1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
|
//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with code generation of C++ expressions
//
//===----------------------------------------------------------------------===//
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "CodeGenFunction.h"
#include "ConstantEmitter.h"
#include "TargetInfo.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/IR/Intrinsics.h"
using namespace clang;
using namespace CodeGen;
namespace {
struct MemberCallInfo {
RequiredArgs ReqArgs;
// Number of prefix arguments for the call. Ignores the `this` pointer.
unsigned PrefixSize;
};
}
static MemberCallInfo
commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD,
llvm::Value *This, llvm::Value *ImplicitParam,
QualType ImplicitParamTy, const CallExpr *CE,
CallArgList &Args, CallArgList *RtlArgs) {
auto *MD = cast<CXXMethodDecl>(GD.getDecl());
assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
isa<CXXOperatorCallExpr>(CE));
assert(MD->isInstance() &&
"Trying to emit a member or operator call expr on a static method!");
// Push the this ptr.
const CXXRecordDecl *RD =
CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD);
Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
// If there is an implicit parameter (e.g. VTT), emit it.
if (ImplicitParam) {
Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
}
const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
unsigned PrefixSize = Args.size() - 1;
// And the rest of the call args.
if (RtlArgs) {
// Special case: if the caller emitted the arguments right-to-left already
// (prior to emitting the *this argument), we're done. This happens for
// assignment operators.
Args.addFrom(*RtlArgs);
} else if (CE) {
// Special case: skip first argument of CXXOperatorCall (it is "this").
unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
CE->getDirectCallee());
} else {
assert(
FPT->getNumParams() == 0 &&
"No CallExpr specified for function with non-zero number of arguments");
}
return {required, PrefixSize};
}
RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
const CXXMethodDecl *MD, const CGCallee &Callee,
ReturnValueSlot ReturnValue,
llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
const CallExpr *CE, CallArgList *RtlArgs) {
const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
CallArgList Args;
MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
*this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
CE && CE == MustTailCall,
CE ? CE->getExprLoc() : SourceLocation());
}
RValue CodeGenFunction::EmitCXXDestructorCall(
GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
assert(!ThisTy.isNull());
assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
"Pointer/Object mixup");
LangAS SrcAS = ThisTy.getAddressSpace();
LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
if (SrcAS != DstAS) {
QualType DstTy = DtorDecl->getThisType();
llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
NewType);
}
CallArgList Args;
commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam,
ImplicitParamTy, CE, Args, nullptr);
return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
CE ? CE->getExprLoc() : SourceLocation{});
}
RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
const CXXPseudoDestructorExpr *E) {
QualType DestroyedType = E->getDestroyedType();
if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
// Automatic Reference Counting:
// If the pseudo-expression names a retainable object with weak or
// strong lifetime, the object shall be released.
Expr *BaseExpr = E->getBase();
Address BaseValue = Address::invalid();
Qualifiers BaseQuals;
// If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
if (E->isArrow()) {
BaseValue = EmitPointerWithAlignment(BaseExpr);
const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
BaseQuals = PTy->getPointeeType().getQualifiers();
} else {
LValue BaseLV = EmitLValue(BaseExpr);
BaseValue = BaseLV.getAddress(*this);
QualType BaseTy = BaseExpr->getType();
BaseQuals = BaseTy.getQualifiers();
}
switch (DestroyedType.getObjCLifetime()) {
case Qualifiers::OCL_None:
case Qualifiers::OCL_ExplicitNone:
case Qualifiers::OCL_Autoreleasing:
break;
case Qualifiers::OCL_Strong:
EmitARCRelease(Builder.CreateLoad(BaseValue,
DestroyedType.isVolatileQualified()),
ARCPreciseLifetime);
break;
case Qualifiers::OCL_Weak:
EmitARCDestroyWeak(BaseValue);
break;
}
} else {
// C++ [expr.pseudo]p1:
// The result shall only be used as the operand for the function call
// operator (), and the result of such a call has type void. The only
// effect is the evaluation of the postfix-expression before the dot or
// arrow.
