aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16/lib/CodeGen/CGExprScalar.cpp
blob: a0dcb978b1ac1c2174457f5459e02acdb7be0cb2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/APFixedPoint.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/FixedPointBuilder.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/MatrixBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/TypeSize.h"
#include <cstdarg>
#include <optional>

using namespace clang;
using namespace CodeGen;
using llvm::Value;

//===----------------------------------------------------------------------===//
//                         Scalar Expression Emitter
//===----------------------------------------------------------------------===//

namespace {

/// Determine whether the given binary operation may overflow.
/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
/// the returned overflow check is precise. The returned value is 'true' for
/// all other opcodes, to be conservative.
bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
                             BinaryOperator::Opcode Opcode, bool Signed,
                             llvm::APInt &Result) {
  // Assume overflow is possible, unless we can prove otherwise.
  bool Overflow = true;
  const auto &LHSAP = LHS->getValue();
  const auto &RHSAP = RHS->getValue();
  if (Opcode == BO_Add) {
    Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
                    : LHSAP.uadd_ov(RHSAP, Overflow);
  } else if (Opcode == BO_Sub) {
    Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
                    : LHSAP.usub_ov(RHSAP, Overflow);
  } else if (Opcode == BO_Mul) {
    Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
                    : LHSAP.umul_ov(RHSAP, Overflow);
  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
    if (Signed && !RHS->isZero())
      Result = LHSAP.sdiv_ov(RHSAP, Overflow);
    else
      return false;
  }
  return Overflow;
}

struct BinOpInfo {
  Value *LHS;
  Value *RHS;
  QualType Ty;  // Computation Type.
  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
  FPOptions FPFeatures;
  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.

  /// Check if the binop can result in integer overflow.
  bool mayHaveIntegerOverflow() const {
    // Without constant input, we can't rule out overflow.
    auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
    auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
    if (!LHSCI || !RHSCI)
      return true;

    llvm::APInt Result;
    return ::mayHaveIntegerOverflow(
        LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
  }

  /// Check if the binop computes a division or a remainder.
  bool isDivremOp() const {
    return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
           Opcode == BO_RemAssign;
  }

  /// Check if the binop can result in an integer division by zero.
  bool mayHaveIntegerDivisionByZero() const {
    if (isDivremOp())
      if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
        return CI->isZero();
    return true;
  }

  /// Check if the binop can result in a float division by zero.
  bool mayHaveFloatDivisionByZero() const {
    if (isDivremOp())
      if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
        return CFP->isZero();
    return true;
  }

  /// Check if at least one operand is a fixed point type. In such cases, this
  /// operation did not follow usual arithmetic conversion and both operands
  /// might not be of the same type.
  bool isFixedPointOp() const {
    // We cannot simply check the result type since comparison operations return
    // an int.
    if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
      QualType LHSType = BinOp->getLHS()->getType();
      QualType RHSType = BinOp->getRHS()->getType();
      return LHSType->isFixedPointType() || RHSType->isFixedPointType();
    }
    if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
      return UnOp->getSubExpr()->getType()->isFixedPointType();
    return false;
  }
};

static bool MustVisitNullValue(const Expr *E) {
  // If a null pointer expression's type is the C++0x nullptr_t, then
  // it's not necessarily a simple constant and it must be evaluated
  // for its potential side effects.
  return E->getType()->isNullPtrType();
}

/// If \p E is a widened promoted integer, get its base (unpromoted) type.
static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
                                                       const Expr *E) {
  const Expr *Base = E->IgnoreImpCasts();
  if (E == Base)
    return std::nullopt;

  QualType BaseTy = Base->getType();
  if (!Ctx.isPromotableIntegerType(BaseTy) ||
      Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
    return std::nullopt;

  return BaseTy;
}

/// Check if \p E is a widened promoted integer.
static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
  return getUnwidenedIntegerType(Ctx, E).has_value();
}

/// Check if we can skip the overflow check for \p Op.
static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
  assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
         "Expected a unary or binary operator");

  // If the binop has constant inputs and we can prove there is no overflow,
  // we can elide the overflow check.
  if (!Op.mayHaveIntegerOverflow())
    return true;

  // If a unary op has a widened operand, the op cannot overflow.
  if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
    return !UO->canOverflow();

  // We usually don't need overflow checks for binops with widened operands.
  // Multiplication with promoted unsigned operands is a special case.
  const auto *BO = cast<BinaryOperator>(Op.E);
  auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
  if (!OptionalLHSTy)
    return false;

  auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
  if (!OptionalRHSTy)
    return false;

  QualType LHSTy = *OptionalLHSTy;
  QualType RHSTy = *OptionalRHSTy;

  // This is the simple case: binops without unsigned multiplication, and with
  // widened operands. No overflow check is needed here.
  if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
      !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
    return true;

  // For unsigned multiplication the overflow check can be elided if either one
  // of the unpromoted types are less than half the size of the promoted type.
  unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
  return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
         (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
}

class ScalarExprEmitter
  : public StmtVisitor<ScalarExprEmitter, Value*> {
  CodeGenFunction &CGF;
  CGBuilderTy &Builder;
  bool IgnoreResultAssign;
  llvm::LLVMContext &VMContext;
public:

  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
      VMContext(cgf.getLLVMContext()) {
  }

  //===--------------------------------------------------------------------===//
  //                               Utilities
  //===--------------------------------------------------------------------===//

  bool TestAndClearIgnoreResultAssign() {
    bool I = IgnoreResultAssign;
    IgnoreResultAssign = false;
    return I;
  }

  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
    return CGF.EmitCheckedLValue(E, TCK);
  }

  void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
                      const BinOpInfo &Info);

  Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
    return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
  }

  void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
    const AlignValueAttr *AVAttr = nullptr;
    if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
      const ValueDecl *VD = DRE->getDecl();

      if (VD->getType()->isReferenceType()) {
        if (const auto *TTy =
                VD->getType().getNonReferenceType()->getAs<TypedefType>())
          AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
      } else {
        // Assumptions for function parameters are emitted at the start of the
        // function, so there is no need to repeat that here,
        // unless the alignment-assumption sanitizer is enabled,
        // then we prefer the assumption over alignment attribute
        // on IR function param.
        if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
          return;

        AVAttr = VD->getAttr<AlignValueAttr>();
      }
    }

    if (!AVAttr)
      if (const auto *TTy = E->getType()->getAs<TypedefType>())
        AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();

    if (!AVAttr)
      return;

    Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
    llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
    CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
  }

  /// EmitLoadOfLValue - Given an expression with complex type that represents a
  /// value l-value, this method emits the address of the l-value, then loads
  /// and returns the result.
  Value *EmitLoadOfLValue(const Expr *E) {
    Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
                                E->getExprLoc());

    EmitLValueAlignmentAssumption(E, V);
    return V;
  }

  /// EmitConversionToBool - Convert the specified expression value to a
  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
  Value *EmitConversionToBool(Value *Src, QualType DstTy);

  /// Emit a check that a conversion from a floating-point type does not
  /// overflow.
  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
                                Value *Src, QualType SrcType, QualType DstType,
                                llvm::Type *DstTy, SourceLocation Loc);

  /// Known implicit conversion check kinds.
  /// Keep in sync with the enum of the same name in ubsan_handlers.h
  enum ImplicitConversionCheckKind : unsigned char {
    ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
    ICCK_UnsignedIntegerTruncation = 1,
    ICCK_SignedIntegerTruncation = 2,
    ICCK_IntegerSignChange = 3,
    ICCK_SignedIntegerTruncationOrSignChange = 4,
  };

  /// Emit a check that an [implicit] truncation of an integer  does not
  /// discard any bits. It is not UB, so we use the value after truncation.
  void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
                                  QualType DstType, SourceLocation Loc);

  /// Emit a check that an [implicit] conversion of an integer does not change
  /// the sign of the value. It is not UB, so we use the value after conversion.
  /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
  void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
                                  QualType DstType, SourceLocation Loc);

  /// Emit a conversion from the specified type to the specified destination
  /// type, both of which are LLVM scalar types.
  struct ScalarConversionOpts {
    bool TreatBooleanAsSigned;
    bool EmitImplicitIntegerTruncationChecks;
    bool EmitImplicitIntegerSignChangeChecks;

    ScalarConversionOpts()
        : TreatBooleanAsSigned(false),
          EmitImplicitIntegerTruncationChecks(false),
          EmitImplicitIntegerSignChangeChecks(false) {}

    ScalarConversionOpts(clang::SanitizerSet SanOpts)
        : TreatBooleanAsSigned(false),
          EmitImplicitIntegerTruncationChecks(
              SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
          EmitImplicitIntegerSignChangeChecks(
              SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
  };
  Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
                        llvm::Type *SrcTy, llvm::Type *DstTy,
                        ScalarConversionOpts Opts);
  Value *
  EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
                       SourceLocation Loc,
                       ScalarConversionOpts Opts = ScalarConversionOpts());

  /// Convert between either a fixed point and other fixed point or fixed point
  /// and an integer.
  Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
                                  SourceLocation Loc);

  /// Emit a conversion from the specified complex type to the specified
  /// destination type, where the destination type is an LLVM scalar type.
  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
                                       QualType SrcTy, QualType DstTy,
                                       SourceLocation Loc);

  /// EmitNullValue - Emit a value that corresponds to null for the given type.
  Value *EmitNullValue(QualType Ty);

  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
  Value *EmitFloatToBoolConversion(Value *V) {
    // Compare against 0.0 for fp scalars.
    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
    return Builder.CreateFCmpUNE(V, Zero, "tobool");
  }

  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
  Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
    Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);

    return Builder.CreateICmpNE(V, Zero, "tobool");
  }

  Value *EmitIntToBoolConversion(Value *V) {
    // Because of the type rules of C, we often end up computing a
    // logical value, then zero extending it to int, then wanting it
    // as a logical value again.  Optimize this common case.
    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
        Value *Result = ZI->getOperand(0);
        // If there aren't any more uses, zap the instruction to save space.
        // Note that there can be more uses, for example if this
        // is the result of an assignment.
        if (ZI->use_empty())
          ZI->eraseFromParent();
        return Result;
      }
    }

    return Builder.CreateIsNotNull(V, "tobool");
  }

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  Value *Visit(Expr *E) {
    ApplyDebugLocation DL(CGF, E);
    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
  }

  Value *VisitStmt(Stmt *S) {
    S->dump(llvm::errs(), CGF.getContext());
    llvm_unreachable("Stmt can't have complex result type!");
  }
  Value *VisitExpr(Expr *S);

  Value *VisitConstantExpr(ConstantExpr *E) {
    // A constant expression of type 'void' generates no code and produces no
    // value.
    if (E->getType()->isVoidType())
      return nullptr;

    if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
      if (E->isGLValue())
        return CGF.Builder.CreateLoad(Address(
            Result, CGF.ConvertTypeForMem(E->getType()),
            CGF.getContext().getTypeAlignInChars(E->getType())));
      return Result;
    }
    return Visit(E->getSubExpr());
  }
  Value *VisitParenExpr(ParenExpr *PE) {
    return Visit(PE->getSubExpr());
  }
  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    return Visit(E->getReplacement());
  }
  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    return Visit(GE->getResultExpr());
  }
  Value *VisitCoawaitExpr(CoawaitExpr *S) {
    return CGF.EmitCoawaitExpr(*S).getScalarVal();
  }
  Value *VisitCoyieldExpr(CoyieldExpr *S) {
    return CGF.EmitCoyieldExpr(*S).getScalarVal();
  }
  Value *VisitUnaryCoawait(const UnaryOperator *E) {
    return Visit(E->getSubExpr());
  }

  // Leaves.
  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
    return Builder.getInt(E->getValue());
  }
  Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
    return Builder.getInt(E->getValue());
  }
  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
    return llvm::ConstantFP::get(VMContext, E->getValue());
  }
  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  }
  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  }
  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  }
  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
    if (E->getType()->isVoidType())
      return nullptr;

    return EmitNullValue(E->getType());
  }
  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
    return EmitNullValue(E->getType());
  }
  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
    return Builder.CreateBitCast(V, ConvertType(E->getType()));
  }

  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
  }

  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    return CGF.EmitPseudoObjectRValue(E).getScalarVal();
  }

  Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);

  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
    if (E->isGLValue())
      return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
                              E->getExprLoc());

    // Otherwise, assume the mapping is the scalar directly.
    return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
  }

  // l-values.
  Value *VisitDeclRefExpr(DeclRefExpr *E) {
    if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
      return CGF.emitScalarConstant(Constant, E);
    return EmitLoadOfLValue(E);
  }

  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
    return CGF.EmitObjCSelectorExpr(E);
  }
  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
    return CGF.EmitObjCProtocolExpr(E);
  }
  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    return EmitLoadOfLValue(E);
  }
  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
    if (E->getMethodDecl() &&
        E->getMethodDecl()->getReturnType()->isReferenceType())
      return EmitLoadOfLValue(E);
    return CGF.EmitObjCMessageExpr(E).getScalarVal();
  }

  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
    LValue LV = CGF.EmitObjCIsaExpr(E);
    Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
    return V;
  }

  Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
    VersionTuple Version = E->getVersion();

    // If we're checking for a platform older than our minimum deployment
    // target, we can fold the check away.
    if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
      return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);

    return CGF.EmitBuiltinAvailable(Version);
  }

  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
  Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
  Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
  Value *VisitMemberExpr(MemberExpr *E);
  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
    // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
    // literals aren't l-values in C++. We do so simply because that's the
    // cleanest way to handle compound literals in C++.
    // See the discussion here: https://reviews.llvm.org/D64464
    return EmitLoadOfLValue(E);
  }

  Value *VisitInitListExpr(InitListExpr *E);

  Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
    assert(CGF.getArrayInitIndex() &&
           "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
    return CGF.getArrayInitIndex();
  }

  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
    return EmitNullValue(E->getType());
  }
  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
    CGF.CGM.EmitExplicitCastExprType(E, &CGF);
    return VisitCastExpr(E);
  }
  Value *VisitCastExpr(CastExpr *E);

  Value *VisitCallExpr(const CallExpr *E) {
    if (E->getCallReturnType(CGF.getContext())->isReferenceType())
      return EmitLoadOfLValue(E);

    Value *V = CGF.EmitCallExpr(E).getScalarVal();

    EmitLValueAlignmentAssumption(E, V);
    return V;
  }

  Value *VisitStmtExpr(const StmtExpr *E);

  // Unary Operators.
  Value *VisitUnaryPostDec(const UnaryOperator *E) {
    LValue LV = EmitLValue(E->getSubExpr());
    return EmitScalarPrePostIncDec(E, LV, false, false);
  }
  Value *VisitUnaryPostInc(const UnaryOperator *E) {
    LValue LV = EmitLValue(E->getSubExpr());
    return EmitScalarPrePostIncDec(E, LV, true, false);
  }
  Value *VisitUnaryPreDec(const UnaryOperator *E) {
    LValue LV = EmitLValue(E->getSubExpr());
    return EmitScalarPrePostIncDec(E, LV, false, true);
  }
  Value *VisitUnaryPreInc(const UnaryOperator *E) {
    LValue LV = EmitLValue(E->getSubExpr());
    return EmitScalarPrePostIncDec(E, LV, true, true);
  }

  llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
                                                  llvm::Value *InVal,
                                                  bool IsInc);

  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
                                       bool isInc, bool isPre);


  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
    if (isa<MemberPointerType>(E->getType())) // never sugared
      return CGF.CGM.getMemberPointerConstant(E);

    return EmitLValue(E->getSubExpr()).getPointer(CGF);
  }
  Value *VisitUnaryDeref(const UnaryOperator *E) {
    if (E->getType()->isVoidType())
      return Visit(E->getSubExpr()); // the actual value should be unused
    return EmitLoadOfLValue(E);
  }

  Value *VisitUnaryPlus(const UnaryOperator *E,
                        QualType PromotionType = QualType());
  Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
  Value *VisitUnaryMinus(const UnaryOperator *E,
                         QualType PromotionType = QualType());
  Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);

  Value *VisitUnaryNot      (const UnaryOperator *E);
  Value *VisitUnaryLNot     (const UnaryOperator *E);
  Value *VisitUnaryReal(const UnaryOperator *E,
                        QualType PromotionType = QualType());
  Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
  Value *VisitUnaryImag(const UnaryOperator *E,
                        QualType PromotionType = QualType());
  Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
  Value *VisitUnaryExtension(const UnaryOperator *E) {
    return Visit(E->getSubExpr());
  }

  // C++
  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
    return EmitLoadOfLValue(E);
  }
  Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
    auto &Ctx = CGF.getContext();
    APValue Evaluated =
        SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
    return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
                                             SLE->getType());
  }

  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
    return Visit(DAE->getExpr());
  }
  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
    return Visit(DIE->getExpr());
  }
  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
    return CGF.LoadCXXThis();
  }

  Value *VisitExprWithCleanups(ExprWithCleanups *E);
  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
    return CGF.EmitCXXNewExpr(E);
  }
  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
    CGF.EmitCXXDeleteExpr(E);
    return nullptr;
  }

  Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  }

  Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
    return Builder.getInt1(E->isSatisfied());
  }

  Value *VisitRequiresExpr(const RequiresExpr *E) {
    return Builder.getInt1(E->isSatisfied());
  }

  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
  }

  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
  }

  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
    // C++ [expr.pseudo]p1:
    //   The result shall only be used as the operand for the function call
    //   operator (), and the result of such a call has type void. The only
    //   effect is the evaluation of the postfix-expression before the dot or
    //   arrow.
    CGF.EmitScalarExpr(E->getBase());
    return nullptr;
  }

  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
    return EmitNullValue(E->getType());
  }

  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
    CGF.EmitCXXThrowExpr(E);
    return nullptr;
  }

  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
    return Builder.getInt1(E->getValue());
  }

  // Binary Operators.
  Value *EmitMul(const BinOpInfo &Ops) {
    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
      case LangOptions::SOB_Defined:
        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
      case LangOptions::SOB_Undefined:
        if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
          return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
        [[fallthrough]];
      case LangOptions::SOB_Trapping:
        if (CanElideOverflowCheck(CGF.getContext(), Ops))
          return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
        return EmitOverflowCheckedBinOp(Ops);
      }
    }

    if (Ops.Ty->isConstantMatrixType()) {
      llvm::MatrixBuilder MB(Builder);
      // We need to check the types of the operands of the operator to get the
      // correct matrix dimensions.
      auto *BO = cast<BinaryOperator>(Ops.E);
      auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
          BO->getLHS()->getType().getCanonicalType());
      auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
          BO->getRHS()->getType().getCanonicalType());
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
      if (LHSMatTy && RHSMatTy)
        return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
                                       LHSMatTy->getNumColumns(),
                                       RHSMatTy->getNumColumns());
      return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
    }

    if (Ops.Ty->isUnsignedIntegerType() &&
        CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
        !CanElideOverflowCheck(CGF.getContext(), Ops))
      return EmitOverflowCheckedBinOp(Ops);

    if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
      //  Preserve the old values
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
    }
    if (Ops.isFixedPointOp())
      return EmitFixedPointBinOp(Ops);
    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
  }
  /// Create a binary op that checks for overflow.
  /// Currently only supports +, - and *.
  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);

