call the module
// initializer for imported modules, and that will likewise call those for
// any imports it has.
if (CXX20ModuleInits && Import->getImportedOwningModule() &&
!Import->getImportedOwningModule()->isModuleMapModule())
break;
// For clang C++ module map modules the initializers for sub-modules are
// emitted here.
// Find all of the submodules and emit the module initializers.
llvm::SmallPtrSet<clang::Module *, 16> Visited;
SmallVector<clang::Module *, 16> Stack;
Visited.insert(Import->getImportedModule());
Stack.push_back(Import->getImportedModule());
while (!Stack.empty()) {
clang::Module *Mod = Stack.pop_back_val();
if (!EmittedModuleInitializers.insert(Mod).second)
continue;
for (auto *D : Context.getModuleInitializers(Mod))
EmitTopLevelDecl(D);
// Visit the submodules of this module.
for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
SubEnd = Mod->submodule_end();
Sub != SubEnd; ++Sub) {
// Skip explicit children; they need to be explicitly imported to emit
// the initializers.
if ((*Sub)->IsExplicit)
continue;
if (Visited.insert(*Sub).second)
Stack.push_back(*Sub);
}
}
break;
}
case Decl::Export:
EmitDeclContext(cast<ExportDecl>(D));
break;
case Decl::OMPThreadPrivate:
EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
break;
case Decl::OMPAllocate:
EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
break;
case Decl::OMPDeclareReduction:
EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
break;
case Decl::OMPDeclareMapper:
EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
break;
case Decl::OMPRequires:
EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
break;
case Decl::Typedef:
case Decl::TypeAlias: // using foo = bar; [C++11]
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitAndRetainType(
getContext().getTypedefType(cast<TypedefNameDecl>(D)));
break;
case Decl::Record:
if (CGDebugInfo *DI = getModuleDebugInfo())
if (cast<RecordDecl>(D)->getDefinition())
DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
break;
case Decl::Enum:
if (CGDebugInfo *DI = getModuleDebugInfo())
if (cast<EnumDecl>(D)->getDefinition())
DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
break;
case Decl::HLSLBuffer:
getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
break;
default:
// Make sure we handled everything we should, every other kind is a
// non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
// function. Need to recode Decl::Kind to do that easily.
assert(isa<TypeDecl>(D) && "Unsupported decl kind");
break;
}
}
void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
// Do we need to generate coverage mapping?
if (!CodeGenOpts.CoverageMapping)
return;
switch (D->getKind()) {
case Decl::CXXConversion:
case Decl::CXXMethod:
case Decl::Function:
case Decl::ObjCMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor: {
if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
break;
SourceManager &SM = getContext().getSourceManager();
if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
break;
auto I = DeferredEmptyCoverageMappingDecls.find(D);
if (I == DeferredEmptyCoverageMappingDecls.end())
DeferredEmptyCoverageMappingDecls[D] = true;
break;
}
default:
break;
};
}
void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
// Do we need to generate coverage mapping?
if (!CodeGenOpts.CoverageMapping)
return;
if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
if (Fn->isTemplateInstantiation())
ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
}
auto I = DeferredEmptyCoverageMappingDecls.find(D);
if (I == DeferredEmptyCoverageMappingDecls.end())
DeferredEmptyCoverageMappingDecls[D] = false;
else
I->second = false;
}
void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
// We call takeVector() here to avoid use-after-free.
// FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
// we deserialize function bodies to emit coverage info for them, and that
// deserializes more declarations. How should we handle that case?
for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
if (!Entry.second)
continue;
const Decl *D = Entry.first;
switch (D->getKind()) {
case Decl::CXXConversion:
case Decl::CXXMethod:
case Decl::Function:
case Decl::ObjCMethod: {
CodeGenPGO PGO(*this);
GlobalDecl GD(cast<FunctionDecl>(D));
PGO.emitEmptyCounterMapping(D, getMangledName(GD),
getFunctionLinkage(GD));
break;
}
case Decl::CXXConstructor: {
CodeGenPGO PGO(*this);
GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
PGO.emitEmptyCounterMapping(D, getMangledName(GD),
getFunctionLinkage(GD));
break;
}
case Decl::CXXDestructor: {
CodeGenPGO PGO(*this);
GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
PGO.emitEmptyCounterMapping(D, getMangledName(GD),
getFunctionLinkage(GD));
break;
}
default:
break;
};
}
}
void CodeGenModule::EmitMainVoidAlias() {
// In order to transition away from "__original_main" gracefully, emit an
// alias for "main" in the no-argument case so that libc can detect when
// new-style no-argument main is in used.
if (llvm::Function *F = getModule().getFunction("main")) {
if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
auto *GA = llvm::GlobalAlias::create("__main_void", F);
GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
}
}
}
/// Turns the given pointer into a constant.
static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
const void *Ptr) {
uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
return llvm::ConstantInt::get(i64, PtrInt);
}
static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
llvm::NamedMDNode *&GlobalMetadata,
GlobalDecl D,
llvm::GlobalValue *Addr) {
if (!GlobalMetadata)
GlobalMetadata =
CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
// TODO: should we report variant information for ctors/dtors?
llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
llvm::ConstantAsMetadata::get(GetPointerConstant(
CGM.getLLVMContext(), D.getDecl()))};
GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
}
bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
llvm::GlobalValue *CppFunc) {
// Store the list of ifuncs we need to replace uses in.
llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
// List of ConstantExprs that we should be able to delete when we're done
// here.
llvm::SmallVector<llvm::ConstantExpr *> CEs;
// It isn't valid to replace the extern-C ifuncs if all we find is itself!
if (Elem == CppFunc)
return false;
// First make sure that all users of this are ifuncs (or ifuncs via a
// bitcast), and collect the list of ifuncs and CEs so we can work on them
// later.
for (llvm::User *User : Elem->users()) {
// Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
// ifunc directly. In any other case, just give up, as we don't know what we
// could break by changing those.
if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
return false;
for (llvm::User *CEUser : ConstExpr->users()) {
if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
IFuncs.push_back(IFunc);
} else {
return false;
}
}
CEs.push_back(ConstExpr);
} else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
IFuncs.push_back(IFunc);
} else {
// This user is one we don't know how to handle, so fail redirection. This
// will result in an ifunc retaining a resolver name that will ultimately
// fail to be resolved to a defined function.
return false;
}
}
// Now we know this is a valid case where we can do this alias replacement, we
// need to remove all of the references to Elem (and the bitcasts!) so we can
// delete it.
for (llvm::GlobalIFunc *IFunc : IFuncs)
IFunc->setResolver(nullptr);
for (llvm::ConstantExpr *ConstExpr : CEs)
ConstExpr->destroyConstant();
// We should now be out of uses for the 'old' version of this function, so we
// can erase it as well.
Elem->eraseFromParent();
for (llvm::GlobalIFunc *IFunc : IFuncs) {
// The type of the resolver is always just a function-type that returns the
// type of the IFunc, so create that here. If the type of the actual
// resolver doesn't match, it just gets bitcast to the right thing.
auto *ResolverTy =
llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
llvm::Constant *Resolver = GetOrCreateLLVMFunction(
CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
IFunc->setResolver(Resolver);
}
return true;
}
/// For each function which is declared within an extern "C" region and marked
/// as 'used', but has internal linkage, create an alias from the unmangled
/// name to the mangled name if possible. People expect to be able to refer
/// to such functions with an unmangled name from inline assembly within the
/// same translation unit.
