aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16/lib/CodeGen/CGValue.h
blob: f01eece042f8617986c7f9a90487579ad39dc856 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These classes implement wrappers around llvm::Value in order to
// fully represent the range of values for C L- and R- values.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
#define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H

#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Type.h"
#include "Address.h"
#include "CodeGenTBAA.h"

namespace llvm {
  class Constant;
  class MDNode;
}

namespace clang {
namespace CodeGen {
  class AggValueSlot;
  class CodeGenFunction;
  struct CGBitFieldInfo;

/// RValue - This trivial value class is used to represent the result of an
/// expression that is evaluated.  It can be one of three things: either a
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
/// address of an aggregate value in memory.
class RValue {
  enum Flavor { Scalar, Complex, Aggregate };

  // The shift to make to an aggregate's alignment to make it look
  // like a pointer.
  enum { AggAlignShift = 4 };

  // Stores first value and flavor.
  llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
  // Stores second value and volatility.
  llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
  // Stores element type for aggregate values.
  llvm::Type *ElementType;

public:
  bool isScalar() const { return V1.getInt() == Scalar; }
  bool isComplex() const { return V1.getInt() == Complex; }
  bool isAggregate() const { return V1.getInt() == Aggregate; }

  bool isVolatileQualified() const { return V2.getInt(); }

  /// getScalarVal() - Return the Value* of this scalar value.
  llvm::Value *getScalarVal() const {
    assert(isScalar() && "Not a scalar!");
    return V1.getPointer();
  }

  /// getComplexVal - Return the real/imag components of this complex value.
  ///
  std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
    return std::make_pair(V1.getPointer(), V2.getPointer());
  }

  /// getAggregateAddr() - Return the Value* of the address of the aggregate.
  Address getAggregateAddress() const {
    assert(isAggregate() && "Not an aggregate!");
    auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
    return Address(
        V1.getPointer(), ElementType, CharUnits::fromQuantity(align));
  }
  llvm::Value *getAggregatePointer() const {
    assert(isAggregate() && "Not an aggregate!");
    return V1.getPointer();
  }

  static RValue getIgnored() {
    // FIXME: should we make this a more explicit state?
    return get(nullptr);
  }

  static RValue get(llvm::Value *V) {
    RValue ER;
    ER.V1.setPointer(V);
    ER.V1.setInt(Scalar);
    ER.V2.setInt(false);
    return ER;
  }
  static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
    RValue ER;
    ER.V1.setPointer(V1);
    ER.V2.setPointer(V2);
    ER.V1.setInt(Complex);
    ER.V2.setInt(false);
    return ER;
  }
  static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
    return getComplex(C.first, C.second);
  }
  // FIXME: Aggregate rvalues need to retain information about whether they are
  // volatile or not.  Remove default to find all places that probably get this
  // wrong.
  static RValue getAggregate(Address addr, bool isVolatile = false) {
    RValue ER;
    ER.V1.setPointer(addr.getPointer());
    ER.V1.setInt(Aggregate);
    ER.ElementType = addr.getElementType();

    auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
    ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
    ER.V2.setInt(isVolatile);
    return ER;
  }
};

/// Does an ARC strong l-value have precise lifetime?
enum ARCPreciseLifetime_t {
  ARCImpreciseLifetime, ARCPreciseLifetime
};

/// The source of the alignment of an l-value; an expression of
/// confidence in the alignment actually matching the estimate.
enum class AlignmentSource {
  /// The l-value was an access to a declared entity or something
  /// equivalently strong, like the address of an array allocated by a
  /// language runtime.
  Decl,

  /// The l-value was considered opaque, so the alignment was
  /// determined from a type, but that type was an explicitly-aligned
  /// typedef.
  AttributedType,

  /// The l-value was considered opaque, so the alignment was
  /// determined from a type.
  Type
};

/// Given that the base address has the given alignment source, what's
/// our confidence in the alignment of the field?
static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
  // For now, we don't distinguish fields of opaque pointers from
  // top-level declarations, but maybe we should.
  return AlignmentSource::Decl;
}

class LValueBaseInfo {
  AlignmentSource AlignSource;

public:
  explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
    : AlignSource(Source) {}
  AlignmentSource getAlignmentSource() const { return AlignSource; }
  void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }

  void mergeForCast(const LValueBaseInfo &Info) {
    setAlignmentSource(Info.getAlignmentSource());
  }
};