  // Check for undefined division and modulus behaviors.
  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
                                                  llvm::Value *Zero,bool isDiv);
  // Common helper for getting how wide LHS of shift is.
  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);

  // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
  // non powers of two.
  Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);

  Value *EmitDiv(const BinOpInfo &Ops);
  Value *EmitRem(const BinOpInfo &Ops);
  Value *EmitAdd(const BinOpInfo &Ops);
  Value *EmitSub(const BinOpInfo &Ops);
  Value *EmitShl(const BinOpInfo &Ops);
  Value *EmitShr(const BinOpInfo &Ops);
  Value *EmitAnd(const BinOpInfo &Ops) {
    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
  }
  Value *EmitXor(const BinOpInfo &Ops) {
    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
  }
  Value *EmitOr (const BinOpInfo &Ops) {
    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
  }

  // Helper functions for fixed point binary operations.
  Value *EmitFixedPointBinOp(const BinOpInfo &Ops);

  BinOpInfo EmitBinOps(const BinaryOperator *E,
                       QualType PromotionTy = QualType());

  Value *EmitPromotedValue(Value *result, QualType PromotionType);
  Value *EmitUnPromotedValue(Value *result, QualType ExprType);
  Value *EmitPromoted(const Expr *E, QualType PromotionType);

  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
                                  Value *&Result);

  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));

  QualType getPromotionType(QualType Ty) {
    if (auto *CT = Ty->getAs<ComplexType>()) {
      QualType ElementType = CT->getElementType();
      if (ElementType.UseExcessPrecision(CGF.getContext()))
        return CGF.getContext().getComplexType(CGF.getContext().FloatTy);
    }
    if (Ty.UseExcessPrecision(CGF.getContext()))
      return CGF.getContext().FloatTy;
    return QualType();
  }

  // Binary operators and binary compound assignment operators.
#define HANDLEBINOP(OP)                                                        \
  Value *VisitBin##OP(const BinaryOperator *E) {                               \
    QualType promotionTy = getPromotionType(E->getType());                     \
    auto result = Emit##OP(EmitBinOps(E, promotionTy));                        \
    if (result && !promotionTy.isNull())                                       \
      result = EmitUnPromotedValue(result, E->getType());                      \
    return result;                                                             \
  }                                                                            \
  Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) {               \
    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP);                \
  }
  HANDLEBINOP(Mul)
  HANDLEBINOP(Div)
  HANDLEBINOP(Rem)
  HANDLEBINOP(Add)
  HANDLEBINOP(Sub)
  HANDLEBINOP(Shl)
  HANDLEBINOP(Shr)
  HANDLEBINOP(And)
  HANDLEBINOP(Xor)
  HANDLEBINOP(Or)
#undef HANDLEBINOP

  // Comparisons.
  Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
                     llvm::CmpInst::Predicate SICmpOpc,
                     llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
#define VISITCOMP(CODE, UI, SI, FP, SIG) \
    Value *VisitBin##CODE(const BinaryOperator *E) { \
      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
                         llvm::FCmpInst::FP, SIG); }
  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
#undef VISITCOMP

  Value *VisitBinAssign     (const BinaryOperator *E);

  Value *VisitBinLAnd       (const BinaryOperator *E);
  Value *VisitBinLOr        (const BinaryOperator *E);
  Value *VisitBinComma      (const BinaryOperator *E);

  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }

  Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
    return Visit(E->getSemanticForm());
  }

  // Other Operators.
  Value *VisitBlockExpr(const BlockExpr *BE);
  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
  Value *VisitChooseExpr(ChooseExpr *CE);
  Value *VisitVAArgExpr(VAArgExpr *VE);
  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
    return CGF.EmitObjCStringLiteral(E);
  }
  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
    return CGF.EmitObjCBoxedExpr(E);
  }
  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
    return CGF.EmitObjCArrayLiteral(E);
  }
  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
    return CGF.EmitObjCDictionaryLiteral(E);
  }
  Value *VisitAsTypeExpr(AsTypeExpr *CE);
  Value *VisitAtomicExpr(AtomicExpr *AE);
};
}  // end anonymous namespace.

//===----------------------------------------------------------------------===//
//                                Utilities
//===----------------------------------------------------------------------===//

/// EmitConversionToBool - Convert the specified expression value to a
/// boolean (i1) truth value.  This is equivalent to "Val != 0".
Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");

  if (SrcType->isRealFloatingType())
    return EmitFloatToBoolConversion(Src);

  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);

  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
         "Unknown scalar type to convert");

  if (isa<llvm::IntegerType>(Src->getType()))
    return EmitIntToBoolConversion(Src);

  assert(isa<llvm::PointerType>(Src->getType()));
  return EmitPointerToBoolConversion(Src, SrcType);
}

void ScalarExprEmitter::EmitFloatConversionCheck(
    Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
    QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
  assert(SrcType->isFloatingType() && "not a conversion from floating point");
  if (!isa<llvm::IntegerType>(DstTy))
    return;

  CodeGenFunction::SanitizerScope SanScope(&CGF);
  using llvm::APFloat;
  using llvm::APSInt;

  llvm::Value *Check = nullptr;
  const llvm::fltSemantics &SrcSema =
    CGF.getContext().getFloatTypeSemantics(OrigSrcType);

  // Floating-point to integer. This has undefined behavior if the source is
  // +-Inf, NaN, or doesn't fit into the destination type (after truncation
  // to an integer).
  unsigned Width = CGF.getContext().getIntWidth(DstType);
  bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();

  APSInt Min = APSInt::getMinValue(Width, Unsigned);
  APFloat MinSrc(SrcSema, APFloat::uninitialized);
  if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
      APFloat::opOverflow)
    // Don't need an overflow check for lower bound. Just check for
    // -Inf/NaN.
    MinSrc = APFloat::getInf(SrcSema, true);
  else
    // Find the largest value which is too small to represent (before
    // truncation toward zero).
    MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);

  APSInt Max = APSInt::getMaxValue(Width, Unsigned);
  APFloat MaxSrc(SrcSema, APFloat::uninitialized);
  if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
      APFloat::opOverflow)
    // Don't need an overflow check for upper bound. Just check for
    // +Inf/NaN.
    MaxSrc = APFloat::getInf(SrcSema, false);
  else
    // Find the smallest value which is too large to represent (before
    // truncation toward zero).
    MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);

  // If we're converting from __half, convert the range to float to match
  // the type of src.
  if (OrigSrcType->isHalfType()) {
    const llvm::fltSemantics &Sema =
      CGF.getContext().getFloatTypeSemantics(SrcType);
    bool IsInexact;
    MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
    MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
  }

  llvm::Value *GE =
    Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
  llvm::Value *LE =
    Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
  Check = Builder.CreateAnd(GE, LE);

  llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
                                  CGF.EmitCheckTypeDescriptor(OrigSrcType),
                                  CGF.EmitCheckTypeDescriptor(DstType)};
  CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
                SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
}

// Should be called within CodeGenFunction::SanitizerScope RAII scope.
// Returns 'i1 false' when the truncation Src -> Dst was lossy.
static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
                 std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
                                 QualType DstType, CGBuilderTy &Builder) {
  llvm::Type *SrcTy = Src->getType();
  llvm::Type *DstTy = Dst->getType();
  (void)DstTy; // Only used in assert()

  // This should be truncation of integral types.
  assert(Src != Dst);
  assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
  assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
         "non-integer llvm type");

  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();

  // If both (src and dst) types are unsigned, then it's an unsigned truncation.
  // Else, it is a signed truncation.
  ScalarExprEmitter::ImplicitConversionCheckKind Kind;
  SanitizerMask Mask;
  if (!SrcSigned && !DstSigned) {
    Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
    Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
  } else {
    Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
    Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
  }

  llvm::Value *Check = nullptr;
  // 1. Extend the truncated value back to the same width as the Src.
  Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
  // 2. Equality-compare with the original source value
  Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
  // If the comparison result is 'i1 false', then the truncation was lossy.
  return std::make_pair(Kind, std::make_pair(Check, Mask));
}

static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
    QualType SrcType, QualType DstType) {
  return SrcType->isIntegerType() && DstType->isIntegerType();
}

void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
                                                   Value *Dst, QualType DstType,
                                                   SourceLocation Loc) {
  if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
    return;

  // We only care about int->int conversions here.
  // We ignore conversions to/from pointer and/or bool.
  if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
                                                                       DstType))
    return;

  unsigned SrcBits = Src->getType()->getScalarSizeInBits();
  unsigned DstBits = Dst->getType()->getScalarSizeInBits();
  // This must be truncation. Else we do not care.
  if (SrcBits <= DstBits)
    return;

  assert(!DstType->isBooleanType() && "we should not get here with booleans.");

  // If the integer sign change sanitizer is enabled,
  // and we are truncating from larger unsigned type to smaller signed type,
  // let that next sanitizer deal with it.
  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
  if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
      (!SrcSigned && DstSigned))
    return;

  CodeGenFunction::SanitizerScope SanScope(&CGF);

  std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
            std::pair<llvm::Value *, SanitizerMask>>
      Check =
          EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
  // If the comparison result is 'i1 false', then the truncation was lossy.

  // Do we care about this type of truncation?
  if (!CGF.SanOpts.has(Check.second.second))
    return;

  llvm::Constant *StaticArgs[] = {
      CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
      CGF.EmitCheckTypeDescriptor(DstType),
      llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
  CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
                {Src, Dst});
}

// Should be called within CodeGenFunction::SanitizerScope RAII scope.
// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
                 std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
                                 QualType DstType, CGBuilderTy &Builder) {
  llvm::Type *SrcTy = Src->getType();
  llvm::Type *DstTy = Dst->getType();

  assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
         "non-integer llvm type");

  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
  (void)SrcSigned; // Only used in assert()
  (void)DstSigned; // Only used in assert()
  unsigned SrcBits = SrcTy->getScalarSizeInBits();
  unsigned DstBits = DstTy->getScalarSizeInBits();
  (void)SrcBits; // Only used in assert()
  (void)DstBits; // Only used in assert()

  assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
         "either the widths should be different, or the signednesses.");

  // NOTE: zero value is considered to be non-negative.
  auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
                                       const char *Name) -> Value * {
    // Is this value a signed type?
    bool VSigned = VType->isSignedIntegerOrEnumerationType();
    llvm::Type *VTy = V->getType();
    if (!VSigned) {
      // If the value is unsigned, then it is never negative.
      // FIXME: can we encounter non-scalar VTy here?
      return llvm::ConstantInt::getFalse(VTy->getContext());
    }
    // Get the zero of the same type with which we will be comparing.
    llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
    // %V.isnegative = icmp slt %V, 0
    // I.e is %V *strictly* less than zero, does it have negative value?
    return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
                              llvm::Twine(Name) + "." + V->getName() +
                                  ".negativitycheck");
  };

  // 1. Was the old Value negative?
  llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
  // 2. Is the new Value negative?
  llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
  // 3. Now, was the 'negativity status' preserved during the conversion?
  //    NOTE: conversion from negative to zero is considered to change the sign.
  //    (We want to get 'false' when the conversion changed the sign)
  //    So we should just equality-compare the negativity statuses.
  llvm::Value *Check = nullptr;
  Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
  // If the comparison result is 'false', then the conversion changed the sign.
  return std::make_pair(
      ScalarExprEmitter::ICCK_IntegerSignChange,
      std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
}

void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
                                                   Value *Dst, QualType DstType,
                                                   SourceLocation Loc) {
  if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
    return;

  llvm::Type *SrcTy = Src->getType();
  llvm::Type *DstTy = Dst->getType();

  // We only care about int->int conversions here.
  // We ignore conversions to/from pointer and/or bool.
  if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
                                                                       DstType))
    return;

  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
  unsigned SrcBits = SrcTy->getScalarSizeInBits();
  unsigned DstBits = DstTy->getScalarSizeInBits();

  // Now, we do not need to emit the check in *all* of the cases.
  // We can avoid emitting it in some obvious cases where it would have been
  // dropped by the opt passes (instcombine) always anyways.
  // If it's a cast between effectively the same type, no check.
  // NOTE: this is *not* equivalent to checking the canonical types.
  if (SrcSigned == DstSigned && SrcBits == DstBits)
    return;
  // At least one of the values needs to have signed type.
  // If both are unsigned, then obviously, neither of them can be negative.
  if (!SrcSigned && !DstSigned)
    return;
  // If the conversion is to *larger* *signed* type, then no check is needed.
  // Because either sign-extension happens (so the sign will remain),
  // or zero-extension will happen (the sign bit will be zero.)
  if ((DstBits > SrcBits) && DstSigned)
    return;
  if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
      (SrcBits > DstBits) && SrcSigned) {
    // If the signed integer truncation sanitizer is enabled,
    // and this is a truncation from signed type, then no check is needed.
    // Because here sign change check is interchangeable with truncation check.
    return;
  }
  // That's it. We can't rule out any more cases with the data we have.

  CodeGenFunction::SanitizerScope SanScope(&CGF);

  std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
            std::pair<llvm::Value *, SanitizerMask>>
      Check;

  // Each of these checks needs to return 'false' when an issue was detected.
  ImplicitConversionCheckKind CheckKind;
  llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
  // So we can 'and' all the checks together, and still get 'false',
  // if at least one of the checks detected an issue.

  Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
  CheckKind = Check.first;
  Checks.emplace_back(Check.second);

  if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
      (SrcBits > DstBits) && !SrcSigned && DstSigned) {
    // If the signed integer truncation sanitizer was enabled,
    // and we are truncating from larger unsigned type to smaller signed type,
    // let's handle the case we skipped in that check.
    Check =
        EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
    CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
    Checks.emplace_back(Check.second);
    // If the comparison result is 'i1 false', then the truncation was lossy.
  }

  llvm::Constant *StaticArgs[] = {
      CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
      CGF.EmitCheckTypeDescriptor(DstType),
      llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
  // EmitCheck() will 'and' all the checks together.
  CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
                {Src, Dst});
}

Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
                                         QualType DstType, llvm::Type *SrcTy,
                                         llvm::Type *DstTy,
                                         ScalarConversionOpts Opts) {
  // The Element types determine the type of cast to perform.
  llvm::Type *SrcElementTy;
  llvm::Type *DstElementTy;
  QualType SrcElementType;
  QualType DstElementType;
  if (SrcType->isMatrixType() && DstType->isMatrixType()) {
    SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
    DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
    SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
    DstElementType = DstType->castAs<MatrixType>()->getElementType();
  } else {
    assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
           "cannot cast between matrix and non-matrix types");
    SrcElementTy = SrcTy;
    DstElementTy = DstTy;
    SrcElementType = SrcType;
    DstElementType = DstType;
  }

  if (isa<llvm::IntegerType>(SrcElementTy)) {
    bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
    if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
      InputSigned = true;
    }

    if (isa<llvm::IntegerType>(DstElementTy))
      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
    if (InputSigned)
      return Builder.CreateSIToFP(Src, DstTy, "conv");
    return Builder.CreateUIToFP(Src, DstTy, "conv");
  }

  if (isa<llvm::IntegerType>(DstElementTy)) {
    assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
    bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();

    // If we can't recognize overflow as undefined behavior, assume that
    // overflow saturates. This protects against normal optimizations if we are
    // compiling with non-standard FP semantics.
    if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
      llvm::Intrinsic::ID IID =
          IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
      return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
    }

    if (IsSigned)
      return Builder.CreateFPToSI(Src, DstTy, "conv");
    return Builder.CreateFPToUI(Src, DstTy, "conv");
  }

  if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
    return Builder.CreateFPTrunc(Src, DstTy, "conv");
  return Builder.CreateFPExt(Src, DstTy, "conv");
}

/// Emit a conversion from the specified type to the specified destination type,
/// both of which are LLVM scalar types.
Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
                                               QualType DstType,
                                               SourceLocation Loc,
                                               ScalarConversionOpts Opts) {
  // All conversions involving fixed point types should be handled by the
  // EmitFixedPoint family functions. This is done to prevent bloating up this
  // function more, and although fixed point numbers are represented by
  // integers, we do not want to follow any logic that assumes they should be
  // treated as integers.
  // TODO(leonardchan): When necessary, add another if statement checking for
  // conversions to fixed point types from other types.
  if (SrcType->isFixedPointType()) {
    if (DstType->isBooleanType())
      // It is important that we check this before checking if the dest type is
      // an integer because booleans are technically integer types.
      // We do not need to check the padding bit on unsigned types if unsigned
      // padding is enabled because overflow into this bit is undefined
      // behavior.
      return Builder.CreateIsNotNull(Src, "tobool");
    if (DstType->isFixedPointType() || DstType->isIntegerType() ||
        DstType->isRealFloatingType())
      return EmitFixedPointConversion(Src, SrcType, DstType, Loc);

    llvm_unreachable(
        "Unhandled scalar conversion from a fixed point type to another type.");
  } else if (DstType->isFixedPointType()) {
    if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
      // This also includes converting booleans and enums to fixed point types.
      return EmitFixedPointConversion(Src, SrcType, DstType, Loc);

    llvm_unreachable(
        "Unhandled scalar conversion to a fixed point type from another type.");
  }

  QualType NoncanonicalSrcType = SrcType;
  QualType NoncanonicalDstType = DstType;

  SrcType = CGF.getContext().getCanonicalType(SrcType);
  DstType = CGF.getContext().getCanonicalType(DstType);
  if (SrcType == DstType) return Src;

  if (DstType->isVoidType()) return nullptr;

  llvm::Value *OrigSrc = Src;
  QualType OrigSrcType = SrcType;
  llvm::Type *SrcTy = Src->getType();

  // Handle conversions to bool first, they are special: comparisons against 0.
  if (DstType->isBooleanType())
    return EmitConversionToBool(Src, SrcType);

  llvm::Type *DstTy = ConvertType(DstType);

  // Cast from half through float if half isn't a native type.
  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
    // Cast to FP using the intrinsic if the half type itself isn't supported.
    if (DstTy->isFloatingPointTy()) {
      if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
        return Builder.CreateCall(
            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
            Src);
    } else {
      // Cast to other types through float, using either the intrinsic or FPExt,
      // depending on whether the half type itself is supported
      // (as opposed to operations on half, available with NativeHalfType).
      if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
        Src = Builder.CreateCall(
            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
                                 CGF.CGM.FloatTy),
            Src);
      } else {
        Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
      }
      SrcType = CGF.getContext().FloatTy;
      SrcTy = CGF.FloatTy;
    }
  }

  // Ignore conversions like int -> uint.
  if (SrcTy == DstTy) {
    if (Opts.EmitImplicitIntegerSignChangeChecks)
      EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
                                 NoncanonicalDstType, Loc);

    return Src;
  }

  // Handle pointer conversions next: pointers can only be converted to/from
  // other pointers and integers. Check for pointer types in terms of LLVM, as
  // some native types (like Obj-C id) may map to a pointer type.
  if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
    // The source value may be an integer, or a pointer.
    if (isa<llvm::PointerType>(SrcTy))
      return Builder.CreateBitCast(Src, DstTy, "conv");

    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
    // First, convert to the correct width so that we control the kind of
    // extension.
    llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    llvm::Value* IntResult =
        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
    // Then, cast to pointer.
    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
  }

  if (isa<llvm::PointerType>(SrcTy)) {
    // Must be an ptr to int cast.
    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
    return Builder.CreatePtrToInt(Src, DstTy, "conv");
  }

  // A scalar can be splatted to an extended vector of the same element type
  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
    // Sema should add casts to make sure that the source expression's type is
    // the same as the vector's element type (sans qualifiers)
    assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
               SrcType.getTypePtr() &&
           "Splatted expr doesn't match with vector element type?");

    // Splat the element across to all elements
    unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
    return Builder.CreateVectorSplat(NumElements, Src, "splat");
  }

  if (SrcType->isMatrixType() && DstType->isMatrixType())
    return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);

  if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
    // Allow bitcast from vector to integer/fp of the same size.
    llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
    llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
    if (SrcSize == DstSize)
      return Builder.CreateBitCast(Src, DstTy, "conv");

    // Conversions between vectors of different sizes are not allowed except
    // when vectors of half are involved. Operations on storage-only half
    // vectors require promoting half vector operands to float vectors and
    // truncating the result, which is either an int or float vector, to a
    // short or half vector.