EmitIgnoredExpr(E->getBase());
}
return RValue::get(nullptr);
}
static CXXRecordDecl *getCXXRecord(const Expr *E) {
QualType T = E->getType();
if (const PointerType *PTy = T->getAs<PointerType>())
T = PTy->getPointeeType();
const RecordType *Ty = T->castAs<RecordType>();
return cast<CXXRecordDecl>(Ty->getDecl());
}
// Note: This function also emit constructor calls to support a MSVC
// extensions allowing explicit constructor function call.
RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
ReturnValueSlot ReturnValue) {
const Expr *callee = CE->getCallee()->IgnoreParens();
if (isa<BinaryOperator>(callee))
return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
const MemberExpr *ME = cast<MemberExpr>(callee);
const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
if (MD->isStatic()) {
// The method is static, emit it as we would a regular call.
CGCallee callee =
CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
ReturnValue);
}
bool HasQualifier = ME->hasQualifier();
NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
bool IsArrow = ME->isArrow();
const Expr *Base = ME->getBase();
return EmitCXXMemberOrOperatorMemberCallExpr(
CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
}
RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
const Expr *Base) {
assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
// Compute the object pointer.
bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
const CXXMethodDecl *DevirtualizedMethod = nullptr;
if (CanUseVirtualCall &&
MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
assert(DevirtualizedMethod);
const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
const Expr *Inner = Base->IgnoreParenBaseCasts();
if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
MD->getReturnType().getCanonicalType())
// If the return types are not the same, this might be a case where more
// code needs to run to compensate for it. For example, the derived
// method might return a type that inherits form from the return
// type of MD and has a prefix.
// For now we just avoid devirtualizing these covariant cases.
DevirtualizedMethod = nullptr;
else if (getCXXRecord(Inner) == DevirtualizedClass)
// If the class of the Inner expression is where the dynamic method
// is defined, build the this pointer from it.
Base = Inner;
else if (getCXXRecord(Base) != DevirtualizedClass) {
// If the method is defined in a class that is not the best dynamic
// one or the one of the full expression, we would have to build
// a derived-to-base cast to compute the correct this pointer, but
// we don't have support for that yet, so do a virtual call.
DevirtualizedMethod = nullptr;
}
}
bool TrivialForCodegen =
MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
bool TrivialAssignment =
TrivialForCodegen &&
(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
!MD->getParent()->mayInsertExtraPadding();
// C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
// operator before the LHS.
CallArgList RtlArgStorage;
CallArgList *RtlArgs = nullptr;
LValue TrivialAssignmentRHS;
if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
if (OCE->isAssignmentOp()) {
if (TrivialAssignment) {
TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
} else {
RtlArgs = &RtlArgStorage;
EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
/*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
}
}
}
LValue This;
if (IsArrow) {
LValueBaseInfo BaseInfo;
TBAAAccessInfo TBAAInfo;
Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
} else {
This = EmitLValue(Base);
}
if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
// This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
// constructing a new complete object of type Ctor.
assert(!RtlArgs);
assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
CallArgList Args;
commonEmitCXXMemberOrOperatorCall(
*this, {Ctor, Ctor_Complete}, This.getPointer(*this),
/*ImplicitParam=*/nullptr,
/*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
/*Delegating=*/false, This.getAddress(*this), Args,
AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
/*NewPointerIsChecked=*/false);
return RValue::get(nullptr);
}
if (TrivialForCodegen) {
if (isa<CXXDestructorDecl>(MD))
return RValue::get(nullptr);
if (TrivialAssignment) {
// We don't like to generate the trivial copy/move assignment operator
// when it isn't necessary; just produce the proper effect here.
// It's important that we use the result of EmitLValue here rather than
// emitting call arguments, in order to preserve TBAA information from
// the RHS.