void CodeGenModule::EmitStaticExternCAliases() {
if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
return;
for (auto &I : StaticExternCValues) {
IdentifierInfo *Name = I.first;
llvm::GlobalValue *Val = I.second;
// If Val is null, that implies there were multiple declarations that each
// had a claim to the unmangled name. In this case, generation of the alias
// is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
if (!Val)
break;
llvm::GlobalValue *ExistingElem =
getModule().getNamedValue(Name->getName());
// If there is either not something already by this name, or we were able to
// replace all uses from IFuncs, create the alias.
if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
}
}
bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
GlobalDecl &Result) const {
auto Res = Manglings.find(MangledName);
if (Res == Manglings.end())
return false;
Result = Res->getValue();
return true;
}
/// Emits metadata nodes associating all the global values in the
/// current module with the Decls they came from. This is useful for
/// projects using IR gen as a subroutine.
///
/// Since there's currently no way to associate an MDNode directly
/// with an llvm::GlobalValue, we create a global named metadata
/// with the name 'clang.global.decl.ptrs'.
void CodeGenModule::EmitDeclMetadata() {
llvm::NamedMDNode *GlobalMetadata = nullptr;
for (auto &I : MangledDeclNames) {
llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
// Some mangled names don't necessarily have an associated GlobalValue
// in this module, e.g. if we mangled it for DebugInfo.
if (Addr)
EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
}
}
/// Emits metadata nodes for all the local variables in the current
/// function.
void CodeGenFunction::EmitDeclMetadata() {
if (LocalDeclMap.empty()) return;
llvm::LLVMContext &Context = getLLVMContext();
// Find the unique metadata ID for this name.
unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
llvm::NamedMDNode *GlobalMetadata = nullptr;
for (auto &I : LocalDeclMap) {
const Decl *D = I.first;
llvm::Value *Addr = I.second.getPointer();
if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
Alloca->setMetadata(
DeclPtrKind, llvm::MDNode::get(
Context, llvm::ValueAsMetadata::getConstant(DAddr)));
} else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
}
}
}
void CodeGenModule::EmitVersionIdentMetadata() {
llvm::NamedMDNode *IdentMetadata =
TheModule.getOrInsertNamedMetadata("llvm.ident");
std::string Version = getClangFullVersion();
llvm::LLVMContext &Ctx = TheModule.getContext();
llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
}
void CodeGenModule::EmitCommandLineMetadata() {
llvm::NamedMDNode *CommandLineMetadata =
TheModule.getOrInsertNamedMetadata("llvm.commandline");
std::string CommandLine = getCodeGenOpts().RecordCommandLine;
llvm::LLVMContext &Ctx = TheModule.getContext();
llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
}
void CodeGenModule::EmitCoverageFile() {
if (getCodeGenOpts().CoverageDataFile.empty() &&
getCodeGenOpts().CoverageNotesFile.empty())
return;
llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
if (!CUNode)
return;
llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
llvm::LLVMContext &Ctx = TheModule.getContext();
auto *CoverageDataFile =
llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
auto *CoverageNotesFile =
llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
llvm::MDNode *CU = CUNode->getOperand(i);
llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
}
}
llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
bool ForEH) {
// Return a bogus pointer if RTTI is disabled, unless it's for EH.
// FIXME: should we even be calling this method if RTTI is disabled
// and it's not for EH?
if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
getTriple().isNVPTX()))
return llvm::Constant::getNullValue(Int8PtrTy);
if (ForEH && Ty->isObjCObjectPointerType() &&
LangOpts.ObjCRuntime.isGNUFamily())
return ObjCRuntime->GetEHType(Ty);
return getCXXABI().getAddrOfRTTIDescriptor(Ty);
}
void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
// Do not emit threadprivates in simd-only mode.