    // Source and destination are both expected to be vectors.
    llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
    llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
    (void)DstElementTy;

    assert(((SrcElementTy->isIntegerTy() &&
             DstElementTy->isIntegerTy()) ||
            (SrcElementTy->isFloatingPointTy() &&
             DstElementTy->isFloatingPointTy())) &&
           "unexpected conversion between a floating-point vector and an "
           "integer vector");

    // Truncate an i32 vector to an i16 vector.
    if (SrcElementTy->isIntegerTy())
      return Builder.CreateIntCast(Src, DstTy, false, "conv");

    // Truncate a float vector to a half vector.
    if (SrcSize > DstSize)
      return Builder.CreateFPTrunc(Src, DstTy, "conv");

    // Promote a half vector to a float vector.
    return Builder.CreateFPExt(Src, DstTy, "conv");
  }

  // Finally, we have the arithmetic types: real int/float.
  Value *Res = nullptr;
  llvm::Type *ResTy = DstTy;

  // An overflowing conversion has undefined behavior if either the source type
  // or the destination type is a floating-point type. However, we consider the
  // range of representable values for all floating-point types to be
  // [-inf,+inf], so no overflow can ever happen when the destination type is a
  // floating-point type.
  if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
      OrigSrcType->isFloatingType())
    EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
                             Loc);

  // Cast to half through float if half isn't a native type.
  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
    // Make sure we cast in a single step if from another FP type.
    if (SrcTy->isFloatingPointTy()) {
      // Use the intrinsic if the half type itself isn't supported
      // (as opposed to operations on half, available with NativeHalfType).
      if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
        return Builder.CreateCall(
            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
      // If the half type is supported, just use an fptrunc.
      return Builder.CreateFPTrunc(Src, DstTy);
    }
    DstTy = CGF.FloatTy;
  }

  Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);

  if (DstTy != ResTy) {
    if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
      assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
      Res = Builder.CreateCall(
        CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
        Res);
    } else {
      Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
    }
  }

  if (Opts.EmitImplicitIntegerTruncationChecks)
    EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
                               NoncanonicalDstType, Loc);

  if (Opts.EmitImplicitIntegerSignChangeChecks)
    EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
                               NoncanonicalDstType, Loc);

  return Res;
}

Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
                                                   QualType DstTy,
                                                   SourceLocation Loc) {
  llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
  llvm::Value *Result;
  if (SrcTy->isRealFloatingType())
    Result = FPBuilder.CreateFloatingToFixed(Src,
        CGF.getContext().getFixedPointSemantics(DstTy));
  else if (DstTy->isRealFloatingType())
    Result = FPBuilder.CreateFixedToFloating(Src,
        CGF.getContext().getFixedPointSemantics(SrcTy),
        ConvertType(DstTy));
  else {
    auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
    auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);

    if (DstTy->isIntegerType())
      Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
                                              DstFPSema.getWidth(),
                                              DstFPSema.isSigned());
    else if (SrcTy->isIntegerType())
      Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
                                               DstFPSema);
    else
      Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
  }
  return Result;
}

/// Emit a conversion from the specified complex type to the specified
/// destination type, where the destination type is an LLVM scalar type.
Value *ScalarExprEmitter::EmitComplexToScalarConversion(
    CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
    SourceLocation Loc) {
  // Get the source element type.
  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();

  // Handle conversions to bool first, they are special: comparisons against 0.
  if (DstTy->isBooleanType()) {
    //  Complex != 0  -> (Real != 0) | (Imag != 0)
    Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
    return Builder.CreateOr(Src.first, Src.second, "tobool");
  }

  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
  // the imaginary part of the complex value is discarded and the value of the
  // real part is converted according to the conversion rules for the
  // corresponding real type.
  return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
}

Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
}

/// Emit a sanitization check for the given "binary" operation (which
/// might actually be a unary increment which has been lowered to a binary
/// operation). The check passes if all values in \p Checks (which are \c i1),
/// are \c true.
void ScalarExprEmitter::EmitBinOpCheck(
    ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
  assert(CGF.IsSanitizerScope);
  SanitizerHandler Check;
  SmallVector<llvm::Constant *, 4> StaticData;
  SmallVector<llvm::Value *, 2> DynamicData;

  BinaryOperatorKind Opcode = Info.Opcode;
  if (BinaryOperator::isCompoundAssignmentOp(Opcode))
    Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);

  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
  if (UO && UO->getOpcode() == UO_Minus) {
    Check = SanitizerHandler::NegateOverflow;
    StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
    DynamicData.push_back(Info.RHS);
  } else {
    if (BinaryOperator::isShiftOp(Opcode)) {
      // Shift LHS negative or too large, or RHS out of bounds.
      Check = SanitizerHandler::ShiftOutOfBounds;
      const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
      StaticData.push_back(
        CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
      StaticData.push_back(
        CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
    } else if (Opcode == BO_Div || Opcode == BO_Rem) {
      // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
      Check = SanitizerHandler::DivremOverflow;
      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    } else {
      // Arithmetic overflow (+, -, *).
      switch (Opcode) {
      case BO_Add: Check = SanitizerHandler::AddOverflow; break;
      case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
      case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
      default: llvm_unreachable("unexpected opcode for bin op check");
      }
      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    }
    DynamicData.push_back(Info.LHS);
    DynamicData.push_back(Info.RHS);
  }

  CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
}

//===----------------------------------------------------------------------===//
//                            Visitor Methods
//===----------------------------------------------------------------------===//

Value *ScalarExprEmitter::VisitExpr(Expr *E) {
  CGF.ErrorUnsupported(E, "scalar expression");
  if (E->getType()->isVoidType())
    return nullptr;
  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
}

Value *
ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
  ASTContext &Context = CGF.getContext();
  unsigned AddrSpace =
      Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace());
  llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
      E->ComputeName(Context), "__usn_str", AddrSpace);

  llvm::Type *ExprTy = ConvertType(E->getType());
  return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
                                                     "usn_addr_cast");
}

Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
  // Vector Mask Case
  if (E->getNumSubExprs() == 2) {
    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
    Value *Mask;

    auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
    unsigned LHSElts = LTy->getNumElements();

    Mask = RHS;

    auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());

    // Mask off the high bits of each shuffle index.
    Value *MaskBits =
        llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");

    // newv = undef
    // mask = mask & maskbits
    // for each elt
    //   n = extract mask i
    //   x = extract val n
    //   newv = insert newv, x, i
    auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
                                           MTy->getNumElements());
    Value* NewV = llvm::PoisonValue::get(RTy);
    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
      Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
      Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");

      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
      NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
    }
    return NewV;
  }

  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));

  SmallVector<int, 32> Indices;
  for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
    llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
    // Check for -1 and output it as undef in the IR.
    if (Idx.isSigned() && Idx.isAllOnes())
      Indices.push_back(-1);
    else
      Indices.push_back(Idx.getZExtValue());
  }

  return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
}

Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
  QualType SrcType = E->getSrcExpr()->getType(),
           DstType = E->getType();

  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());

  SrcType = CGF.getContext().getCanonicalType(SrcType);
  DstType = CGF.getContext().getCanonicalType(DstType);
  if (SrcType == DstType) return Src;

  assert(SrcType->isVectorType() &&
         "ConvertVector source type must be a vector");
  assert(DstType->isVectorType() &&
         "ConvertVector destination type must be a vector");

  llvm::Type *SrcTy = Src->getType();
  llvm::Type *DstTy = ConvertType(DstType);

  // Ignore conversions like int -> uint.
  if (SrcTy == DstTy)
    return Src;

  QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
           DstEltType = DstType->castAs<VectorType>()->getElementType();

  assert(SrcTy->isVectorTy() &&
         "ConvertVector source IR type must be a vector");
  assert(DstTy->isVectorTy() &&
         "ConvertVector destination IR type must be a vector");

  llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
             *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();

  if (DstEltType->isBooleanType()) {
    assert((SrcEltTy->isFloatingPointTy() ||
            isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");

    llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
    if (SrcEltTy->isFloatingPointTy()) {
      return Builder.CreateFCmpUNE(Src, Zero, "tobool");
    } else {
      return Builder.CreateICmpNE(Src, Zero, "tobool");
    }
  }

  // We have the arithmetic types: real int/float.
  Value *Res = nullptr;

  if (isa<llvm::IntegerType>(SrcEltTy)) {
    bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
    if (isa<llvm::IntegerType>(DstEltTy))
      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
    else if (InputSigned)
      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
    else
      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  } else if (isa<llvm::IntegerType>(DstEltTy)) {
    assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
    if (DstEltType->isSignedIntegerOrEnumerationType())
      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
    else
      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  } else {
    assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
           "Unknown real conversion");
    if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
    else
      Res = Builder.CreateFPExt(Src, DstTy, "conv");
  }

  return Res;
}

Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
  if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
    CGF.EmitIgnoredExpr(E->getBase());
    return CGF.emitScalarConstant(Constant, E);
  } else {
    Expr::EvalResult Result;
    if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
      llvm::APSInt Value = Result.Val.getInt();
      CGF.EmitIgnoredExpr(E->getBase());
      return Builder.getInt(Value);
    }
  }

  return EmitLoadOfLValue(E);
}

Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
  TestAndClearIgnoreResultAssign();

  // Emit subscript expressions in rvalue context's.  For most cases, this just
  // loads the lvalue formed by the subscript expr.  However, we have to be
  // careful, because the base of a vector subscript is occasionally an rvalue,
  // so we can't get it as an lvalue.
  if (!E->getBase()->getType()->isVectorType() &&
      !E->getBase()->getType()->isVLSTBuiltinType())
    return EmitLoadOfLValue(E);

  // Handle the vector case.  The base must be a vector, the index must be an
  // integer value.
  Value *Base = Visit(E->getBase());
  Value *Idx  = Visit(E->getIdx());
  QualType IdxTy = E->getIdx()->getType();

  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
    CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);

  return Builder.CreateExtractElement(Base, Idx, "vecext");
}

Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
  TestAndClearIgnoreResultAssign();

  // Handle the vector case.  The base must be a vector, the index must be an
  // integer value.
  Value *RowIdx = Visit(E->getRowIdx());
  Value *ColumnIdx = Visit(E->getColumnIdx());

  const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
  unsigned NumRows = MatrixTy->getNumRows();
  llvm::MatrixBuilder MB(Builder);
  Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
  if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
    MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());

  Value *Matrix = Visit(E->getBase());

  // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
  return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
}

static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
                      unsigned Off) {
  int MV = SVI->getMaskValue(Idx);
  if (MV == -1)
    return -1;
  return Off + MV;
}

static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
  assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
         "Index operand too large for shufflevector mask!");
  return C->getZExtValue();
}

Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
  bool Ignore = TestAndClearIgnoreResultAssign();
  (void)Ignore;
  assert (Ignore == false && "init list ignored");
  unsigned NumInitElements = E->getNumInits();

  if (E->hadArrayRangeDesignator())
    CGF.ErrorUnsupported(E, "GNU array range designator extension");

  llvm::VectorType *VType =
    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));

  if (!VType) {
    if (NumInitElements == 0) {
      // C++11 value-initialization for the scalar.
      return EmitNullValue(E->getType());
    }
    // We have a scalar in braces. Just use the first element.
    return Visit(E->getInit(0));
  }

  unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();

  // Loop over initializers collecting the Value for each, and remembering
  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
  // us to fold the shuffle for the swizzle into the shuffle for the vector
  // initializer, since LLVM optimizers generally do not want to touch
  // shuffles.
  unsigned CurIdx = 0;
  bool VIsUndefShuffle = false;
  llvm::Value *V = llvm::UndefValue::get(VType);
  for (unsigned i = 0; i != NumInitElements; ++i) {
    Expr *IE = E->getInit(i);
    Value *Init = Visit(IE);
    SmallVector<int, 16> Args;

    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());

    // Handle scalar elements.  If the scalar initializer is actually one
    // element of a different vector of the same width, use shuffle instead of
    // extract+insert.
    if (!VVT) {
      if (isa<ExtVectorElementExpr>(IE)) {
        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);

        if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
                ->getNumElements() == ResElts) {
          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
          Value *LHS = nullptr, *RHS = nullptr;
          if (CurIdx == 0) {
            // insert into undef -> shuffle (src, undef)
            // shufflemask must use an i32
            Args.push_back(getAsInt32(C, CGF.Int32Ty));
            Args.resize(ResElts, -1);

            LHS = EI->getVectorOperand();
            RHS = V;
            VIsUndefShuffle = true;
          } else if (VIsUndefShuffle) {
            // insert into undefshuffle && size match -> shuffle (v, src)
            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
            for (unsigned j = 0; j != CurIdx; ++j)
              Args.push_back(getMaskElt(SVV, j, 0));
            Args.push_back(ResElts + C->getZExtValue());
            Args.resize(ResElts, -1);

            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
            RHS = EI->getVectorOperand();
            VIsUndefShuffle = false;
          }
          if (!Args.empty()) {
            V = Builder.CreateShuffleVector(LHS, RHS, Args);
            ++CurIdx;
            continue;
          }
        }
      }
      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
                                      "vecinit");
      VIsUndefShuffle = false;
      ++CurIdx;
      continue;
    }

    unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();

    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
    // input is the same width as the vector being constructed, generate an
    // optimized shuffle of the swizzle input into the result.
    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
    if (isa<ExtVectorElementExpr>(IE)) {
      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
      Value *SVOp = SVI->getOperand(0);
      auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());

      if (OpTy->getNumElements() == ResElts) {
        for (unsigned j = 0; j != CurIdx; ++j) {
          // If the current vector initializer is a shuffle with undef, merge
          // this shuffle directly into it.
          if (VIsUndefShuffle) {
            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
          } else {
            Args.push_back(j);
          }
        }
        for (unsigned j = 0, je = InitElts; j != je; ++j)
          Args.push_back(getMaskElt(SVI, j, Offset));
        Args.resize(ResElts, -1);

        if (VIsUndefShuffle)
          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);

        Init = SVOp;
      }
    }

    // Extend init to result vector length, and then shuffle its contribution
    // to the vector initializer into V.
    if (Args.empty()) {
      for (unsigned j = 0; j != InitElts; ++j)
        Args.push_back(j);
      Args.resize(ResElts, -1);
      Init = Builder.CreateShuffleVector(Init, Args, "vext");

      Args.clear();
      for (unsigned j = 0; j != CurIdx; ++j)
        Args.push_back(j);
      for (unsigned j = 0; j != InitElts; ++j)
        Args.push_back(j + Offset);
      Args.resize(ResElts, -1);
    }

    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
    // merging subsequent shuffles into this one.
    if (CurIdx == 0)
      std::swap(V, Init);
    V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
    CurIdx += InitElts;
  }

  // FIXME: evaluate codegen vs. shuffling against constant null vector.
  // Emit remaining default initializers.
  llvm::Type *EltTy = VType->getElementType();

  // Emit remaining default initializers
  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
    Value *Idx = Builder.getInt32(CurIdx);
    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
  }
  return V;
}

bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
  const Expr *E = CE->getSubExpr();

  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
    return false;

  if (isa<CXXThisExpr>(E->IgnoreParens())) {
    // We always assume that 'this' is never null.
    return false;
  }

  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
    // And that glvalue casts are never null.
    if (ICE->isGLValue())
      return false;
  }

  return true;
}

// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
// have to handle a more broad range of conversions than explicit casts, as they
// handle things like function to ptr-to-function decay etc.
Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
  Expr *E = CE->getSubExpr();
  QualType DestTy = CE->getType();
  CastKind Kind = CE->getCastKind();
  CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);

  // These cases are generally not written to ignore the result of
  // evaluating their sub-expressions, so we clear this now.
  bool Ignored = TestAndClearIgnoreResultAssign();

  // Since almost all cast kinds apply to scalars, this switch doesn't have
  // a default case, so the compiler will warn on a missing case.  The cases
  // are in the same order as in the CastKind enum.
  switch (Kind) {
  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
  case CK_BuiltinFnToFnPtr:
    llvm_unreachable("builtin functions are handled elsewhere");

  case CK_LValueBitCast:
  case CK_ObjCObjectLValueCast: {
    Address Addr = EmitLValue(E).getAddress(CGF);
    Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
    LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
    return EmitLoadOfLValue(LV, CE->getExprLoc());
  }

  case CK_LValueToRValueBitCast: {
    LValue SourceLVal = CGF.EmitLValue(E);
    Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
                                                CGF.ConvertTypeForMem(DestTy));
    LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
    DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
    return EmitLoadOfLValue(DestLV, CE->getExprLoc());
  }