LValue RHS = isa<CXXOperatorCallExpr>(CE)
? TrivialAssignmentRHS
: EmitLValue(*CE->arg_begin());
EmitAggregateAssign(This, RHS, CE->getType());
return RValue::get(This.getPointer(*this));
}
assert(MD->getParent()->mayInsertExtraPadding() &&
"unknown trivial member function");
}
// Compute the function type we're calling.
const CXXMethodDecl *CalleeDecl =
DevirtualizedMethod ? DevirtualizedMethod : MD;
const CGFunctionInfo *FInfo = nullptr;
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
GlobalDecl(Dtor, Dtor_Complete));
else
FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
// C++11 [class.mfct.non-static]p2:
// If a non-static member function of a class X is called for an object that
// is not of type X, or of a type derived from X, the behavior is undefined.
SourceLocation CallLoc;
ASTContext &C = getContext();
if (CE)
CallLoc = CE->getExprLoc();
SanitizerSet SkippedChecks;
if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
auto *IOA = CMCE->getImplicitObjectArgument();
bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
if (IsImplicitObjectCXXThis)
SkippedChecks.set(SanitizerKind::Alignment, true);
if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
SkippedChecks.set(SanitizerKind::Null, true);
}
EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
This.getPointer(*this),
C.getRecordType(CalleeDecl->getParent()),
/*Alignment=*/CharUnits::Zero(), SkippedChecks);
// C++ [class.virtual]p12:
// Explicit qualification with the scope operator (5.1) suppresses the
// virtual call mechanism.
//
// We also don't emit a virtual call if the base expression has a record type
// because then we know what the type is.
bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
assert(CE->arg_begin() == CE->arg_end() &&
"Destructor shouldn't have explicit parameters");
assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
if (UseVirtualCall) {
CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
This.getAddress(*this),
cast<CXXMemberCallExpr>(CE));
} else {
GlobalDecl GD(Dtor, Dtor_Complete);
CGCallee Callee;
if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
else if (!DevirtualizedMethod)
Callee =
CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
else {
Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
}
QualType ThisTy =
IsArrow ? Base->getType()->getPointeeType() : Base->getType();
EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
/*ImplicitParam=*/nullptr,
/*ImplicitParamTy=*/QualType(), CE);
}
return RValue::get(nullptr);
}
// FIXME: Uses of 'MD' past this point need to be audited. We may need to use
// 'CalleeDecl' instead.
CGCallee Callee;
if (UseVirtualCall) {
Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
} else {
if (SanOpts.has(SanitizerKind::CFINVCall) &&
MD->getParent()->isDynamicClass()) {
llvm::Value *VTable;
const CXXRecordDecl *RD;
std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
*this, This.getAddress(*this), CalleeDecl->getParent());
EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
}
if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
else if (!DevirtualizedMethod)
Callee =
CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
else {
Callee =
CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
GlobalDecl(DevirtualizedMethod));
}
}
if (MD->isVirtual()) {
Address NewThisAddr =
CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
*this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
This.setAddress(NewThisAddr);
}
return EmitCXXMemberOrOperatorCall(
CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
/*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
}
RValue
CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
ReturnValueSlot ReturnValue) {
const BinaryOperator *BO =
cast<BinaryOperator>(E->getCallee()->IgnoreParens());
const Expr *BaseExpr = BO->getLHS();
const Expr *MemFnExpr = BO->getRHS();
const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
const auto *RD =
cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
// Emit the 'this' pointer.
Address This = Address::invalid();
if (BO->getOpcode() == BO_PtrMemI)
This = EmitPointerWithAlignment(BaseExpr);
else
This = EmitLValue(BaseExpr).getAddress(*this);
EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
QualType(MPT->getClass(), 0));
// Get the member function pointer.
llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
// Ask the ABI to load the callee. Note that This is modified.
llvm::Value *ThisPtrForCall = nullptr;
CGCallee Callee =
CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
ThisPtrForCall, MemFnPtr, MPT);
CallArgList Args;
QualType ThisType =
getContext().getPointerType(getContext().getTagDeclType(RD));
// Push the this ptr.