/// LValue - This represents an lvalue references.  Because C/C++ allow
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
/// bitrange.
class LValue {
  enum {
    Simple,       // This is a normal l-value, use getAddress().
    VectorElt,    // This is a vector element l-value (V[i]), use getVector*
    BitField,     // This is a bitfield l-value, use getBitfield*.
    ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
    GlobalReg,    // This is a register l-value, use getGlobalReg()
    MatrixElt     // This is a matrix element, use getVector*
  } LVType;

  llvm::Value *V;
  llvm::Type *ElementType;

  union {
    // Index into a vector subscript: V[i]
    llvm::Value *VectorIdx;

    // ExtVector element subset: V.xyx
    llvm::Constant *VectorElts;

    // BitField start bit and size
    const CGBitFieldInfo *BitFieldInfo;
  };

  QualType Type;

  // 'const' is unused here
  Qualifiers Quals;

  // The alignment to use when accessing this lvalue.  (For vector elements,
  // this is the alignment of the whole vector.)
  unsigned Alignment;

  // objective-c's ivar
  bool Ivar:1;

  // objective-c's ivar is an array
  bool ObjIsArray:1;

  // LValue is non-gc'able for any reason, including being a parameter or local
  // variable.
  bool NonGC: 1;

  // Lvalue is a global reference of an objective-c object
  bool GlobalObjCRef : 1;

  // Lvalue is a thread local reference
  bool ThreadLocalRef : 1;

  // Lvalue has ARC imprecise lifetime.  We store this inverted to try
  // to make the default bitfield pattern all-zeroes.
  bool ImpreciseLifetime : 1;

  // This flag shows if a nontemporal load/stores should be used when accessing
  // this lvalue.
  bool Nontemporal : 1;

  LValueBaseInfo BaseInfo;
  TBAAAccessInfo TBAAInfo;

  Expr *BaseIvarExp;

private:
  void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment,
                  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
    assert((!Alignment.isZero() || Type->isIncompleteType()) &&
           "initializing l-value with zero alignment!");
    if (isGlobalReg())
      assert(ElementType == nullptr && "Global reg does not store elem type");
    else
      assert(llvm::cast<llvm::PointerType>(V->getType())
                 ->isOpaqueOrPointeeTypeMatches(ElementType) &&
             "Pointer element type mismatch");

    this->Type = Type;
    this->Quals = Quals;
    const unsigned MaxAlign = 1U << 31;
    this->Alignment = Alignment.getQuantity() <= MaxAlign
                          ? Alignment.getQuantity()
                          : MaxAlign;
    assert(this->Alignment == Alignment.getQuantity() &&
           "Alignment exceeds allowed max!");
    this->BaseInfo = BaseInfo;
    this->TBAAInfo = TBAAInfo;

    // Initialize Objective-C flags.
    this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
    this->ImpreciseLifetime = false;
    this->Nontemporal = false;
    this->ThreadLocalRef = false;
    this->BaseIvarExp = nullptr;
  }

public:
  bool isSimple() const { return LVType == Simple; }
  bool isVectorElt() const { return LVType == VectorElt; }
  bool isBitField() const { return LVType == BitField; }
  bool isExtVectorElt() const { return LVType == ExtVectorElt; }
  bool isGlobalReg() const { return LVType == GlobalReg; }
  bool isMatrixElt() const { return LVType == MatrixElt; }

  bool isVolatileQualified() const { return Quals.hasVolatile(); }
  bool isRestrictQualified() const { return Quals.hasRestrict(); }
  unsigned getVRQualifiers() const {
    return Quals.getCVRQualifiers() & ~Qualifiers::Const;
  }