  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
  case CK_BitCast: {
    Value *Src = Visit(const_cast<Expr*>(E));
    llvm::Type *SrcTy = Src->getType();
    llvm::Type *DstTy = ConvertType(DestTy);
    if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
        SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
      llvm_unreachable("wrong cast for pointers in different address spaces"
                       "(must be an address space cast)!");
    }

    if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
      if (auto *PT = DestTy->getAs<PointerType>()) {
        CGF.EmitVTablePtrCheckForCast(
            PT->getPointeeType(),
            Address(Src,
                    CGF.ConvertTypeForMem(
                        E->getType()->castAs<PointerType>()->getPointeeType()),
                    CGF.getPointerAlign()),
            /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
            CE->getBeginLoc());
      }
    }

    if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
      const QualType SrcType = E->getType();

      if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
        // Casting to pointer that could carry dynamic information (provided by
        // invariant.group) requires launder.
        Src = Builder.CreateLaunderInvariantGroup(Src);
      } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
        // Casting to pointer that does not carry dynamic information (provided
        // by invariant.group) requires stripping it.  Note that we don't do it
        // if the source could not be dynamic type and destination could be
        // dynamic because dynamic information is already laundered.  It is
        // because launder(strip(src)) == launder(src), so there is no need to
        // add extra strip before launder.
        Src = Builder.CreateStripInvariantGroup(Src);
      }
    }

    // Update heapallocsite metadata when there is an explicit pointer cast.
    if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
      if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
        QualType PointeeType = DestTy->getPointeeType();
        if (!PointeeType.isNull())
          CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
                                                       CE->getExprLoc());
      }
    }

    // If Src is a fixed vector and Dst is a scalable vector, and both have the
    // same element type, use the llvm.vector.insert intrinsic to perform the
    // bitcast.
    if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
      if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
        // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
        // vector, use a vector insert and bitcast the result.
        bool NeedsBitCast = false;
        auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
        llvm::Type *OrigType = DstTy;
        if (ScalableDst == PredType &&
            FixedSrc->getElementType() == Builder.getInt8Ty()) {
          DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
          ScalableDst = cast<llvm::ScalableVectorType>(DstTy);
          NeedsBitCast = true;
        }
        if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
          llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
          llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
          llvm::Value *Result = Builder.CreateInsertVector(
              DstTy, UndefVec, Src, Zero, "castScalableSve");
          if (NeedsBitCast)
            Result = Builder.CreateBitCast(Result, OrigType);
          return Result;
        }
      }
    }

    // If Src is a scalable vector and Dst is a fixed vector, and both have the
    // same element type, use the llvm.vector.extract intrinsic to perform the
    // bitcast.
    if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
      if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
        // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
        // vector, bitcast the source and use a vector extract.
        auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
        if (ScalableSrc == PredType &&
            FixedDst->getElementType() == Builder.getInt8Ty()) {
          SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
          ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy);
          Src = Builder.CreateBitCast(Src, SrcTy);
        }
        if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
          llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
          return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
        }
      }
    }

    // Perform VLAT <-> VLST bitcast through memory.
    // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
    //       require the element types of the vectors to be the same, we
    //       need to keep this around for bitcasts between VLAT <-> VLST where
    //       the element types of the vectors are not the same, until we figure
    //       out a better way of doing these casts.
    if ((isa<llvm::FixedVectorType>(SrcTy) &&
         isa<llvm::ScalableVectorType>(DstTy)) ||
        (isa<llvm::ScalableVectorType>(SrcTy) &&
         isa<llvm::FixedVectorType>(DstTy))) {
      Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
      LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
      CGF.EmitStoreOfScalar(Src, LV);
      Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
                                          "castFixedSve");
      LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
      DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
      return EmitLoadOfLValue(DestLV, CE->getExprLoc());
    }
    return Builder.CreateBitCast(Src, DstTy);
  }
  case CK_AddressSpaceConversion: {
    Expr::EvalResult Result;
    if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
        Result.Val.isNullPointer()) {
      // If E has side effect, it is emitted even if its final result is a
      // null pointer. In that case, a DCE pass should be able to
      // eliminate the useless instructions emitted during translating E.
      if (Result.HasSideEffects)
        Visit(E);
      return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
          ConvertType(DestTy)), DestTy);
    }
    // Since target may map different address spaces in AST to the same address
    // space, an address space conversion may end up as a bitcast.
    return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
        CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
        DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
  }
  case CK_AtomicToNonAtomic:
  case CK_NonAtomicToAtomic:
  case CK_UserDefinedConversion:
    return Visit(const_cast<Expr*>(E));

  case CK_NoOp: {
    llvm::Value *V = Visit(const_cast<Expr *>(E));
    if (V) {
      // CK_NoOp can model a pointer qualification conversion, which can remove
      // an array bound and change the IR type.
      // FIXME: Once pointee types are removed from IR, remove this.
      llvm::Type *T = ConvertType(DestTy);
      if (T != V->getType())
        V = Builder.CreateBitCast(V, T);
    }
    return V;
  }

  case CK_BaseToDerived: {
    const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
    assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");

    Address Base = CGF.EmitPointerWithAlignment(E);
    Address Derived =
      CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
                                   CE->path_begin(), CE->path_end(),
                                   CGF.ShouldNullCheckClassCastValue(CE));

    // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
    // performed and the object is not of the derived type.
    if (CGF.sanitizePerformTypeCheck())
      CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
                        Derived.getPointer(), DestTy->getPointeeType());

    if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
      CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
                                    /*MayBeNull=*/true,
                                    CodeGenFunction::CFITCK_DerivedCast,
                                    CE->getBeginLoc());

    return Derived.getPointer();
  }
  case CK_UncheckedDerivedToBase:
  case CK_DerivedToBase: {
    // The EmitPointerWithAlignment path does this fine; just discard
    // the alignment.
    return CGF.EmitPointerWithAlignment(CE).getPointer();
  }

  case CK_Dynamic: {
    Address V = CGF.EmitPointerWithAlignment(E);
    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
    return CGF.EmitDynamicCast(V, DCE);
  }

  case CK_ArrayToPointerDecay:
    return CGF.EmitArrayToPointerDecay(E).getPointer();
  case CK_FunctionToPointerDecay:
    return EmitLValue(E).getPointer(CGF);

  case CK_NullToPointer:
    if (MustVisitNullValue(E))
      CGF.EmitIgnoredExpr(E);

    return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
                              DestTy);

  case CK_NullToMemberPointer: {
    if (MustVisitNullValue(E))
      CGF.EmitIgnoredExpr(E);

    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
  }

  case CK_ReinterpretMemberPointer:
  case CK_BaseToDerivedMemberPointer:
  case CK_DerivedToBaseMemberPointer: {
    Value *Src = Visit(E);

    // Note that the AST doesn't distinguish between checked and
    // unchecked member pointer conversions, so we always have to
    // implement checked conversions here.  This is inefficient when
    // actual control flow may be required in order to perform the
    // check, which it is for data member pointers (but not member
    // function pointers on Itanium and ARM).
    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
  }

  case CK_ARCProduceObject:
    return CGF.EmitARCRetainScalarExpr(E);
  case CK_ARCConsumeObject:
    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
  case CK_ARCReclaimReturnedObject:
    return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
  case CK_ARCExtendBlockObject:
    return CGF.EmitARCExtendBlockObject(E);

  case CK_CopyAndAutoreleaseBlockObject:
    return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());

  case CK_FloatingRealToComplex:
  case CK_FloatingComplexCast:
  case CK_IntegralRealToComplex:
  case CK_IntegralComplexCast:
  case CK_IntegralComplexToFloatingComplex:
  case CK_FloatingComplexToIntegralComplex:
  case CK_ConstructorConversion:
  case CK_ToUnion:
    llvm_unreachable("scalar cast to non-scalar value");

  case CK_LValueToRValue:
    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
    return Visit(const_cast<Expr*>(E));

  case CK_IntegralToPointer: {
    Value *Src = Visit(const_cast<Expr*>(E));

    // First, convert to the correct width so that we control the kind of
    // extension.
    auto DestLLVMTy = ConvertType(DestTy);
    llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
    llvm::Value* IntResult =
      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");

    auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);

    if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
      // Going from integer to pointer that could be dynamic requires reloading
      // dynamic information from invariant.group.
      if (DestTy.mayBeDynamicClass())
        IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
    }
    return IntToPtr;
  }
  case CK_PointerToIntegral: {
    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
    auto *PtrExpr = Visit(E);

    if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
      const QualType SrcType = E->getType();

      // Casting to integer requires stripping dynamic information as it does
      // not carries it.
      if (SrcType.mayBeDynamicClass())
        PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
    }

    return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
  }
  case CK_ToVoid: {
    CGF.EmitIgnoredExpr(E);
    return nullptr;
  }
  case CK_MatrixCast: {
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc());
  }
  case CK_VectorSplat: {
    llvm::Type *DstTy = ConvertType(DestTy);
    Value *Elt = Visit(const_cast<Expr *>(E));
    // Splat the element across to all elements
    llvm::ElementCount NumElements =
        cast<llvm::VectorType>(DstTy)->getElementCount();
    return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  }

  case CK_FixedPointCast:
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc());

  case CK_FixedPointToBoolean:
    assert(E->getType()->isFixedPointType() &&
           "Expected src type to be fixed point type");
    assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc());

  case CK_FixedPointToIntegral:
    assert(E->getType()->isFixedPointType() &&
           "Expected src type to be fixed point type");
    assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc());

  case CK_IntegralToFixedPoint:
    assert(E->getType()->isIntegerType() &&
           "Expected src type to be an integer");
    assert(DestTy->isFixedPointType() &&
           "Expected dest type to be fixed point type");
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc());

  case CK_IntegralCast: {
    ScalarConversionOpts Opts;
    if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
      if (!ICE->isPartOfExplicitCast())
        Opts = ScalarConversionOpts(CGF.SanOpts);
    }
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc(), Opts);
  }
  case CK_IntegralToFloating:
  case CK_FloatingToIntegral:
  case CK_FloatingCast:
  case CK_FixedPointToFloating:
  case CK_FloatingToFixedPoint: {
    CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc());
  }
  case CK_BooleanToSignedIntegral: {
    ScalarConversionOpts Opts;
    Opts.TreatBooleanAsSigned = true;
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc(), Opts);
  }
  case CK_IntegralToBoolean:
    return EmitIntToBoolConversion(Visit(E));
  case CK_PointerToBoolean:
    return EmitPointerToBoolConversion(Visit(E), E->getType());
  case CK_FloatingToBoolean: {
    CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
    return EmitFloatToBoolConversion(Visit(E));
  }
  case CK_MemberPointerToBoolean: {
    llvm::Value *MemPtr = Visit(E);
    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
  }

  case CK_FloatingComplexToReal:
  case CK_IntegralComplexToReal:
    return CGF.EmitComplexExpr(E, false, true).first;

  case CK_FloatingComplexToBoolean:
  case CK_IntegralComplexToBoolean: {
    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);

    // TODO: kill this function off, inline appropriate case here
    return EmitComplexToScalarConversion(V, E->getType(), DestTy,
                                         CE->getExprLoc());
  }

  case CK_ZeroToOCLOpaqueType: {
    assert((DestTy->isEventT() || DestTy->isQueueT() ||
            DestTy->isOCLIntelSubgroupAVCType()) &&
           "CK_ZeroToOCLEvent cast on non-event type");
    return llvm::Constant::getNullValue(ConvertType(DestTy));
  }

  case CK_IntToOCLSampler:
    return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);

  } // end of switch

  llvm_unreachable("unknown scalar cast");
}

Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
  CodeGenFunction::StmtExprEvaluation eval(CGF);
  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
                                           !E->getType()->isVoidType());
  if (!RetAlloca.isValid())
    return nullptr;
  return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
                              E->getExprLoc());
}

Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
  CodeGenFunction::RunCleanupsScope Scope(CGF);
  Value *V = Visit(E->getSubExpr());
  // Defend against dominance problems caused by jumps out of expression
  // evaluation through the shared cleanup block.
  Scope.ForceCleanup({&V});
  return V;
}

//===----------------------------------------------------------------------===//
//                             Unary Operators
//===----------------------------------------------------------------------===//

static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
                                           llvm::Value *InVal, bool IsInc,
                                           FPOptions FPFeatures) {
  BinOpInfo BinOp;
  BinOp.LHS = InVal;
  BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
  BinOp.Ty = E->getType();
  BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
  BinOp.FPFeatures = FPFeatures;
  BinOp.E = E;
  return BinOp;
}

llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
    const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
  llvm::Value *Amount =
      llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
  StringRef Name = IsInc ? "inc" : "dec";
  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  case LangOptions::SOB_Defined:
    return Builder.CreateAdd(InVal, Amount, Name);
  case LangOptions::SOB_Undefined:
    if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
      return Builder.CreateNSWAdd(InVal, Amount, Name);
    [[fallthrough]];
  case LangOptions::SOB_Trapping:
    if (!E->canOverflow())
      return Builder.CreateNSWAdd(InVal, Amount, Name);
    return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
        E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
  }
  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
}

namespace {
/// Handles check and update for lastprivate conditional variables.
class OMPLastprivateConditionalUpdateRAII {
private:
  CodeGenFunction &CGF;
  const UnaryOperator *E;

public:
  OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
                                      const UnaryOperator *E)
      : CGF(CGF), E(E) {}
  ~OMPLastprivateConditionalUpdateRAII() {
    if (CGF.getLangOpts().OpenMP)
      CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
          CGF, E->getSubExpr());
  }
};
} // namespace

llvm::Value *
ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
                                           bool isInc, bool isPre) {
  OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
  QualType type = E->getSubExpr()->getType();
  llvm::PHINode *atomicPHI = nullptr;
  llvm::Value *value;
  llvm::Value *input;

  int amount = (isInc ? 1 : -1);
  bool isSubtraction = !isInc;

  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
    type = atomicTy->getValueType();
    if (isInc && type->isBooleanType()) {
      llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
      if (isPre) {
        Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
            ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
        return Builder.getTrue();
      }
      // For atomic bool increment, we just store true and return it for
      // preincrement, do an atomic swap with true for postincrement
      return Builder.CreateAtomicRMW(
          llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
          llvm::AtomicOrdering::SequentiallyConsistent);
    }
    // Special case for atomic increment / decrement on integers, emit
    // atomicrmw instructions.  We skip this if we want to be doing overflow
    // checking, and fall into the slow path with the atomic cmpxchg loop.
    if (!type->isBooleanType() && type->isIntegerType() &&
        !(type->isUnsignedIntegerType() &&
          CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
        CGF.getLangOpts().getSignedOverflowBehavior() !=
            LangOptions::SOB_Trapping) {
      llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
        llvm::AtomicRMWInst::Sub;
      llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
        llvm::Instruction::Sub;
      llvm::Value *amt = CGF.EmitToMemory(
          llvm::ConstantInt::get(ConvertType(type), 1, true), type);
      llvm::Value *old =
          Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
                                  llvm::AtomicOrdering::SequentiallyConsistent);
      return isPre ? Builder.CreateBinOp(op, old, amt) : old;
    }
    value = EmitLoadOfLValue(LV, E->getExprLoc());
    input = value;
    // For every other atomic operation, we need to emit a load-op-cmpxchg loop
    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
    value = CGF.EmitToMemory(value, type);
    Builder.CreateBr(opBB);
    Builder.SetInsertPoint(opBB);
    atomicPHI = Builder.CreatePHI(value->getType(), 2);
    atomicPHI->addIncoming(value, startBB);
    value = atomicPHI;
  } else {
    value = EmitLoadOfLValue(LV, E->getExprLoc());
    input = value;
  }

  // Special case of integer increment that we have to check first: bool++.
  // Due to promotion rules, we get:
  //   bool++ -> bool = bool + 1
  //          -> bool = (int)bool + 1
  //          -> bool = ((int)bool + 1 != 0)
  // An interesting aspect of this is that increment is always true.
  // Decrement does not have this property.
  if (isInc && type->isBooleanType()) {
    value = Builder.getTrue();

  // Most common case by far: integer increment.
  } else if (type->isIntegerType()) {
    QualType promotedType;
    bool canPerformLossyDemotionCheck = false;
    if (CGF.getContext().isPromotableIntegerType(type)) {
      promotedType = CGF.getContext().getPromotedIntegerType(type);
      assert(promotedType != type && "Shouldn't promote to the same type.");
      canPerformLossyDemotionCheck = true;
      canPerformLossyDemotionCheck &=
          CGF.getContext().getCanonicalType(type) !=
          CGF.getContext().getCanonicalType(promotedType);
      canPerformLossyDemotionCheck &=
          PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
              type, promotedType);
      assert((!canPerformLossyDemotionCheck ||
              type->isSignedIntegerOrEnumerationType() ||
              promotedType->isSignedIntegerOrEnumerationType() ||
              ConvertType(type)->getScalarSizeInBits() ==
                  ConvertType(promotedType)->getScalarSizeInBits()) &&
             "The following check expects that if we do promotion to different "
             "underlying canonical type, at least one of the types (either "
             "base or promoted) will be signed, or the bitwidths will match.");
    }
    if (CGF.SanOpts.hasOneOf(
            SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
        canPerformLossyDemotionCheck) {
      // While `x += 1` (for `x` with width less than int) is modeled as
      // promotion+arithmetics+demotion, and we can catch lossy demotion with
      // ease; inc/dec with width less than int can't overflow because of
      // promotion rules, so we omit promotion+demotion, which means that we can
      // not catch lossy "demotion". Because we still want to catch these cases
      // when the sanitizer is enabled, we perform the promotion, then perform
      // the increment/decrement in the wider type, and finally
      // perform the demotion. This will catch lossy demotions.

      value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
      Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
      // Do pass non-default ScalarConversionOpts so that sanitizer check is
      // emitted.
      value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
                                   ScalarConversionOpts(CGF.SanOpts));

      // Note that signed integer inc/dec with width less than int can't
      // overflow because of promotion rules; we're just eliding a few steps
      // here.
    } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
      value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
    } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
               CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
      value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
          E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
    } else {
      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
    }

  // Next most common: pointer increment.
  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
    QualType type = ptr->getPointeeType();