if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
return;
for (auto RefExpr : D->varlists()) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
bool PerformInit =
VD->getAnyInitializer() &&
!VD->getAnyInitializer()->isConstantInitializer(getContext(),
/*ForRef=*/false);
Address Addr(GetAddrOfGlobalVar(VD),
getTypes().ConvertTypeForMem(VD->getType()),
getContext().getDeclAlign(VD));
if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
VD, Addr, RefExpr->getBeginLoc(), PerformInit))
CXXGlobalInits.push_back(InitFunction);
}
}
llvm::Metadata *
CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
StringRef Suffix) {
if (auto *FnType = T->getAs<FunctionProtoType>())
T = getContext().getFunctionType(
FnType->getReturnType(), FnType->getParamTypes(),
FnType->getExtProtoInfo().withExceptionSpec(EST_None));
llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
if (InternalId)
return InternalId;
if (isExternallyVisible(T->getLinkage())) {
std::string OutName;
llvm::raw_string_ostream Out(OutName);
getCXXABI().getMangleContext().mangleTypeName(T, Out);
Out << Suffix;
InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
} else {
InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
llvm::ArrayRef<llvm::Metadata *>());
}
return InternalId;
}
llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
}
llvm::Metadata *
CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
}
// Generalize pointer types to a void pointer with the qualifiers of the
// originally pointed-to type, e.g. 'const char *' and 'char * const *'
// generalize to 'const void *' while 'char *' and 'const char **' generalize to
// 'void *'.
static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
if (!Ty->isPointerType())
return Ty;
return Ctx.getPointerType(
QualType(Ctx.VoidTy).withCVRQualifiers(
Ty->getPointeeType().getCVRQualifiers()));
}
// Apply type generalization to a FunctionType's return and argument types
static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
SmallVector<QualType, 8> GeneralizedParams;
for (auto &Param : FnType->param_types())
GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
return Ctx.getFunctionType(
GeneralizeType(Ctx, FnType->getReturnType()),
GeneralizedParams, FnType->getExtProtoInfo());
}
if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
return Ctx.getFunctionNoProtoType(
GeneralizeType(Ctx, FnType->getReturnType()));
llvm_unreachable("Encountered unknown FunctionType");
}
llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
GeneralizedMetadataIdMap, ".generalized");
}
/// Returns whether this module needs the "all-vtables" type identifier.
bool CodeGenModule::NeedAllVtablesTypeId() const {
// Returns true if at least one of vtable-based CFI checkers is enabled and
// is not in the trapping mode.
return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
(LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
(LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
(LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
}
void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
CharUnits Offset,
const CXXRecordDecl *RD) {
llvm::Metadata *MD =
CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
VTable->addTypeMetadata(Offset.getQuantity(), MD);
if (CodeGenOpts.SanitizeCfiCrossDso)
if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
VTable->addTypeMetadata(Offset.getQuantity(),
llvm::ConstantAsMetadata::get(CrossDsoTypeId));
if (NeedAllVtablesTypeId()) {
llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
VTable->addTypeMetadata(Offset.getQuantity(), MD);
}
}
llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
if (!SanStats)
SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
return *SanStats;
}
llvm::Value *
CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
CodeGenFunction &CGF) {
llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
auto *Call = CGF.EmitRuntimeCall(
CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
return Call;
}
CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
/* forPointeeType= */ true);
}
CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
LValueBaseInfo *BaseInfo,
TBAAAccessInfo *TBAAInfo,
bool forPointeeType) {
if (TBAAInfo)
*TBAAInfo = getTBAAAccessInfo(T);
// FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
// that doesn't return the information we need to compute BaseInfo.
// Honor alignment typedef attributes even on incomplete types.
// We also honor them straight for C++ class types, even as pointees;
// there's an expressivity gap here.
if (auto TT = T->getAs<TypedefType>()) {
if (auto Align = TT->getDecl()->getMaxAlignment()) {
if (BaseInfo)
*BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
return getContext().toCharUnitsFromBits(Align);
}
}
bool AlignForArray = T->isArrayType();
// Analyze the base element type, so we don't get confused by incomplete
// array types.