  QualType getType() const { return Type; }

  Qualifiers::ObjCLifetime getObjCLifetime() const {
    return Quals.getObjCLifetime();
  }

  bool isObjCIvar() const { return Ivar; }
  void setObjCIvar(bool Value) { Ivar = Value; }

  bool isObjCArray() const { return ObjIsArray; }
  void setObjCArray(bool Value) { ObjIsArray = Value; }

  bool isNonGC () const { return NonGC; }
  void setNonGC(bool Value) { NonGC = Value; }

  bool isGlobalObjCRef() const { return GlobalObjCRef; }
  void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }

  bool isThreadLocalRef() const { return ThreadLocalRef; }
  void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}

  ARCPreciseLifetime_t isARCPreciseLifetime() const {
    return ARCPreciseLifetime_t(!ImpreciseLifetime);
  }
  void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
    ImpreciseLifetime = (value == ARCImpreciseLifetime);
  }
  bool isNontemporal() const { return Nontemporal; }
  void setNontemporal(bool Value) { Nontemporal = Value; }

  bool isObjCWeak() const {
    return Quals.getObjCGCAttr() == Qualifiers::Weak;
  }
  bool isObjCStrong() const {
    return Quals.getObjCGCAttr() == Qualifiers::Strong;
  }

  bool isVolatile() const {
    return Quals.hasVolatile();
  }

  Expr *getBaseIvarExp() const { return BaseIvarExp; }
  void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }

  TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; }
  void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; }

  const Qualifiers &getQuals() const { return Quals; }
  Qualifiers &getQuals() { return Quals; }

  LangAS getAddressSpace() const { return Quals.getAddressSpace(); }

  CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
  void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }

  LValueBaseInfo getBaseInfo() const { return BaseInfo; }
  void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }

  // simple lvalue
  llvm::Value *getPointer(CodeGenFunction &CGF) const {
    assert(isSimple());
    return V;
  }
  Address getAddress(CodeGenFunction &CGF) const {
    return Address(getPointer(CGF), ElementType, getAlignment());
  }
  void setAddress(Address address) {
    assert(isSimple());
    V = address.getPointer();
    ElementType = address.getElementType();
    Alignment = address.getAlignment().getQuantity();
  }

  // vector elt lvalue
  Address getVectorAddress() const {
    return Address(getVectorPointer(), ElementType, getAlignment());
  }
  llvm::Value *getVectorPointer() const {
    assert(isVectorElt());
    return V;
  }
  llvm::Value *getVectorIdx() const {
    assert(isVectorElt());
    return VectorIdx;
  }

  Address getMatrixAddress() const {
    return Address(getMatrixPointer(), ElementType, getAlignment());
  }
  llvm::Value *getMatrixPointer() const {
    assert(isMatrixElt());
    return V;
  }
  llvm::Value *getMatrixIdx() const {
    assert(isMatrixElt());
    return VectorIdx;
  }

  // extended vector elements.
  Address getExtVectorAddress() const {
    return Address(getExtVectorPointer(), ElementType, getAlignment());
  }
  llvm::Value *getExtVectorPointer() const {
    assert(isExtVectorElt());
    return V;
  }
  llvm::Constant *getExtVectorElts() const {
    assert(isExtVectorElt());
    return VectorElts;
  }

  // bitfield lvalue
  Address getBitFieldAddress() const {
    return Address(getBitFieldPointer(), ElementType, getAlignment());
  }
  llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
  const CGBitFieldInfo &getBitFieldInfo() const {
    assert(isBitField());
    return *BitFieldInfo;
  }

  // global register lvalue
  llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }

  static LValue MakeAddr(Address address, QualType type, ASTContext &Context,
                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
    Qualifiers qs = type.getQualifiers();
    qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));

    LValue R;
    R.LVType = Simple;
    assert(address.getPointer()->getType()->isPointerTy());
    R.V = address.getPointer();
    R.ElementType = address.getElementType();
    R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo);
    return R;
  }

  static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
                              QualType type, LValueBaseInfo BaseInfo,
                              TBAAAccessInfo TBAAInfo) {
    LValue R;
    R.LVType = VectorElt;
    R.V = vecAddress.getPointer();
    R.ElementType = vecAddress.getElementType();
    R.VectorIdx = Idx;
    R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
                 BaseInfo, TBAAInfo);
    return R;
  }

  static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
                                 QualType type, LValueBaseInfo BaseInfo,
                                 TBAAAccessInfo TBAAInfo) {
    LValue R;
    R.LVType = ExtVectorElt;
    R.V = vecAddress.getPointer();
    R.ElementType = vecAddress.getElementType();
    R.VectorElts = Elts;
    R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
                 BaseInfo, TBAAInfo);
    return R;
  }