    // VLA types don't have constant size.
    if (const VariableArrayType *vla
          = CGF.getContext().getAsVariableArrayType(type)) {
      llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
      llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
      if (CGF.getLangOpts().isSignedOverflowDefined())
        value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
      else
        value = CGF.EmitCheckedInBoundsGEP(
            elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
            E->getExprLoc(), "vla.inc");

    // Arithmetic on function pointers (!) is just +-1.
    } else if (type->isFunctionType()) {
      llvm::Value *amt = Builder.getInt32(amount);

      value = CGF.EmitCastToVoidPtr(value);
      if (CGF.getLangOpts().isSignedOverflowDefined())
        value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
      else
        value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
                                           /*SignedIndices=*/false,
                                           isSubtraction, E->getExprLoc(),
                                           "incdec.funcptr");
      value = Builder.CreateBitCast(value, input->getType());

    // For everything else, we can just do a simple increment.
    } else {
      llvm::Value *amt = Builder.getInt32(amount);
      llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
      if (CGF.getLangOpts().isSignedOverflowDefined())
        value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
      else
        value = CGF.EmitCheckedInBoundsGEP(
            elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
            E->getExprLoc(), "incdec.ptr");
    }

  // Vector increment/decrement.
  } else if (type->isVectorType()) {
    if (type->hasIntegerRepresentation()) {
      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);

      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
    } else {
      value = Builder.CreateFAdd(
                  value,
                  llvm::ConstantFP::get(value->getType(), amount),
                  isInc ? "inc" : "dec");
    }

  // Floating point.
  } else if (type->isRealFloatingType()) {
    // Add the inc/dec to the real part.
    llvm::Value *amt;
    CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);

    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
      // Another special case: half FP increment should be done via float
      if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
        value = Builder.CreateCall(
            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
                                 CGF.CGM.FloatTy),
            input, "incdec.conv");
      } else {
        value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
      }
    }

    if (value->getType()->isFloatTy())
      amt = llvm::ConstantFP::get(VMContext,
                                  llvm::APFloat(static_cast<float>(amount)));
    else if (value->getType()->isDoubleTy())
      amt = llvm::ConstantFP::get(VMContext,
                                  llvm::APFloat(static_cast<double>(amount)));
    else {
      // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
      // from float.
      llvm::APFloat F(static_cast<float>(amount));
      bool ignored;
      const llvm::fltSemantics *FS;
      // Don't use getFloatTypeSemantics because Half isn't
      // necessarily represented using the "half" LLVM type.
      if (value->getType()->isFP128Ty())
        FS = &CGF.getTarget().getFloat128Format();
      else if (value->getType()->isHalfTy())
        FS = &CGF.getTarget().getHalfFormat();
      else if (value->getType()->isPPC_FP128Ty())
        FS = &CGF.getTarget().getIbm128Format();
      else
        FS = &CGF.getTarget().getLongDoubleFormat();
      F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
      amt = llvm::ConstantFP::get(VMContext, F);
    }
    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");

    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
      if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
        value = Builder.CreateCall(
            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
                                 CGF.CGM.FloatTy),
            value, "incdec.conv");
      } else {
        value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
      }
    }

  // Fixed-point types.
  } else if (type->isFixedPointType()) {
    // Fixed-point types are tricky. In some cases, it isn't possible to
    // represent a 1 or a -1 in the type at all. Piggyback off of
    // EmitFixedPointBinOp to avoid having to reimplement saturation.
    BinOpInfo Info;
    Info.E = E;
    Info.Ty = E->getType();
    Info.Opcode = isInc ? BO_Add : BO_Sub;
    Info.LHS = value;
    Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
    // If the type is signed, it's better to represent this as +(-1) or -(-1),
    // since -1 is guaranteed to be representable.
    if (type->isSignedFixedPointType()) {
      Info.Opcode = isInc ? BO_Sub : BO_Add;
      Info.RHS = Builder.CreateNeg(Info.RHS);
    }
    // Now, convert from our invented integer literal to the type of the unary
    // op. This will upscale and saturate if necessary. This value can become
    // undef in some cases.
    llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
    auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
    Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
    value = EmitFixedPointBinOp(Info);

  // Objective-C pointer types.
  } else {
    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
    value = CGF.EmitCastToVoidPtr(value);

    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
    if (!isInc) size = -size;
    llvm::Value *sizeValue =
      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());

    if (CGF.getLangOpts().isSignedOverflowDefined())
      value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
    else
      value = CGF.EmitCheckedInBoundsGEP(
          CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
          E->getExprLoc(), "incdec.objptr");
    value = Builder.CreateBitCast(value, input->getType());
  }

  if (atomicPHI) {
    llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
    auto Pair = CGF.EmitAtomicCompareExchange(
        LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
    llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
    llvm::Value *success = Pair.second;
    atomicPHI->addIncoming(old, curBlock);
    Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
    Builder.SetInsertPoint(contBB);
    return isPre ? value : input;
  }

  // Store the updated result through the lvalue.
  if (LV.isBitField())
    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
  else
    CGF.EmitStoreThroughLValue(RValue::get(value), LV);

  // If this is a postinc, return the value read from memory, otherwise use the
  // updated value.
  return isPre ? value : input;
}


Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
                                         QualType PromotionType) {
  QualType promotionTy = PromotionType.isNull()
                             ? getPromotionType(E->getSubExpr()->getType())
                             : PromotionType;
  Value *result = VisitPlus(E, promotionTy);
  if (result && !promotionTy.isNull())
    result = EmitUnPromotedValue(result, E->getType());
  return result;
}

Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
                                    QualType PromotionType) {
  // This differs from gcc, though, most likely due to a bug in gcc.
  TestAndClearIgnoreResultAssign();
  if (!PromotionType.isNull())
    return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
  return Visit(E->getSubExpr());
}

Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
                                          QualType PromotionType) {
  QualType promotionTy = PromotionType.isNull()
                             ? getPromotionType(E->getSubExpr()->getType())
                             : PromotionType;
  Value *result = VisitMinus(E, promotionTy);
  if (result && !promotionTy.isNull())
    result = EmitUnPromotedValue(result, E->getType());
  return result;
}

Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
                                     QualType PromotionType) {
  TestAndClearIgnoreResultAssign();
  Value *Op;
  if (!PromotionType.isNull())
    Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
  else
    Op = Visit(E->getSubExpr());

  // Generate a unary FNeg for FP ops.
  if (Op->getType()->isFPOrFPVectorTy())
    return Builder.CreateFNeg(Op, "fneg");

  // Emit unary minus with EmitSub so we handle overflow cases etc.
  BinOpInfo BinOp;
  BinOp.RHS = Op;
  BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
  BinOp.Ty = E->getType();
  BinOp.Opcode = BO_Sub;
  BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
  BinOp.E = E;
  return EmitSub(BinOp);
}

Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
  TestAndClearIgnoreResultAssign();
  Value *Op = Visit(E->getSubExpr());
  return Builder.CreateNot(Op, "not");
}

Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
  // Perform vector logical not on comparison with zero vector.
  if (E->getType()->isVectorType() &&
      E->getType()->castAs<VectorType>()->getVectorKind() ==
          VectorType::GenericVector) {
    Value *Oper = Visit(E->getSubExpr());
    Value *Zero = llvm::Constant::getNullValue(Oper->getType());
    Value *Result;
    if (Oper->getType()->isFPOrFPVectorTy()) {
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
          CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
      Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
    } else
      Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
    return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
  }

  // Compare operand to zero.
  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());

  // Invert value.
  // TODO: Could dynamically modify easy computations here.  For example, if
  // the operand is an icmp ne, turn into icmp eq.
  BoolVal = Builder.CreateNot(BoolVal, "lnot");

  // ZExt result to the expr type.
  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
}

Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
  // Try folding the offsetof to a constant.
  Expr::EvalResult EVResult;
  if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
    llvm::APSInt Value = EVResult.Val.getInt();
    return Builder.getInt(Value);
  }

  // Loop over the components of the offsetof to compute the value.
  unsigned n = E->getNumComponents();
  llvm::Type* ResultType = ConvertType(E->getType());
  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
  QualType CurrentType = E->getTypeSourceInfo()->getType();
  for (unsigned i = 0; i != n; ++i) {
    OffsetOfNode ON = E->getComponent(i);
    llvm::Value *Offset = nullptr;
    switch (ON.getKind()) {
    case OffsetOfNode::Array: {
      // Compute the index
      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");

      // Save the element type
      CurrentType =
          CGF.getContext().getAsArrayType(CurrentType)->getElementType();

      // Compute the element size
      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());

      // Multiply out to compute the result
      Offset = Builder.CreateMul(Idx, ElemSize);
      break;
    }

    case OffsetOfNode::Field: {
      FieldDecl *MemberDecl = ON.getField();
      RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);

      // Compute the index of the field in its parent.
      unsigned i = 0;
      // FIXME: It would be nice if we didn't have to loop here!
      for (RecordDecl::field_iterator Field = RD->field_begin(),
                                      FieldEnd = RD->field_end();
           Field != FieldEnd; ++Field, ++i) {
        if (*Field == MemberDecl)
          break;
      }
      assert(i < RL.getFieldCount() && "offsetof field in wrong type");

      // Compute the offset to the field
      int64_t OffsetInt = RL.getFieldOffset(i) /
                          CGF.getContext().getCharWidth();
      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);

      // Save the element type.
      CurrentType = MemberDecl->getType();
      break;
    }

    case OffsetOfNode::Identifier:
      llvm_unreachable("dependent __builtin_offsetof");

    case OffsetOfNode::Base: {
      if (ON.getBase()->isVirtual()) {
        CGF.ErrorUnsupported(E, "virtual base in offsetof");
        continue;
      }

      RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);

      // Save the element type.
      CurrentType = ON.getBase()->getType();

      // Compute the offset to the base.
      auto *BaseRT = CurrentType->castAs<RecordType>();
      auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
      CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
      Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
      break;
    }
    }
    Result = Builder.CreateAdd(Result, Offset);
  }
  return Result;
}

/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
/// argument of the sizeof expression as an integer.
Value *
ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
                              const UnaryExprOrTypeTraitExpr *E) {
  QualType TypeToSize = E->getTypeOfArgument();
  if (E->getKind() == UETT_SizeOf) {
    if (const VariableArrayType *VAT =
          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
      if (E->isArgumentType()) {
        // sizeof(type) - make sure to emit the VLA size.
        CGF.EmitVariablyModifiedType(TypeToSize);
      } else {
        // C99 6.5.3.4p2: If the argument is an expression of type
        // VLA, it is evaluated.
        CGF.EmitIgnoredExpr(E->getArgumentExpr());
      }

      auto VlaSize = CGF.getVLASize(VAT);
      llvm::Value *size = VlaSize.NumElts;

      // Scale the number of non-VLA elements by the non-VLA element size.
      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
      if (!eltSize.isOne())
        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);

      return size;
    }
  } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
    auto Alignment =
        CGF.getContext()
            .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
                E->getTypeOfArgument()->getPointeeType()))
            .getQuantity();
    return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
  }

  // If this isn't sizeof(vla), the result must be constant; use the constant
  // folding logic so we don't have to duplicate it here.
  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
}

Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
                                         QualType PromotionType) {
  QualType promotionTy = PromotionType.isNull()
                             ? getPromotionType(E->getSubExpr()->getType())
                             : PromotionType;
  Value *result = VisitReal(E, promotionTy);
  if (result && !promotionTy.isNull())
    result = EmitUnPromotedValue(result, E->getType());
  return result;
}

Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
                                    QualType PromotionType) {
  Expr *Op = E->getSubExpr();
  if (Op->getType()->isAnyComplexType()) {
    // If it's an l-value, load through the appropriate subobject l-value.
    // Note that we have to ask E because Op might be an l-value that
    // this won't work for, e.g. an Obj-C property.
    if (E->isGLValue())  {
      if (!PromotionType.isNull()) {
        CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
            Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
        if (result.first)
          result.first = CGF.EmitPromotedValue(result, PromotionType).first;
        return result.first;
      } else {
        return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
            .getScalarVal();
      }
    }
    // Otherwise, calculate and project.
    return CGF.EmitComplexExpr(Op, false, true).first;
  }

  if (!PromotionType.isNull())
    return CGF.EmitPromotedScalarExpr(Op, PromotionType);
  return Visit(Op);
}

Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
                                         QualType PromotionType) {
  QualType promotionTy = PromotionType.isNull()
                             ? getPromotionType(E->getSubExpr()->getType())
                             : PromotionType;
  Value *result = VisitImag(E, promotionTy);
  if (result && !promotionTy.isNull())
    result = EmitUnPromotedValue(result, E->getType());
  return result;
}

Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
                                    QualType PromotionType) {
  Expr *Op = E->getSubExpr();
  if (Op->getType()->isAnyComplexType()) {
    // If it's an l-value, load through the appropriate subobject l-value.
    // Note that we have to ask E because Op might be an l-value that
    // this won't work for, e.g. an Obj-C property.
    if (Op->isGLValue()) {
      if (!PromotionType.isNull()) {
        CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
            Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
        if (result.second)
          result.second = CGF.EmitPromotedValue(result, PromotionType).second;
        return result.second;
      } else {
        return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
            .getScalarVal();
      }
    }
    // Otherwise, calculate and project.
    return CGF.EmitComplexExpr(Op, true, false).second;
  }

  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
  // effects are evaluated, but not the actual value.
  if (Op->isGLValue())
    CGF.EmitLValue(Op);
  else if (!PromotionType.isNull())
    CGF.EmitPromotedScalarExpr(Op, PromotionType);
  else
    CGF.EmitScalarExpr(Op, true);
  if (!PromotionType.isNull())
    return llvm::Constant::getNullValue(ConvertType(PromotionType));
  return llvm::Constant::getNullValue(ConvertType(E->getType()));
}

//===----------------------------------------------------------------------===//
//                           Binary Operators
//===----------------------------------------------------------------------===//

Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
                                            QualType PromotionType) {
  return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
}

Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
                                              QualType ExprType) {
  return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
}

Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
  E = E->IgnoreParens();
  if (auto BO = dyn_cast<BinaryOperator>(E)) {
    switch (BO->getOpcode()) {
#define HANDLE_BINOP(OP)                                                       \
  case BO_##OP:                                                                \
    return Emit##OP(EmitBinOps(BO, PromotionType));
      HANDLE_BINOP(Add)
      HANDLE_BINOP(Sub)
      HANDLE_BINOP(Mul)
      HANDLE_BINOP(Div)
#undef HANDLE_BINOP
    default:
      break;
    }
  } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
    switch (UO->getOpcode()) {
    case UO_Imag:
      return VisitImag(UO, PromotionType);
    case UO_Real:
      return VisitReal(UO, PromotionType);
    case UO_Minus:
      return VisitMinus(UO, PromotionType);
    case UO_Plus:
      return VisitPlus(UO, PromotionType);
    default:
      break;
    }
  }
  auto result = Visit(const_cast<Expr *>(E));
  if (result) {
    if (!PromotionType.isNull())
      return EmitPromotedValue(result, PromotionType);
    else
      return EmitUnPromotedValue(result, E->getType());
  }
  return result;
}

BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
                                        QualType PromotionType) {
  TestAndClearIgnoreResultAssign();
  BinOpInfo Result;
  Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
  Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
  if (!PromotionType.isNull())
    Result.Ty = PromotionType;
  else
    Result.Ty  = E->getType();
  Result.Opcode = E->getOpcode();
  Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
  Result.E = E;
  return Result;
}

LValue ScalarExprEmitter::EmitCompoundAssignLValue(
                                              const CompoundAssignOperator *E,
                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
                                                   Value *&Result) {
  QualType LHSTy = E->getLHS()->getType();
  BinOpInfo OpInfo;

  if (E->getComputationResultType()->isAnyComplexType())
    return CGF.EmitScalarCompoundAssignWithComplex(E, Result);

  // Emit the RHS first.  __block variables need to have the rhs evaluated
  // first, plus this should improve codegen a little.

  QualType PromotionTypeCR;
  PromotionTypeCR = getPromotionType(E->getComputationResultType());
  if (PromotionTypeCR.isNull())
      PromotionTypeCR = E->getComputationResultType();
  QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
  QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
  if (!PromotionTypeRHS.isNull())
    OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
  else
    OpInfo.RHS = Visit(E->getRHS());
  OpInfo.Ty = PromotionTypeCR;
  OpInfo.Opcode = E->getOpcode();
  OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
  OpInfo.E = E;
  // Load/convert the LHS.
  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);

  llvm::PHINode *atomicPHI = nullptr;
  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
    QualType type = atomicTy->getValueType();
    if (!type->isBooleanType() && type->isIntegerType() &&
        !(type->isUnsignedIntegerType() &&
          CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
        CGF.getLangOpts().getSignedOverflowBehavior() !=
            LangOptions::SOB_Trapping) {
      llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
      llvm::Instruction::BinaryOps Op;
      switch (OpInfo.Opcode) {
        // We don't have atomicrmw operands for *, %, /, <<, >>
        case BO_MulAssign: case BO_DivAssign:
        case BO_RemAssign:
        case BO_ShlAssign:
        case BO_ShrAssign:
          break;
        case BO_AddAssign:
          AtomicOp = llvm::AtomicRMWInst::Add;
          Op = llvm::Instruction::Add;
          break;
        case BO_SubAssign:
          AtomicOp = llvm::AtomicRMWInst::Sub;
          Op = llvm::Instruction::Sub;
          break;
        case BO_AndAssign:
          AtomicOp = llvm::AtomicRMWInst::And;
          Op = llvm::Instruction::And;
          break;
        case BO_XorAssign:
          AtomicOp = llvm::AtomicRMWInst::Xor;
          Op = llvm::Instruction::Xor;
          break;
        case BO_OrAssign:
          AtomicOp = llvm::AtomicRMWInst::Or;
          Op = llvm::Instruction::Or;
          break;
        default:
          llvm_unreachable("Invalid compound assignment type");
      }
      if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
        llvm::Value *Amt = CGF.EmitToMemory(
            EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
                                 E->getExprLoc()),
            LHSTy);
        Value *OldVal = Builder.CreateAtomicRMW(
            AtomicOp, LHSLV.getPointer(CGF), Amt,
            llvm::AtomicOrdering::SequentiallyConsistent);

        // Since operation is atomic, the result type is guaranteed to be the
        // same as the input in LLVM terms.
        Result = Builder.CreateBinOp(Op, OldVal, Amt);
        return LHSLV;
      }
    }
    // FIXME: For floating point types, we should be saving and restoring the
    // floating point environment in the loop.
    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
    OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
    OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
    Builder.CreateBr(opBB);
    Builder.SetInsertPoint(opBB);
    atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
    atomicPHI->addIncoming(OpInfo.LHS, startBB);
    OpInfo.LHS = atomicPHI;
  }
  else
    OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());