T = getContext().getBaseElementType(T);
if (T->isIncompleteType()) {
// We could try to replicate the logic from
// ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
// type is incomplete, so it's impossible to test. We could try to reuse
// getTypeAlignIfKnown, but that doesn't return the information we need
// to set BaseInfo. So just ignore the possibility that the alignment is
// greater than one.
if (BaseInfo)
*BaseInfo = LValueBaseInfo(AlignmentSource::Type);
return CharUnits::One();
}
if (BaseInfo)
*BaseInfo = LValueBaseInfo(AlignmentSource::Type);
CharUnits Alignment;
const CXXRecordDecl *RD;
if (T.getQualifiers().hasUnaligned()) {
Alignment = CharUnits::One();
} else if (forPointeeType && !AlignForArray &&
(RD = T->getAsCXXRecordDecl())) {
// For C++ class pointees, we don't know whether we're pointing at a
// base or a complete object, so we generally need to use the
// non-virtual alignment.
Alignment = getClassPointerAlignment(RD);
} else {
Alignment = getContext().getTypeAlignInChars(T);
}
// Cap to the global maximum type alignment unless the alignment
// was somehow explicit on the type.
if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
if (Alignment.getQuantity() > MaxAlign &&
!getContext().isAlignmentRequired(T))
Alignment = CharUnits::fromQuantity(MaxAlign);
}
return Alignment;
}
bool CodeGenModule::stopAutoInit() {
unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
if (StopAfter) {
// This number is positive only when -ftrivial-auto-var-init-stop-after=* is
// used
if (NumAutoVarInit >= StopAfter) {
return true;
}
if (!NumAutoVarInit) {
unsigned DiagID = getDiags().getCustomDiagID(
DiagnosticsEngine::Warning,
"-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
"number of times ftrivial-auto-var-init=%1 gets applied.");
getDiags().Report(DiagID)
<< StopAfter
<< (getContext().getLangOpts().getTrivialAutoVarInit() ==
LangOptions::TrivialAutoVarInitKind::Zero
? "zero"
: "pattern");
}
++NumAutoVarInit;
}
return false;
}
void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
const Decl *D) const {
// ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
// postfix beginning with '.' since the symbol name can be demangled.
if (LangOpts.HIP)
OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
else
OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
// If the CUID is not specified we try to generate a unique postfix.
if (getLangOpts().CUID.empty()) {
SourceManager &SM = getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
assert(PLoc.isValid() && "Source location is expected to be valid.");
// Get the hash of the user defined macros.
llvm::MD5 Hash;
llvm::MD5::MD5Result Result;
for (const auto &Arg : PreprocessorOpts.Macros)
Hash.update(Arg.first);
Hash.final(Result);
// Get the UniqueID for the file containing the decl.
llvm::sys::fs::UniqueID ID;
if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
assert(PLoc.isValid() && "Source location is expected to be valid.");
if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
SM.getDiagnostics().Report(diag::err_cannot_open_file)
<< PLoc.getFilename() << EC.message();
}
OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
<< "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
} else {
OS << getContext().getCUIDHash();
}
}
void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
assert(DeferredDeclsToEmit.empty() &&
"Should have emitted all decls deferred to emit.");
assert(NewBuilder->DeferredDecls.empty() &&
"Newly created module should not have deferred decls");
NewBuilder->DeferredDecls = std::move(DeferredDecls);
assert(NewBuilder->DeferredVTables.empty() &&
"Newly created module should not have deferred vtables");
NewBuilder->DeferredVTables = std::move(DeferredVTables);
assert(NewBuilder->MangledDeclNames.empty() &&
"Newly created module should not have mangled decl names");
assert(NewBuilder->Manglings.empty() &&
"Newly created module should not have manglings");
NewBuilder->Manglings = std::move(Manglings);
assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
NewBuilder->TBAA = std::move(TBAA);
assert(NewBuilder->EmittedDeferredDecls.empty() &&
"Still have (unmerged) EmittedDeferredDecls deferred decls");
NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
}
|