  /// Create a new object to represent a bit-field access.
  ///
  /// \param Addr - The base address of the bit-field sequence this
  /// bit-field refers to.
  /// \param Info - The information describing how to perform the bit-field
  /// access.
  static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info,
                             QualType type, LValueBaseInfo BaseInfo,
                             TBAAAccessInfo TBAAInfo) {
    LValue R;
    R.LVType = BitField;
    R.V = Addr.getPointer();
    R.ElementType = Addr.getElementType();
    R.BitFieldInfo = &Info;
    R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo,
                 TBAAInfo);
    return R;
  }

  static LValue MakeGlobalReg(llvm::Value *V, CharUnits alignment,
                              QualType type) {
    LValue R;
    R.LVType = GlobalReg;
    R.V = V;
    R.ElementType = nullptr;
    R.Initialize(type, type.getQualifiers(), alignment,
                 LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo());
    return R;
  }

  static LValue MakeMatrixElt(Address matAddress, llvm::Value *Idx,
                              QualType type, LValueBaseInfo BaseInfo,
                              TBAAAccessInfo TBAAInfo) {
    LValue R;
    R.LVType = MatrixElt;
    R.V = matAddress.getPointer();
    R.ElementType = matAddress.getElementType();
    R.VectorIdx = Idx;
    R.Initialize(type, type.getQualifiers(), matAddress.getAlignment(),
                 BaseInfo, TBAAInfo);
    return R;
  }

  RValue asAggregateRValue(CodeGenFunction &CGF) const {
    return RValue::getAggregate(getAddress(CGF), isVolatileQualified());
  }
};

/// An aggregate value slot.
class AggValueSlot {
  /// The address.
  Address Addr;

  // Qualifiers
  Qualifiers Quals;

  /// DestructedFlag - This is set to true if some external code is
  /// responsible for setting up a destructor for the slot.  Otherwise
  /// the code which constructs it should push the appropriate cleanup.
  bool DestructedFlag : 1;

  /// ObjCGCFlag - This is set to true if writing to the memory in the
  /// slot might require calling an appropriate Objective-C GC
  /// barrier.  The exact interaction here is unnecessarily mysterious.
  bool ObjCGCFlag : 1;

  /// ZeroedFlag - This is set to true if the memory in the slot is
  /// known to be zero before the assignment into it.  This means that
  /// zero fields don't need to be set.
  bool ZeroedFlag : 1;

  /// AliasedFlag - This is set to true if the slot might be aliased
  /// and it's not undefined behavior to access it through such an
  /// alias.  Note that it's always undefined behavior to access a C++
  /// object that's under construction through an alias derived from
  /// outside the construction process.
  ///
  /// This flag controls whether calls that produce the aggregate
  /// value may be evaluated directly into the slot, or whether they
  /// must be evaluated into an unaliased temporary and then memcpy'ed
  /// over.  Since it's invalid in general to memcpy a non-POD C++
  /// object, it's important that this flag never be set when
  /// evaluating an expression which constructs such an object.
  bool AliasedFlag : 1;

  /// This is set to true if the tail padding of this slot might overlap
  /// another object that may have already been initialized (and whose
  /// value must be preserved by this initialization). If so, we may only
  /// store up to the dsize of the type. Otherwise we can widen stores to
  /// the size of the type.
  bool OverlapFlag : 1;

  /// If is set to true, sanitizer checks are already generated for this address
  /// or not required. For instance, if this address represents an object
  /// created in 'new' expression, sanitizer checks for memory is made as a part
  /// of 'operator new' emission and object constructor should not generate
  /// them.
  bool SanitizerCheckedFlag : 1;