  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
  SourceLocation Loc = E->getExprLoc();
  if (!PromotionTypeLHS.isNull())
    OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
                                      E->getExprLoc());
  else
    OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
                                      E->getComputationLHSType(), Loc);

  // Expand the binary operator.
  Result = (this->*Func)(OpInfo);

  // Convert the result back to the LHS type,
  // potentially with Implicit Conversion sanitizer check.
  Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
                                ScalarConversionOpts(CGF.SanOpts));

  if (atomicPHI) {
    llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
    auto Pair = CGF.EmitAtomicCompareExchange(
        LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
    llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
    llvm::Value *success = Pair.second;
    atomicPHI->addIncoming(old, curBlock);
    Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
    Builder.SetInsertPoint(contBB);
    return LHSLV;
  }

  // Store the result value into the LHS lvalue. Bit-fields are handled
  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
  // 'An assignment expression has the value of the left operand after the
  // assignment...'.
  if (LHSLV.isBitField())
    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
  else
    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);

  if (CGF.getLangOpts().OpenMP)
    CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
                                                                  E->getLHS());
  return LHSLV;
}

Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
  bool Ignore = TestAndClearIgnoreResultAssign();
  Value *RHS = nullptr;
  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);

  // If the result is clearly ignored, return now.
  if (Ignore)
    return nullptr;

  // The result of an assignment in C is the assigned r-value.
  if (!CGF.getLangOpts().CPlusPlus)
    return RHS;

  // If the lvalue is non-volatile, return the computed value of the assignment.
  if (!LHS.isVolatileQualified())
    return RHS;

  // Otherwise, reload the value.
  return EmitLoadOfLValue(LHS, E->getExprLoc());
}

void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
    const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;

  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
    Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
                                    SanitizerKind::IntegerDivideByZero));
  }

  const auto *BO = cast<BinaryOperator>(Ops.E);
  if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
      Ops.Ty->hasSignedIntegerRepresentation() &&
      !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
      Ops.mayHaveIntegerOverflow()) {
    llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());

    llvm::Value *IntMin =
      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
    llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);

    llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
    llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
    llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
    Checks.push_back(
        std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
  }

  if (Checks.size() > 0)
    EmitBinOpCheck(Checks, Ops);
}

Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
  {
    CodeGenFunction::SanitizerScope SanScope(&CGF);
    if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
         CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
        Ops.Ty->isIntegerType() &&
        (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
      llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
    } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
               Ops.Ty->isRealFloatingType() &&
               Ops.mayHaveFloatDivisionByZero()) {
      llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
      llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
      EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
                     Ops);
    }
  }

  if (Ops.Ty->isConstantMatrixType()) {
    llvm::MatrixBuilder MB(Builder);
    // We need to check the types of the operands of the operator to get the
    // correct matrix dimensions.
    auto *BO = cast<BinaryOperator>(Ops.E);
    (void)BO;
    assert(
        isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
        "first operand must be a matrix");
    assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
           "second operand must be an arithmetic type");
    CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
    return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
                              Ops.Ty->hasUnsignedIntegerRepresentation());
  }

  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
    llvm::Value *Val;
    CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
    Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
    if ((CGF.getLangOpts().OpenCL &&
         !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
        (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
         !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
      // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
      // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
      // build option allows an application to specify that single precision
      // floating-point divide (x/y and 1/x) and sqrt used in the program
      // source are correctly rounded.
      llvm::Type *ValTy = Val->getType();
      if (ValTy->isFloatTy() ||
          (isa<llvm::VectorType>(ValTy) &&
           cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
        CGF.SetFPAccuracy(Val, 2.5);
    }
    return Val;
  }
  else if (Ops.isFixedPointOp())
    return EmitFixedPointBinOp(Ops);
  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
  else
    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
}

Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
  // Rem in C can't be a floating point type: C99 6.5.5p2.
  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
       CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
      Ops.Ty->isIntegerType() &&
      (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
    CodeGenFunction::SanitizerScope SanScope(&CGF);
    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
    EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
  }

  if (Ops.Ty->hasUnsignedIntegerRepresentation())
    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
  else
    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
}

Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
  unsigned IID;
  unsigned OpID = 0;
  SanitizerHandler OverflowKind;

  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
  switch (Ops.Opcode) {
  case BO_Add:
  case BO_AddAssign:
    OpID = 1;
    IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
                     llvm::Intrinsic::uadd_with_overflow;
    OverflowKind = SanitizerHandler::AddOverflow;
    break;
  case BO_Sub:
  case BO_SubAssign:
    OpID = 2;
    IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
                     llvm::Intrinsic::usub_with_overflow;
    OverflowKind = SanitizerHandler::SubOverflow;
    break;
  case BO_Mul:
  case BO_MulAssign:
    OpID = 3;
    IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
                     llvm::Intrinsic::umul_with_overflow;
    OverflowKind = SanitizerHandler::MulOverflow;
    break;
  default:
    llvm_unreachable("Unsupported operation for overflow detection");
  }
  OpID <<= 1;
  if (isSigned)
    OpID |= 1;

  CodeGenFunction::SanitizerScope SanScope(&CGF);
  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);

  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);

  Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);

  // Handle overflow with llvm.trap if no custom handler has been specified.
  const std::string *handlerName =
    &CGF.getLangOpts().OverflowHandler;
  if (handlerName->empty()) {
    // If the signed-integer-overflow sanitizer is enabled, emit a call to its
    // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
    if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
      llvm::Value *NotOverflow = Builder.CreateNot(overflow);
      SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
                              : SanitizerKind::UnsignedIntegerOverflow;
      EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
    } else
      CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
    return result;
  }

  // Branch in case of overflow.
  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
  llvm::BasicBlock *continueBB =
      CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);

  Builder.CreateCondBr(overflow, overflowBB, continueBB);

  // If an overflow handler is set, then we want to call it and then use its
  // result, if it returns.
  Builder.SetInsertPoint(overflowBB);

  // Get the overflow handler.
  llvm::Type *Int8Ty = CGF.Int8Ty;
  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
  llvm::FunctionType *handlerTy =
      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
  llvm::FunctionCallee handler =
      CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);

  // Sign extend the args to 64-bit, so that we can use the same handler for
  // all types of overflow.
  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);

  // Call the handler with the two arguments, the operation, and the size of
  // the result.
  llvm::Value *handlerArgs[] = {
    lhs,
    rhs,
    Builder.getInt8(OpID),
    Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
  };
  llvm::Value *handlerResult =
    CGF.EmitNounwindRuntimeCall(handler, handlerArgs);

  // Truncate the result back to the desired size.
  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
  Builder.CreateBr(continueBB);

  Builder.SetInsertPoint(continueBB);
  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
  phi->addIncoming(result, initialBB);
  phi->addIncoming(handlerResult, overflowBB);

  return phi;
}

/// Emit pointer + index arithmetic.
static Value *emitPointerArithmetic(CodeGenFunction &CGF,
                                    const BinOpInfo &op,
                                    bool isSubtraction) {
  // Must have binary (not unary) expr here.  Unary pointer
  // increment/decrement doesn't use this path.
  const BinaryOperator *expr = cast<BinaryOperator>(op.E);

  Value *pointer = op.LHS;
  Expr *pointerOperand = expr->getLHS();
  Value *index = op.RHS;
  Expr *indexOperand = expr->getRHS();

  // In a subtraction, the LHS is always the pointer.
  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
    std::swap(pointer, index);
    std::swap(pointerOperand, indexOperand);
  }

  bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();

  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
  auto &DL = CGF.CGM.getDataLayout();
  auto PtrTy = cast<llvm::PointerType>(pointer->getType());

  // Some versions of glibc and gcc use idioms (particularly in their malloc
  // routines) that add a pointer-sized integer (known to be a pointer value)
  // to a null pointer in order to cast the value back to an integer or as
  // part of a pointer alignment algorithm.  This is undefined behavior, but
  // we'd like to be able to compile programs that use it.
  //
  // Normally, we'd generate a GEP with a null-pointer base here in response
  // to that code, but it's also UB to dereference a pointer created that
  // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
  // generate a direct cast of the integer value to a pointer.
  //
  // The idiom (p = nullptr + N) is not met if any of the following are true:
  //
  //   The operation is subtraction.
  //   The index is not pointer-sized.
  //   The pointer type is not byte-sized.
  //
  if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
                                                       op.Opcode,
                                                       expr->getLHS(),
                                                       expr->getRHS()))
    return CGF.Builder.CreateIntToPtr(index, pointer->getType());

  if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
    // Zero-extend or sign-extend the pointer value according to
    // whether the index is signed or not.
    index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
                                      "idx.ext");
  }

  // If this is subtraction, negate the index.
  if (isSubtraction)
    index = CGF.Builder.CreateNeg(index, "idx.neg");

  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
    CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
                        /*Accessed*/ false);

  const PointerType *pointerType
    = pointerOperand->getType()->getAs<PointerType>();
  if (!pointerType) {
    QualType objectType = pointerOperand->getType()
                                        ->castAs<ObjCObjectPointerType>()
                                        ->getPointeeType();
    llvm::Value *objectSize
      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));

    index = CGF.Builder.CreateMul(index, objectSize);

    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
    result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
    return CGF.Builder.CreateBitCast(result, pointer->getType());
  }

  QualType elementType = pointerType->getPointeeType();
  if (const VariableArrayType *vla
        = CGF.getContext().getAsVariableArrayType(elementType)) {
    // The element count here is the total number of non-VLA elements.
    llvm::Value *numElements = CGF.getVLASize(vla).NumElts;

    // Effectively, the multiply by the VLA size is part of the GEP.
    // GEP indexes are signed, and scaling an index isn't permitted to
    // signed-overflow, so we use the same semantics for our explicit
    // multiply.  We suppress this if overflow is not undefined behavior.
    llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
    if (CGF.getLangOpts().isSignedOverflowDefined()) {
      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
      pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
    } else {
      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
      pointer = CGF.EmitCheckedInBoundsGEP(
          elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
          "add.ptr");
    }
    return pointer;
  }

  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
  // future proof.
  if (elementType->isVoidType() || elementType->isFunctionType()) {
    Value *result = CGF.EmitCastToVoidPtr(pointer);
    result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
    return CGF.Builder.CreateBitCast(result, pointer->getType());
  }

  llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType);
  if (CGF.getLangOpts().isSignedOverflowDefined())
    return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");

  return CGF.EmitCheckedInBoundsGEP(
      elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
      "add.ptr");
}

// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
// Addend. Use negMul and negAdd to negate the first operand of the Mul or
// the add operand respectively. This allows fmuladd to represent a*b-c, or
// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
// efficient operations.
static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
                           const CodeGenFunction &CGF, CGBuilderTy &Builder,
                           bool negMul, bool negAdd) {
  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");

  Value *MulOp0 = MulOp->getOperand(0);
  Value *MulOp1 = MulOp->getOperand(1);
  if (negMul)
    MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
  if (negAdd)
    Addend = Builder.CreateFNeg(Addend, "neg");

  Value *FMulAdd = nullptr;
  if (Builder.getIsFPConstrained()) {
    assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
           "Only constrained operation should be created when Builder is in FP "
           "constrained mode");
    FMulAdd = Builder.CreateConstrainedFPCall(
        CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
                             Addend->getType()),
        {MulOp0, MulOp1, Addend});
  } else {
    FMulAdd = Builder.CreateCall(
        CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
        {MulOp0, MulOp1, Addend});
  }
  MulOp->eraseFromParent();

  return FMulAdd;
}

// Check whether it would be legal to emit an fmuladd intrinsic call to
// represent op and if so, build the fmuladd.
//
// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
// Does NOT check the type of the operation - it's assumed that this function
// will be called from contexts where it's known that the type is contractable.
static Value* tryEmitFMulAdd(const BinOpInfo &op,
                         const CodeGenFunction &CGF, CGBuilderTy &Builder,
                         bool isSub=false) {

  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
          op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
         "Only fadd/fsub can be the root of an fmuladd.");

  // Check whether this op is marked as fusable.
  if (!op.FPFeatures.allowFPContractWithinStatement())
    return nullptr;

  // We have a potentially fusable op. Look for a mul on one of the operands.
  // Also, make sure that the mul result isn't used directly. In that case,
  // there's no point creating a muladd operation.
  if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
    if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
        LHSBinOp->use_empty())
      return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
  }
  if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
    if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
        RHSBinOp->use_empty())
      return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
  }

  if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
    if (LHSBinOp->getIntrinsicID() ==
            llvm::Intrinsic::experimental_constrained_fmul &&
        LHSBinOp->use_empty())
      return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
  }
  if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
    if (RHSBinOp->getIntrinsicID() ==
            llvm::Intrinsic::experimental_constrained_fmul &&
        RHSBinOp->use_empty())
      return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
  }

  return nullptr;
}

Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
  if (op.LHS->getType()->isPointerTy() ||
      op.RHS->getType()->isPointerTy())
    return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);

  if (op.Ty->isSignedIntegerOrEnumerationType()) {
    switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
    case LangOptions::SOB_Defined:
      return Builder.CreateAdd(op.LHS, op.RHS, "add");
    case LangOptions::SOB_Undefined:
      if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
        return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
      [[fallthrough]];
    case LangOptions::SOB_Trapping:
      if (CanElideOverflowCheck(CGF.getContext(), op))
        return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
      return EmitOverflowCheckedBinOp(op);
    }
  }

  if (op.Ty->isConstantMatrixType()) {
    llvm::MatrixBuilder MB(Builder);
    CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
    return MB.CreateAdd(op.LHS, op.RHS);
  }

  if (op.Ty->isUnsignedIntegerType() &&
      CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
      !CanElideOverflowCheck(CGF.getContext(), op))
    return EmitOverflowCheckedBinOp(op);

  if (op.LHS->getType()->isFPOrFPVectorTy()) {
    CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
    // Try to form an fmuladd.
    if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
      return FMulAdd;

    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
  }

  if (op.isFixedPointOp())
    return EmitFixedPointBinOp(op);

  return Builder.CreateAdd(op.LHS, op.RHS, "add");
}

/// The resulting value must be calculated with exact precision, so the operands
/// may not be the same type.
Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
  using llvm::APSInt;
  using llvm::ConstantInt;

  // This is either a binary operation where at least one of the operands is
  // a fixed-point type, or a unary operation where the operand is a fixed-point
  // type. The result type of a binary operation is determined by
  // Sema::handleFixedPointConversions().
  QualType ResultTy = op.Ty;
  QualType LHSTy, RHSTy;
  if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
    RHSTy = BinOp->getRHS()->getType();
    if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
      // For compound assignment, the effective type of the LHS at this point
      // is the computation LHS type, not the actual LHS type, and the final
      // result type is not the type of the expression but rather the
      // computation result type.
      LHSTy = CAO->getComputationLHSType();
      ResultTy = CAO->getComputationResultType();
    } else
      LHSTy = BinOp->getLHS()->getType();
  } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
    LHSTy = UnOp->getSubExpr()->getType();
    RHSTy = UnOp->getSubExpr()->getType();
  }
  ASTContext &Ctx = CGF.getContext();
  Value *LHS = op.LHS;
  Value *RHS = op.RHS;

  auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
  auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
  auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
  auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);

  // Perform the actual operation.
  Value *Result;
  llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
  switch (op.Opcode) {
  case BO_AddAssign:
  case BO_Add:
    Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
    break;
  case BO_SubAssign:
  case BO_Sub:
    Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
    break;
  case BO_MulAssign:
  case BO_Mul:
    Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
    break;
  case BO_DivAssign:
  case BO_Div:
    Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
    break;
  case BO_ShlAssign:
  case BO_Shl:
    Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
    break;
  case BO_ShrAssign:
  case BO_Shr:
    Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
    break;
  case BO_LT:
    return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_GT:
    return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_LE:
    return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_GE:
    return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_EQ:
    // For equality operations, we assume any padding bits on unsigned types are
    // zero'd out. They could be overwritten through non-saturating operations
    // that cause overflow, but this leads to undefined behavior.
    return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_NE:
    return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_Cmp:
  case BO_LAnd:
  case BO_LOr:
    llvm_unreachable("Found unimplemented fixed point binary operation");
  case BO_PtrMemD:
  case BO_PtrMemI:
  case BO_Rem:
  case BO_Xor:
  case BO_And:
  case BO_Or:
  case BO_Assign:
  case BO_RemAssign:
  case BO_AndAssign:
  case BO_XorAssign:
  case BO_OrAssign:
  case BO_Comma:
    llvm_unreachable("Found unsupported binary operation for fixed point types.");
  }

  bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
                 BinaryOperator::isShiftAssignOp(op.Opcode);
  // Convert to the result type.
  return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
                                                      : CommonFixedSema,
                                      ResultFixedSema);
}

Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
  // The LHS is always a pointer if either side is.
  if (!op.LHS->getType()->isPointerTy()) {
    if (op.Ty->isSignedIntegerOrEnumerationType()) {
      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
      case LangOptions::SOB_Defined:
        return Builder.CreateSub(op.LHS, op.RHS, "sub");
      case LangOptions::SOB_Undefined:
        if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
          return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
        [[fallthrough]];
      case LangOptions::SOB_Trapping:
        if (CanElideOverflowCheck(CGF.getContext(), op))
          return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
        return EmitOverflowCheckedBinOp(op);
      }
    }

    if (op.Ty->isConstantMatrixType()) {
      llvm::MatrixBuilder MB(Builder);
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
      return MB.CreateSub(op.LHS, op.RHS);
    }

    if (op.Ty->isUnsignedIntegerType() &&
        CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
        !CanElideOverflowCheck(CGF.getContext(), op))
      return EmitOverflowCheckedBinOp(op);

    if (op.LHS->getType()->isFPOrFPVectorTy()) {
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
      // Try to form an fmuladd.
      if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
        return FMulAdd;
      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
    }

    if (op.isFixedPointOp())
      return EmitFixedPointBinOp(op);

    return Builder.CreateSub(op.LHS, op.RHS, "sub");
  }

  // If the RHS is not a pointer, then we have normal pointer
  // arithmetic.
  if (!op.RHS->getType()->isPointerTy())
    return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);

  // Otherwise, this is a pointer subtraction.