Args.add(RValue::get(ThisPtrForCall), ThisType);
RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
// And the rest of the call args
EmitCallArgs(Args, FPT, E->arguments());
return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
/*PrefixSize=*/0),
Callee, ReturnValue, Args, nullptr, E == MustTailCall,
E->getExprLoc());
}
RValue
CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
const CXXMethodDecl *MD,
ReturnValueSlot ReturnValue) {
assert(MD->isInstance() &&
"Trying to emit a member call expr on a static method!");
return EmitCXXMemberOrOperatorMemberCallExpr(
E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
/*IsArrow=*/false, E->getArg(0));
}
RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
ReturnValueSlot ReturnValue) {
return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
}
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
Address DestPtr,
const CXXRecordDecl *Base) {
if (Base->isEmpty())
return;
DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
CharUnits NVSize = Layout.getNonVirtualSize();
// We cannot simply zero-initialize the entire base sub-object if vbptrs are
// present, they are initialized by the most derived class before calling the
// constructor.
SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
Stores.emplace_back(CharUnits::Zero(), NVSize);
// Each store is split by the existence of a vbptr.
CharUnits VBPtrWidth = CGF.getPointerSize();
std::vector<CharUnits> VBPtrOffsets =
CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
for (CharUnits VBPtrOffset : VBPtrOffsets) {
// Stop before we hit any virtual base pointers located in virtual bases.
if (VBPtrOffset >= NVSize)
break;
std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
CharUnits LastStoreOffset = LastStore.first;
CharUnits LastStoreSize = LastStore.second;
CharUnits SplitBeforeOffset = LastStoreOffset;
CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
assert(!SplitBeforeSize.isNegative() && "negative store size!");
if (!SplitBeforeSize.isZero())
Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
assert(!SplitAfterSize.isNegative() && "negative store size!");
if (!SplitAfterSize.isZero())
Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
}
// If the type contains a pointer to data member we can't memset it to zero.
// Instead, create a null constant and copy it to the destination.
// TODO: there are other patterns besides zero that we can usefully memset,
// like -1, which happens to be the pattern used by member-pointers.
// TODO: isZeroInitializable can be over-conservative in the case where a
// virtual base contains a member pointer.
llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
if (!NullConstantForBase->isNullValue()) {
llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
CGF.CGM.getModule(), NullConstantForBase->getType(),
/*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
NullConstantForBase, Twine());
CharUnits Align =
std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
NullVariable->setAlignment(Align.getAsAlign());
Address SrcPtr =
Address(CGF.EmitCastToVoidPtr(NullVariable), CGF.Int8Ty, Align);
// Get and call the appropriate llvm.memcpy overload.
for (std::pair<CharUnits, CharUnits> Store : Stores) {
CharUnits StoreOffset = Store.first;
CharUnits StoreSize = Store.second;
llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
CGF.Builder.CreateMemCpy(
CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
StoreSizeVal);
}
// Otherwise, just memset the whole thing to zero. This is legal
// because in LLVM, all default initializers (other than the ones we just
// handled above) are guaranteed to have a bit pattern of all zeros.