  AggValueSlot(Address Addr, Qualifiers Quals, bool DestructedFlag,
               bool ObjCGCFlag, bool ZeroedFlag, bool AliasedFlag,
               bool OverlapFlag, bool SanitizerCheckedFlag)
      : Addr(Addr), Quals(Quals), DestructedFlag(DestructedFlag),
        ObjCGCFlag(ObjCGCFlag), ZeroedFlag(ZeroedFlag),
        AliasedFlag(AliasedFlag), OverlapFlag(OverlapFlag),
        SanitizerCheckedFlag(SanitizerCheckedFlag) {}

public:
  enum IsAliased_t { IsNotAliased, IsAliased };
  enum IsDestructed_t { IsNotDestructed, IsDestructed };
  enum IsZeroed_t { IsNotZeroed, IsZeroed };
  enum Overlap_t { DoesNotOverlap, MayOverlap };
  enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
  enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };

  /// ignored - Returns an aggregate value slot indicating that the
  /// aggregate value is being ignored.
  static AggValueSlot ignored() {
    return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
                   DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
  }

  /// forAddr - Make a slot for an aggregate value.
  ///
  /// \param quals - The qualifiers that dictate how the slot should
  /// be initialied. Only 'volatile' and the Objective-C lifetime
  /// qualifiers matter.
  ///
  /// \param isDestructed - true if something else is responsible
  ///   for calling destructors on this object
  /// \param needsGC - true if the slot is potentially located
  ///   somewhere that ObjC GC calls should be emitted for
  static AggValueSlot forAddr(Address addr,
                              Qualifiers quals,
                              IsDestructed_t isDestructed,
                              NeedsGCBarriers_t needsGC,
                              IsAliased_t isAliased,
                              Overlap_t mayOverlap,
                              IsZeroed_t isZeroed = IsNotZeroed,
                       IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
    return AggValueSlot(addr, quals, isDestructed, needsGC, isZeroed, isAliased,
                        mayOverlap, isChecked);
  }

  static AggValueSlot
  forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed,
            NeedsGCBarriers_t needsGC, IsAliased_t isAliased,
            Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed,
            IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
    return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC,
                   isAliased, mayOverlap, isZeroed, isChecked);
  }

  IsDestructed_t isExternallyDestructed() const {
    return IsDestructed_t(DestructedFlag);
  }
  void setExternallyDestructed(bool destructed = true) {
    DestructedFlag = destructed;
  }

  Qualifiers getQualifiers() const { return Quals; }

  bool isVolatile() const {
    return Quals.hasVolatile();
  }

  void setVolatile(bool flag) {
    if (flag)
      Quals.addVolatile();
    else
      Quals.removeVolatile();
  }

  Qualifiers::ObjCLifetime getObjCLifetime() const {
    return Quals.getObjCLifetime();
  }

  NeedsGCBarriers_t requiresGCollection() const {
    return NeedsGCBarriers_t(ObjCGCFlag);
  }

  llvm::Value *getPointer() const {
    return Addr.getPointer();
  }

  Address getAddress() const {
    return Addr;
  }

  bool isIgnored() const {
    return !Addr.isValid();
  }

  CharUnits getAlignment() const {
    return Addr.getAlignment();
  }

  IsAliased_t isPotentiallyAliased() const {
    return IsAliased_t(AliasedFlag);
  }

  Overlap_t mayOverlap() const {
    return Overlap_t(OverlapFlag);
  }

  bool isSanitizerChecked() const {
    return SanitizerCheckedFlag;
  }

  RValue asRValue() const {
    if (isIgnored()) {
      return RValue::getIgnored();
    } else {
      return RValue::getAggregate(getAddress(), isVolatile());
    }
  }

  void setZeroed(bool V = true) { ZeroedFlag = V; }
  IsZeroed_t isZeroed() const {
    return IsZeroed_t(ZeroedFlag);
  }

  /// Get the preferred size to use when storing a value to this slot. This
  /// is the type size unless that might overlap another object, in which
  /// case it's the dsize.
  CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
    return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width
                        : Ctx.getTypeSizeInChars(Type);
  }
};

}  // end namespace CodeGen
}  // end namespace clang

#endif