  // Do the raw subtraction part.
  llvm::Value *LHS
    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
  llvm::Value *RHS
    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");

  // Okay, figure out the element size.
  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
  QualType elementType = expr->getLHS()->getType()->getPointeeType();

  llvm::Value *divisor = nullptr;

  // For a variable-length array, this is going to be non-constant.
  if (const VariableArrayType *vla
        = CGF.getContext().getAsVariableArrayType(elementType)) {
    auto VlaSize = CGF.getVLASize(vla);
    elementType = VlaSize.Type;
    divisor = VlaSize.NumElts;

    // Scale the number of non-VLA elements by the non-VLA element size.
    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
    if (!eltSize.isOne())
      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);

  // For everything elese, we can just compute it, safe in the
  // assumption that Sema won't let anything through that we can't
  // safely compute the size of.
  } else {
    CharUnits elementSize;
    // Handle GCC extension for pointer arithmetic on void* and
    // function pointer types.
    if (elementType->isVoidType() || elementType->isFunctionType())
      elementSize = CharUnits::One();
    else
      elementSize = CGF.getContext().getTypeSizeInChars(elementType);

    // Don't even emit the divide for element size of 1.
    if (elementSize.isOne())
      return diffInChars;

    divisor = CGF.CGM.getSize(elementSize);
  }

  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
  // pointer difference in C is only defined in the case where both operands
  // are pointing to elements of an array.
  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
}

Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
  llvm::IntegerType *Ty;
  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
    Ty = cast<llvm::IntegerType>(VT->getElementType());
  else
    Ty = cast<llvm::IntegerType>(LHS->getType());
  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
}

Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
                                              const Twine &Name) {
  llvm::IntegerType *Ty;
  if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
    Ty = cast<llvm::IntegerType>(VT->getElementType());
  else
    Ty = cast<llvm::IntegerType>(LHS->getType());

  if (llvm::isPowerOf2_64(Ty->getBitWidth()))
        return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);

  return Builder.CreateURem(
      RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
}

Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
  // TODO: This misses out on the sanitizer check below.
  if (Ops.isFixedPointOp())
    return EmitFixedPointBinOp(Ops);

  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  // RHS to the same size as the LHS.
  Value *RHS = Ops.RHS;
  if (Ops.LHS->getType() != RHS->getType())
    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");

  bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
                            Ops.Ty->hasSignedIntegerRepresentation() &&
                            !CGF.getLangOpts().isSignedOverflowDefined() &&
                            !CGF.getLangOpts().CPlusPlus20;
  bool SanitizeUnsignedBase =
      CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
      Ops.Ty->hasUnsignedIntegerRepresentation();
  bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
  bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
  // OpenCL 6.3j: shift values are effectively % word size of LHS.
  if (CGF.getLangOpts().OpenCL)
    RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
  else if ((SanitizeBase || SanitizeExponent) &&
           isa<llvm::IntegerType>(Ops.LHS->getType())) {
    CodeGenFunction::SanitizerScope SanScope(&CGF);
    SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
    llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
    llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);

    if (SanitizeExponent) {
      Checks.push_back(
          std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
    }

    if (SanitizeBase) {
      // Check whether we are shifting any non-zero bits off the top of the
      // integer. We only emit this check if exponent is valid - otherwise
      // instructions below will have undefined behavior themselves.
      llvm::BasicBlock *Orig = Builder.GetInsertBlock();
      llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
      llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
      Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
      llvm::Value *PromotedWidthMinusOne =
          (RHS == Ops.RHS) ? WidthMinusOne
                           : GetWidthMinusOneValue(Ops.LHS, RHS);
      CGF.EmitBlock(CheckShiftBase);
      llvm::Value *BitsShiftedOff = Builder.CreateLShr(
          Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
                                     /*NUW*/ true, /*NSW*/ true),
          "shl.check");
      if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
        // In C99, we are not permitted to shift a 1 bit into the sign bit.
        // Under C++11's rules, shifting a 1 bit into the sign bit is
        // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
        // define signed left shifts, so we use the C99 and C++11 rules there).
        // Unsigned shifts can always shift into the top bit.
        llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
        BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
      }
      llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
      llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
      CGF.EmitBlock(Cont);
      llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
      BaseCheck->addIncoming(Builder.getTrue(), Orig);
      BaseCheck->addIncoming(ValidBase, CheckShiftBase);
      Checks.push_back(std::make_pair(
          BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
                                        : SanitizerKind::UnsignedShiftBase));
    }

    assert(!Checks.empty());
    EmitBinOpCheck(Checks, Ops);
  }

  return Builder.CreateShl(Ops.LHS, RHS, "shl");
}

Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
  // TODO: This misses out on the sanitizer check below.
  if (Ops.isFixedPointOp())
    return EmitFixedPointBinOp(Ops);

  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  // RHS to the same size as the LHS.
  Value *RHS = Ops.RHS;
  if (Ops.LHS->getType() != RHS->getType())
    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");

  // OpenCL 6.3j: shift values are effectively % word size of LHS.
  if (CGF.getLangOpts().OpenCL)
    RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
  else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
           isa<llvm::IntegerType>(Ops.LHS->getType())) {
    CodeGenFunction::SanitizerScope SanScope(&CGF);
    llvm::Value *Valid =
        Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
    EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
  }

  if (Ops.Ty->hasUnsignedIntegerRepresentation())
    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
}

enum IntrinsicType { VCMPEQ, VCMPGT };
// return corresponding comparison intrinsic for given vector type
static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
                                        BuiltinType::Kind ElemKind) {
  switch (ElemKind) {
  default: llvm_unreachable("unexpected element type");
  case BuiltinType::Char_U:
  case BuiltinType::UChar:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
  case BuiltinType::Char_S:
  case BuiltinType::SChar:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
  case BuiltinType::UShort:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
  case BuiltinType::Short:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
  case BuiltinType::UInt:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
  case BuiltinType::Int:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
  case BuiltinType::ULong:
  case BuiltinType::ULongLong:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
  case BuiltinType::Long:
  case BuiltinType::LongLong:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
  case BuiltinType::Float:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
  case BuiltinType::Double:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
                            llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
  case BuiltinType::UInt128:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
                          : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
  case BuiltinType::Int128:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
                          : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
  }
}

Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
                                      llvm::CmpInst::Predicate UICmpOpc,
                                      llvm::CmpInst::Predicate SICmpOpc,
                                      llvm::CmpInst::Predicate FCmpOpc,
                                      bool IsSignaling) {
  TestAndClearIgnoreResultAssign();
  Value *Result;
  QualType LHSTy = E->getLHS()->getType();
  QualType RHSTy = E->getRHS()->getType();
  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
    assert(E->getOpcode() == BO_EQ ||
           E->getOpcode() == BO_NE);
    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
  } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
    BinOpInfo BOInfo = EmitBinOps(E);
    Value *LHS = BOInfo.LHS;
    Value *RHS = BOInfo.RHS;

    // If AltiVec, the comparison results in a numeric type, so we use
    // intrinsics comparing vectors and giving 0 or 1 as a result
    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
      // constants for mapping CR6 register bits to predicate result
      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;

      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;

      // in several cases vector arguments order will be reversed
      Value *FirstVecArg = LHS,
            *SecondVecArg = RHS;

      QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
      BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();

      switch(E->getOpcode()) {
      default: llvm_unreachable("is not a comparison operation");
      case BO_EQ:
        CR6 = CR6_LT;
        ID = GetIntrinsic(VCMPEQ, ElementKind);
        break;
      case BO_NE:
        CR6 = CR6_EQ;
        ID = GetIntrinsic(VCMPEQ, ElementKind);
        break;
      case BO_LT:
        CR6 = CR6_LT;
        ID = GetIntrinsic(VCMPGT, ElementKind);
        std::swap(FirstVecArg, SecondVecArg);
        break;
      case BO_GT:
        CR6 = CR6_LT;
        ID = GetIntrinsic(VCMPGT, ElementKind);
        break;
      case BO_LE:
        if (ElementKind == BuiltinType::Float) {
          CR6 = CR6_LT;
          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
          std::swap(FirstVecArg, SecondVecArg);
        }
        else {
          CR6 = CR6_EQ;
          ID = GetIntrinsic(VCMPGT, ElementKind);
        }
        break;
      case BO_GE:
        if (ElementKind == BuiltinType::Float) {
          CR6 = CR6_LT;
          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
        }
        else {
          CR6 = CR6_EQ;
          ID = GetIntrinsic(VCMPGT, ElementKind);
          std::swap(FirstVecArg, SecondVecArg);
        }
        break;
      }

      Value *CR6Param = Builder.getInt32(CR6);
      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
      Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});

      // The result type of intrinsic may not be same as E->getType().
      // If E->getType() is not BoolTy, EmitScalarConversion will do the
      // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
      // do nothing, if ResultTy is not i1 at the same time, it will cause
      // crash later.
      llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
      if (ResultTy->getBitWidth() > 1 &&
          E->getType() == CGF.getContext().BoolTy)
        Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
                                  E->getExprLoc());
    }

    if (BOInfo.isFixedPointOp()) {
      Result = EmitFixedPointBinOp(BOInfo);
    } else if (LHS->getType()->isFPOrFPVectorTy()) {
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
      if (!IsSignaling)
        Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
      else
        Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
    } else if (LHSTy->hasSignedIntegerRepresentation()) {
      Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
    } else {
      // Unsigned integers and pointers.

      if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
          !isa<llvm::ConstantPointerNull>(LHS) &&
          !isa<llvm::ConstantPointerNull>(RHS)) {

        // Dynamic information is required to be stripped for comparisons,
        // because it could leak the dynamic information.  Based on comparisons
        // of pointers to dynamic objects, the optimizer can replace one pointer
        // with another, which might be incorrect in presence of invariant
        // groups. Comparison with null is safe because null does not carry any
        // dynamic information.
        if (LHSTy.mayBeDynamicClass())
          LHS = Builder.CreateStripInvariantGroup(LHS);
        if (RHSTy.mayBeDynamicClass())
          RHS = Builder.CreateStripInvariantGroup(RHS);
      }

      Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
    }

    // If this is a vector comparison, sign extend the result to the appropriate
    // vector integer type and return it (don't convert to bool).
    if (LHSTy->isVectorType())
      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");

  } else {
    // Complex Comparison: can only be an equality comparison.
    CodeGenFunction::ComplexPairTy LHS, RHS;
    QualType CETy;
    if (auto *CTy = LHSTy->getAs<ComplexType>()) {
      LHS = CGF.EmitComplexExpr(E->getLHS());
      CETy = CTy->getElementType();
    } else {
      LHS.first = Visit(E->getLHS());
      LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
      CETy = LHSTy;
    }
    if (auto *CTy = RHSTy->getAs<ComplexType>()) {
      RHS = CGF.EmitComplexExpr(E->getRHS());
      assert(CGF.getContext().hasSameUnqualifiedType(CETy,
                                                     CTy->getElementType()) &&
             "The element types must always match.");
      (void)CTy;
    } else {
      RHS.first = Visit(E->getRHS());
      RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
      assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
             "The element types must always match.");
    }

    Value *ResultR, *ResultI;
    if (CETy->isRealFloatingType()) {
      // As complex comparisons can only be equality comparisons, they
      // are never signaling comparisons.
      ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
      ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
    } else {
      // Complex comparisons can only be equality comparisons.  As such, signed
      // and unsigned opcodes are the same.
      ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
      ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
    }

    if (E->getOpcode() == BO_EQ) {
      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
    } else {
      assert(E->getOpcode() == BO_NE &&
             "Complex comparison other than == or != ?");
      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
    }
  }

  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
                              E->getExprLoc());
}

Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
  bool Ignore = TestAndClearIgnoreResultAssign();

  Value *RHS;
  LValue LHS;

  switch (E->getLHS()->getType().getObjCLifetime()) {
  case Qualifiers::OCL_Strong:
    std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
    break;

  case Qualifiers::OCL_Autoreleasing:
    std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
    break;

  case Qualifiers::OCL_ExplicitNone:
    std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
    break;

  case Qualifiers::OCL_Weak:
    RHS = Visit(E->getRHS());
    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
    break;

  case Qualifiers::OCL_None:
    // __block variables need to have the rhs evaluated first, plus
    // this should improve codegen just a little.
    RHS = Visit(E->getRHS());
    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);

    // Store the value into the LHS.  Bit-fields are handled specially
    // because the result is altered by the store, i.e., [C99 6.5.16p1]
    // 'An assignment expression has the value of the left operand after
    // the assignment...'.
    if (LHS.isBitField()) {
      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
    } else {
      CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
    }
  }

  // If the result is clearly ignored, return now.
  if (Ignore)
    return nullptr;

  // The result of an assignment in C is the assigned r-value.
  if (!CGF.getLangOpts().CPlusPlus)
    return RHS;

  // If the lvalue is non-volatile, return the computed value of the assignment.
  if (!LHS.isVolatileQualified())
    return RHS;

  // Otherwise, reload the value.
  return EmitLoadOfLValue(LHS, E->getExprLoc());
}

Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
  // Perform vector logical and on comparisons with zero vectors.
  if (E->getType()->isVectorType()) {
    CGF.incrementProfileCounter(E);

    Value *LHS = Visit(E->getLHS());
    Value *RHS = Visit(E->getRHS());
    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
    if (LHS->getType()->isFPOrFPVectorTy()) {
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
          CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
    } else {
      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
    }
    Value *And = Builder.CreateAnd(LHS, RHS);
    return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
  }

  bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
  llvm::Type *ResTy = ConvertType(E->getType());

  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
  // If we have 1 && X, just emit X without inserting the control flow.
  bool LHSCondVal;
  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
    if (LHSCondVal) { // If we have 1 && X, just emit X.
      CGF.incrementProfileCounter(E);

      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());

      // If we're generating for profiling or coverage, generate a branch to a
      // block that increments the RHS counter needed to track branch condition
      // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
      // "FalseBlock" after the increment is done.
      if (InstrumentRegions &&
          CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
        llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
        llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
        Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
        CGF.EmitBlock(RHSBlockCnt);
        CGF.incrementProfileCounter(E->getRHS());
        CGF.EmitBranch(FBlock);
        CGF.EmitBlock(FBlock);
      }

      // ZExt result to int or bool.
      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
    }

    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
    if (!CGF.ContainsLabel(E->getRHS()))
      return llvm::Constant::getNullValue(ResTy);
  }

  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");

  CodeGenFunction::ConditionalEvaluation eval(CGF);

  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
                           CGF.getProfileCount(E->getRHS()));

  // Any edges into the ContBlock are now from an (indeterminate number of)
  // edges from this first condition.  All of these values will be false.  Start
  // setting up the PHI node in the Cont Block for this.
  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
                                            "", ContBlock);
  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
       PI != PE; ++PI)
    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);

  eval.begin(CGF);
  CGF.EmitBlock(RHSBlock);
  CGF.incrementProfileCounter(E);
  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  eval.end(CGF);

  // Reaquire the RHS block, as there may be subblocks inserted.
  RHSBlock = Builder.GetInsertBlock();

  // If we're generating for profiling or coverage, generate a branch on the
  // RHS to a block that increments the RHS true counter needed to track branch
  // condition coverage.
  if (InstrumentRegions &&
      CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
    llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
    Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
    CGF.EmitBlock(RHSBlockCnt);
    CGF.incrementProfileCounter(E->getRHS());
    CGF.EmitBranch(ContBlock);
    PN->addIncoming(RHSCond, RHSBlockCnt);
  }

  // Emit an unconditional branch from this block to ContBlock.
  {
    // There is no need to emit line number for unconditional branch.
    auto NL = ApplyDebugLocation::CreateEmpty(CGF);
    CGF.EmitBlock(ContBlock);
  }
  // Insert an entry into the phi node for the edge with the value of RHSCond.
  PN->addIncoming(RHSCond, RHSBlock);

  // Artificial location to preserve the scope information
  {
    auto NL = ApplyDebugLocation::CreateArtificial(CGF);
    PN->setDebugLoc(Builder.getCurrentDebugLocation());
  }

  // ZExt result to int.
  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
}

Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
  // Perform vector logical or on comparisons with zero vectors.
  if (E->getType()->isVectorType()) {
    CGF.incrementProfileCounter(E);

    Value *LHS = Visit(E->getLHS());
    Value *RHS = Visit(E->getRHS());
    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
    if (LHS->getType()->isFPOrFPVectorTy()) {
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
          CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
    } else {
      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
    }
    Value *Or = Builder.CreateOr(LHS, RHS);
    return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
  }

  bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
  llvm::Type *ResTy = ConvertType(E->getType());

  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
  // If we have 0 || X, just emit X without inserting the control flow.
  bool LHSCondVal;
  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
    if (!LHSCondVal) { // If we have 0 || X, just emit X.
      CGF.incrementProfileCounter(E);

      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());

      // If we're generating for profiling or coverage, generate a branch to a
      // block that increments the RHS counter need to track branch condition
      // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
      // "FalseBlock" after the increment is done.
      if (InstrumentRegions &&
          CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
        llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
        llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
        Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
        CGF.EmitBlock(RHSBlockCnt);
        CGF.incrementProfileCounter(E->getRHS());
        CGF.EmitBranch(FBlock);
        CGF.EmitBlock(FBlock);
      }

      // ZExt result to int or bool.
      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
    }

    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
    if (!CGF.ContainsLabel(E->getRHS()))
      return llvm::ConstantInt::get(ResTy, 1);
  }

  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");

  CodeGenFunction::ConditionalEvaluation eval(CGF);

  // Branch on the LHS first.  If it is true, go to the success (cont) block.
  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
                           CGF.getCurrentProfileCount() -
                               CGF.getProfileCount(E->getRHS()));

  // Any edges into the ContBlock are now from an (indeterminate number of)
  // edges from this first condition.  All of these values will be true.  Start
  // setting up the PHI node in the Cont Block for this.
  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
                                            "", ContBlock);
  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
       PI != PE; ++PI)
    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);

  eval.begin(CGF);

  // Emit the RHS condition as a bool value.
  CGF.EmitBlock(RHSBlock);
  CGF.incrementProfileCounter(E);
  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());

  eval.end(CGF);

  // Reaquire the RHS block, as there may be subblocks inserted.
  RHSBlock = Builder.GetInsertBlock();

  // If we're generating for profiling or coverage, generate a branch on the
  // RHS to a block that increments the RHS true counter needed to track branch
  // condition coverage.
  if (InstrumentRegions &&
      CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
    llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
    Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
    CGF.EmitBlock(RHSBlockCnt);
    CGF.incrementProfileCounter(E->getRHS());
    CGF.EmitBranch(ContBlock);
    PN->addIncoming(RHSCond, RHSBlockCnt);
  }

  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
  // into the phi node for the edge with the value of RHSCond.
  CGF.EmitBlock(ContBlock);
  PN->addIncoming(RHSCond, RHSBlock);

  // ZExt result to int.
  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
}

Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
  CGF.EmitIgnoredExpr(E->getLHS());
  CGF.EnsureInsertPoint();
  return Visit(E->getRHS());
}

//===----------------------------------------------------------------------===//
//                             Other Operators
//===----------------------------------------------------------------------===//

/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
/// expression is cheap enough and side-effect-free enough to evaluate
/// unconditionally instead of conditionally.  This is used to convert control
/// flow into selects in some cases.
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
                                                   CodeGenFunction &CGF) {
  // Anything that is an integer or floating point constant is fine.
  return E->IgnoreParens()->isEvaluatable(CGF.getContext());

  // Even non-volatile automatic variables can't be evaluated unconditionally.
  // Referencing a thread_local may cause non-trivial initialization work to
  // occur. If we're inside a lambda and one of the variables is from the scope
  // outside the lambda, that function may have returned already. Reading its
  // locals is a bad idea. Also, these reads may introduce races there didn't
  // exist in the source-level program.
}


Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
  TestAndClearIgnoreResultAssign();

  // Bind the common expression if necessary.
  CodeGenFunction::OpaqueValueMapping binding(CGF, E);

  Expr *condExpr = E->getCond();
  Expr *lhsExpr = E->getTrueExpr();
  Expr *rhsExpr = E->getFalseExpr();

  // If the condition constant folds and can be elided, try to avoid emitting
  // the condition and the dead arm.
  bool CondExprBool;
  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
    Expr *live = lhsExpr, *dead = rhsExpr;
    if (!CondExprBool) std::swap(live, dead);

    // If the dead side doesn't have labels we need, just emit the Live part.
    if (!CGF.ContainsLabel(dead)) {
      if (CondExprBool)
        CGF.incrementProfileCounter(E);
      Value *Result = Visit(live);

      // If the live part is a throw expression, it acts like it has a void
      // type, so evaluating it returns a null Value*.  However, a conditional
      // with non-void type must return a non-null Value*.
      if (!Result && !E->getType()->isVoidType())
        Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));

      return Result;
    }
  }

  // OpenCL: If the condition is a vector, we can treat this condition like
  // the select function.
  if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
      condExpr->getType()->isExtVectorType()) {
    CGF.incrementProfileCounter(E);

    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
    llvm::Value *LHS = Visit(lhsExpr);
    llvm::Value *RHS = Visit(rhsExpr);

    llvm::Type *condType = ConvertType(condExpr->getType());
    auto *vecTy = cast<llvm::FixedVectorType>(condType);

    unsigned numElem = vecTy->getNumElements();
    llvm::Type *elemType = vecTy->getElementType();

    llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
    llvm::Value *tmp = Builder.CreateSExt(
        TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
    llvm::Value *tmp2 = Builder.CreateNot(tmp);

    // Cast float to int to perform ANDs if necessary.
    llvm::Value *RHSTmp = RHS;
    llvm::Value *LHSTmp = LHS;
    bool wasCast = false;
    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
    if (rhsVTy->getElementType()->isFloatingPointTy()) {
      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
      wasCast = true;
    }

    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
    if (wasCast)
      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());

    return tmp5;
  }

  if (condExpr->getType()->isVectorType() ||
      condExpr->getType()->isVLSTBuiltinType()) {
    CGF.incrementProfileCounter(E);

    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
    llvm::Value *LHS = Visit(lhsExpr);
    llvm::Value *RHS = Visit(rhsExpr);

    llvm::Type *CondType = ConvertType(condExpr->getType());
    auto *VecTy = cast<llvm::VectorType>(CondType);
    llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);

    CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
    return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
  }

  // If this is a really simple expression (like x ? 4 : 5), emit this as a
  // select instead of as control flow.  We can only do this if it is cheap and
  // safe to evaluate the LHS and RHS unconditionally.
  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
    llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);

    CGF.incrementProfileCounter(E, StepV);

    llvm::Value *LHS = Visit(lhsExpr);
    llvm::Value *RHS = Visit(rhsExpr);
    if (!LHS) {
      // If the conditional has void type, make sure we return a null Value*.
      assert(!RHS && "LHS and RHS types must match");
      return nullptr;
    }
    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
  }

  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");

  CodeGenFunction::ConditionalEvaluation eval(CGF);
  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
                           CGF.getProfileCount(lhsExpr));

  CGF.EmitBlock(LHSBlock);
  CGF.incrementProfileCounter(E);
  eval.begin(CGF);
  Value *LHS = Visit(lhsExpr);
  eval.end(CGF);

  LHSBlock = Builder.GetInsertBlock();
  Builder.CreateBr(ContBlock);

  CGF.EmitBlock(RHSBlock);
  eval.begin(CGF);
  Value *RHS = Visit(rhsExpr);
  eval.end(CGF);

  RHSBlock = Builder.GetInsertBlock();
  CGF.EmitBlock(ContBlock);

  // If the LHS or RHS is a throw expression, it will be legitimately null.
  if (!LHS)
    return RHS;
  if (!RHS)
    return LHS;

  // Create a PHI node for the real part.
  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
  PN->addIncoming(LHS, LHSBlock);
  PN->addIncoming(RHS, RHSBlock);
  return PN;
}

Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
  return Visit(E->getChosenSubExpr());
}

Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
  QualType Ty = VE->getType();

  if (Ty->isVariablyModifiedType())
    CGF.EmitVariablyModifiedType(Ty);

  Address ArgValue = Address::invalid();
  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);

  llvm::Type *ArgTy = ConvertType(VE->getType());

  // If EmitVAArg fails, emit an error.
  if (!ArgPtr.isValid()) {
    CGF.ErrorUnsupported(VE, "va_arg expression");
    return llvm::UndefValue::get(ArgTy);
  }

  // FIXME Volatility.
  llvm::Value *Val = Builder.CreateLoad(ArgPtr);

  // If EmitVAArg promoted the type, we must truncate it.
  if (ArgTy != Val->getType()) {
    if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
      Val = Builder.CreateIntToPtr(Val, ArgTy);
    else
      Val = Builder.CreateTrunc(Val, ArgTy);
  }

  return Val;
}

Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
  return CGF.EmitBlockLiteral(block);
}

// Convert a vec3 to vec4, or vice versa.
static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
                                 Value *Src, unsigned NumElementsDst) {
  static constexpr int Mask[] = {0, 1, 2, -1};
  return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
}

// Create cast instructions for converting LLVM value \p Src to LLVM type \p
// DstTy. \p Src has the same size as \p DstTy. Both are single value types
// but could be scalar or vectors of different lengths, and either can be
// pointer.
// There are 4 cases:
// 1. non-pointer -> non-pointer  : needs 1 bitcast
// 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
// 3. pointer -> non-pointer
//   a) pointer -> intptr_t       : needs 1 ptrtoint
//   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
// 4. non-pointer -> pointer
//   a) intptr_t -> pointer       : needs 1 inttoptr
//   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
// Note: for cases 3b and 4b two casts are required since LLVM casts do not
// allow casting directly between pointer types and non-integer non-pointer
// types.
static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
                                           const llvm::DataLayout &DL,
                                           Value *Src, llvm::Type *DstTy,
                                           StringRef Name = "") {
  auto SrcTy = Src->getType();

  // Case 1.
  if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
    return Builder.CreateBitCast(Src, DstTy, Name);

  // Case 2.
  if (SrcTy->isPointerTy() && DstTy->isPointerTy())
    return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);

  // Case 3.
  if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
    // Case 3b.
    if (!DstTy->isIntegerTy())
      Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
    // Cases 3a and 3b.
    return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
  }

  // Case 4b.
  if (!SrcTy->isIntegerTy())
    Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
  // Cases 4a and 4b.
  return Builder.CreateIntToPtr(Src, DstTy, Name);
}

Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
  llvm::Type *DstTy = ConvertType(E->getType());

  llvm::Type *SrcTy = Src->getType();
  unsigned NumElementsSrc =
      isa<llvm::VectorType>(SrcTy)
          ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
          : 0;
  unsigned NumElementsDst =
      isa<llvm::VectorType>(DstTy)
          ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
          : 0;

  // Use bit vector expansion for ext_vector_type boolean vectors.
  if (E->getType()->isExtVectorBoolType())
    return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");

  // Going from vec3 to non-vec3 is a special case and requires a shuffle
  // vector to get a vec4, then a bitcast if the target type is different.
  if (NumElementsSrc == 3 && NumElementsDst != 3) {
    Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
    Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
                                       DstTy);

    Src->setName("astype");
    return Src;
  }

  // Going from non-vec3 to vec3 is a special case and requires a bitcast
  // to vec4 if the original type is not vec4, then a shuffle vector to
  // get a vec3.
  if (NumElementsSrc != 3 && NumElementsDst == 3) {
    auto *Vec4Ty = llvm::FixedVectorType::get(
        cast<llvm::VectorType>(DstTy)->getElementType(), 4);
    Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
                                       Vec4Ty);

    Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
    Src->setName("astype");
    return Src;
  }

  return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
                                      Src, DstTy, "astype");
}

Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
  return CGF.EmitAtomicExpr(E).getScalarVal();
}

//===----------------------------------------------------------------------===//
//                         Entry Point into this File
//===----------------------------------------------------------------------===//

/// Emit the computation of the specified expression of scalar type, ignoring
/// the result.
Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
  assert(E && hasScalarEvaluationKind(E->getType()) &&
         "Invalid scalar expression to emit");

  return ScalarExprEmitter(*this, IgnoreResultAssign)
      .Visit(const_cast<Expr *>(E));
}

/// Emit a conversion from the specified type to the specified destination type,
/// both of which are LLVM scalar types.
Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
                                             QualType DstTy,
                                             SourceLocation Loc) {
  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
         "Invalid scalar expression to emit");
  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
}

/// Emit a conversion from the specified complex type to the specified
/// destination type, where the destination type is an LLVM scalar type.
Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
                                                      QualType SrcTy,
                                                      QualType DstTy,
                                                      SourceLocation Loc) {
  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
         "Invalid complex -> scalar conversion");
  return ScalarExprEmitter(*this)
      .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
}


Value *
CodeGenFunction::EmitPromotedScalarExpr(const Expr *E,
                                        QualType PromotionType) {
  if (!PromotionType.isNull())
    return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
  else
    return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
}


llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
                        bool isInc, bool isPre) {
  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
}

LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
  // object->isa or (*object).isa
  // Generate code as for: *(Class*)object

  Expr *BaseExpr = E->getBase();
  Address Addr = Address::invalid();
  if (BaseExpr->isPRValue()) {
    llvm::Type *BaseTy =
        ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
    Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
  } else {
    Addr = EmitLValue(BaseExpr).getAddress(*this);
  }

  // Cast the address to Class*.
  Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
  return MakeAddrLValue(Addr, E->getType());
}


LValue CodeGenFunction::EmitCompoundAssignmentLValue(
                                            const CompoundAssignOperator *E) {
  ScalarExprEmitter Scalar(*this);
  Value *Result = nullptr;
  switch (E->getOpcode()) {
#define COMPOUND_OP(Op)                                                       \
    case BO_##Op##Assign:                                                     \
      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
                                             Result)
  COMPOUND_OP(Mul);
  COMPOUND_OP(Div);
  COMPOUND_OP(Rem);
  COMPOUND_OP(Add);
  COMPOUND_OP(Sub);
  COMPOUND_OP(Shl);
  COMPOUND_OP(Shr);
  COMPOUND_OP(And);
  COMPOUND_OP(Xor);
  COMPOUND_OP(Or);
#undef COMPOUND_OP

  case BO_PtrMemD:
  case BO_PtrMemI:
  case BO_Mul:
  case BO_Div:
  case BO_Rem:
  case BO_Add:
  case BO_Sub:
  case BO_Shl:
  case BO_Shr:
  case BO_LT:
  case BO_GT:
  case BO_LE:
  case BO_GE:
  case BO_EQ:
  case BO_NE:
  case BO_Cmp:
  case BO_And:
  case BO_Xor:
  case BO_Or:
  case BO_LAnd:
  case BO_LOr:
  case BO_Assign:
  case BO_Comma:
    llvm_unreachable("Not valid compound assignment operators");
  }

  llvm_unreachable("Unhandled compound assignment operator");
}

struct GEPOffsetAndOverflow {
  // The total (signed) byte offset for the GEP.
  llvm::Value *TotalOffset;
  // The offset overflow flag - true if the total offset overflows.
  llvm::Value *OffsetOverflows;
};

/// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
/// and compute the total offset it applies from it's base pointer BasePtr.
/// Returns offset in bytes and a boolean flag whether an overflow happened
/// during evaluation.
static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
                                                 llvm::LLVMContext &VMContext,
                                                 CodeGenModule &CGM,
                                                 CGBuilderTy &Builder) {
  const auto &DL = CGM.getDataLayout();

  // The total (signed) byte offset for the GEP.
  llvm::Value *TotalOffset = nullptr;

  // Was the GEP already reduced to a constant?
  if (isa<llvm::Constant>(GEPVal)) {
    // Compute the offset by casting both pointers to integers and subtracting:
    // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
    Value *BasePtr_int =
        Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
    Value *GEPVal_int =
        Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
    TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
    return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
  }

  auto *GEP = cast<llvm::GEPOperator>(GEPVal);
  assert(GEP->getPointerOperand() == BasePtr &&
         "BasePtr must be the base of the GEP.");
  assert(GEP->isInBounds() && "Expected inbounds GEP");

  auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());

  // Grab references to the signed add/mul overflow intrinsics for intptr_t.
  auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
  auto *SAddIntrinsic =
      CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
  auto *SMulIntrinsic =
      CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);

  // The offset overflow flag - true if the total offset overflows.
  llvm::Value *OffsetOverflows = Builder.getFalse();

  /// Return the result of the given binary operation.
  auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
                  llvm::Value *RHS) -> llvm::Value * {
    assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");

    // If the operands are constants, return a constant result.
    if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
      if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
        llvm::APInt N;
        bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
                                                  /*Signed=*/true, N);
        if (HasOverflow)
          OffsetOverflows = Builder.getTrue();
        return llvm::ConstantInt::get(VMContext, N);
      }
    }

    // Otherwise, compute the result with checked arithmetic.
    auto *ResultAndOverflow = Builder.CreateCall(
        (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
    OffsetOverflows = Builder.CreateOr(
        Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
    return Builder.CreateExtractValue(ResultAndOverflow, 0);
  };

  // Determine the total byte offset by looking at each GEP operand.
  for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
       GTI != GTE; ++GTI) {
    llvm::Value *LocalOffset;
    auto *Index = GTI.getOperand();
    // Compute the local offset contributed by this indexing step:
    if (auto *STy = GTI.getStructTypeOrNull()) {
      // For struct indexing, the local offset is the byte position of the
      // specified field.
      unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
      LocalOffset = llvm::ConstantInt::get(
          IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
    } else {
      // Otherwise this is array-like indexing. The local offset is the index
      // multiplied by the element size.
      auto *ElementSize = llvm::ConstantInt::get(
          IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
      auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
      LocalOffset = eval(BO_Mul, ElementSize, IndexS);
    }

    // If this is the first offset, set it as the total offset. Otherwise, add
    // the local offset into the running total.
    if (!TotalOffset || TotalOffset == Zero)
      TotalOffset = LocalOffset;
    else
      TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
  }

  return {TotalOffset, OffsetOverflows};
}

Value *
CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
                                        ArrayRef<Value *> IdxList,
                                        bool SignedIndices, bool IsSubtraction,
                                        SourceLocation Loc, const Twine &Name) {
  llvm::Type *PtrTy = Ptr->getType();
  Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);

  // If the pointer overflow sanitizer isn't enabled, do nothing.
  if (!SanOpts.has(SanitizerKind::PointerOverflow))
    return GEPVal;

  // Perform nullptr-and-offset check unless the nullptr is defined.
  bool PerformNullCheck = !NullPointerIsDefined(
      Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
  // Check for overflows unless the GEP got constant-folded,
  // and only in the default address space
  bool PerformOverflowCheck =
      !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;

  if (!(PerformNullCheck || PerformOverflowCheck))
    return GEPVal;

  const auto &DL = CGM.getDataLayout();

  SanitizerScope SanScope(this);
  llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);

  GEPOffsetAndOverflow EvaluatedGEP =
      EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);

  assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
          EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
         "If the offset got constant-folded, we don't expect that there was an "
         "overflow.");

  auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);

  // Common case: if the total offset is zero, and we are using C++ semantics,
  // where nullptr+0 is defined, don't emit a check.
  if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
    return GEPVal;

  // Now that we've computed the total offset, add it to the base pointer (with
  // wrapping semantics).
  auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
  auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);

  llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;

  if (PerformNullCheck) {
    // In C++, if the base pointer evaluates to a null pointer value,
    // the only valid  pointer this inbounds GEP can produce is also
    // a null pointer, so the offset must also evaluate to zero.
    // Likewise, if we have non-zero base pointer, we can not get null pointer
    // as a result, so the offset can not be -intptr_t(BasePtr).
    // In other words, both pointers are either null, or both are non-null,
    // or the behaviour is undefined.
    //
    // C, however, is more strict in this regard, and gives more
    // optimization opportunities: in C, additionally, nullptr+0 is undefined.
    // So both the input to the 'gep inbounds' AND the output must not be null.
    auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
    auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
    auto *Valid =
        CGM.getLangOpts().CPlusPlus
            ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
            : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
    Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
  }

  if (PerformOverflowCheck) {
    // The GEP is valid if:
    // 1) The total offset doesn't overflow, and
    // 2) The sign of the difference between the computed address and the base
    // pointer matches the sign of the total offset.
    llvm::Value *ValidGEP;
    auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
    if (SignedIndices) {
      // GEP is computed as `unsigned base + signed offset`, therefore:
      // * If offset was positive, then the computed pointer can not be
      //   [unsigned] less than the base pointer, unless it overflowed.
      // * If offset was negative, then the computed pointer can not be
      //   [unsigned] greater than the bas pointere, unless it overflowed.
      auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
      auto *PosOrZeroOffset =
          Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
      llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
      ValidGEP =
          Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
    } else if (!IsSubtraction) {
      // GEP is computed as `unsigned base + unsigned offset`,  therefore the
      // computed pointer can not be [unsigned] less than base pointer,
      // unless there was an overflow.
      // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
      ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
    } else {
      // GEP is computed as `unsigned base - unsigned offset`, therefore the
      // computed pointer can not be [unsigned] greater than base pointer,
      // unless there was an overflow.
      // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
      ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
    }
    ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
    Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
  }

  assert(!Checks.empty() && "Should have produced some checks.");

  llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
  // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
  llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
  EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);

  return GEPVal;
}