} else {
for (std::pair<CharUnits, CharUnits> Store : Stores) {
CharUnits StoreOffset = Store.first;
CharUnits StoreSize = Store.second;
llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
CGF.Builder.CreateMemSet(
CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
CGF.Builder.getInt8(0), StoreSizeVal);
}
}
}
void
CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
AggValueSlot Dest) {
assert(!Dest.isIgnored() && "Must have a destination!");
const CXXConstructorDecl *CD = E->getConstructor();
// If we require zero initialization before (or instead of) calling the
// constructor, as can be the case with a non-user-provided default
// constructor, emit the zero initialization now, unless destination is
// already zeroed.
if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
switch (E->getConstructionKind()) {
case CXXConstructExpr::CK_Delegating:
case CXXConstructExpr::CK_Complete:
EmitNullInitialization(Dest.getAddress(), E->getType());
break;
case CXXConstructExpr::CK_VirtualBase:
case CXXConstructExpr::CK_NonVirtualBase:
EmitNullBaseClassInitialization(*this, Dest.getAddress(),
CD->getParent());
break;
}
}
// If this is a call to a trivial default constructor, do nothing.
if (CD->isTrivial() && CD->isDefaultConstructor())
return;
// Elide the constructor if we're constructing from a temporary.
if (getLangOpts().ElideConstructors && E->isElidable()) {
// FIXME: This only handles the simplest case, where the source object
// is passed directly as the first argument to the constructor.
// This should also handle stepping though implicit casts and
// conversion sequences which involve two steps, with a
// conversion operator followed by a converting constructor.
const Expr *SrcObj = E->getArg(0);
assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
assert(
getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
EmitAggExpr(SrcObj, Dest);
return;
}
if (const ArrayType *arrayType
= getContext().getAsArrayType(E->getType())) {
EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
Dest.isSanitizerChecked());
} else {
CXXCtorType Type = Ctor_Complete;
bool ForVirtualBase = false;
bool Delegating = false;
switch (E->getConstructionKind()) {
case CXXConstructExpr::CK_Delegating:
// We should be emitting a constructor; GlobalDecl will assert this
Type = CurGD.getCtorType();
Delegating = true;
break;
case CXXConstructExpr::CK_Complete:
Type = Ctor_Complete;
break;
case CXXConstructExpr::CK_VirtualBase:
ForVirtualBase = true;
[[fallthrough]];
case CXXConstructExpr::CK_NonVirtualBase:
Type = Ctor_Base;
}
// Call the constructor.
EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
}
}
void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
const Expr *Exp) {
if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
Exp = E->getSubExpr();
assert(isa<CXXConstructExpr>(Exp) &&
"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
const CXXConstructorDecl *CD = E->getConstructor();
RunCleanupsScope Scope(*this);
// If we require zero initialization before (or instead of) calling the
// constructor, as can be the case with a non-user-provided default
// constructor, emit the zero initialization now.
// FIXME. Do I still need this for a copy ctor synthesis?
if (E->requiresZeroInitialization())
EmitNullInitialization(Dest, E->getType());
assert(!getContext().getAsConstantArrayType(E->getType())
&& "EmitSynthesizedCXXCopyCtor - Copied-in Array");
EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
}
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
const CXXNewExpr *E) {
if (!E->isArray())
return CharUnits::Zero();
// No cookie is required if the operator new[] being used is the
// reserved placement operator new[].
if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
return CharUnits::Zero();
return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
}
static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
const CXXNewExpr *e,
unsigned minElements,
llvm::Value *&numElements,
llvm::Value *&sizeWithoutCookie) {
QualType type = e->getAllocatedType();
if (!e->isArray()) {
CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
sizeWithoutCookie
= llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
return sizeWithoutCookie;
}
// The width of size_t.
unsigned sizeWidth = CGF.SizeTy->getBitWidth();
// Figure out the cookie size.
llvm::APInt cookieSize(sizeWidth,
CalculateCookiePadding(CGF, e).getQuantity());
// Emit the array size expression.
// We multiply the size of all dimensions for NumElements.
// e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
numElements =
ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
if (!numElements)
numElements = CGF.EmitScalarExpr(*e->getArraySize());
assert(isa<llvm::IntegerType>(numElements->getType()));
// The number of elements can be have an arbitrary integer type;
// essentially, we need to multiply it by a constant factor, add a
// cookie size, and verify that the result is representable as a
// size_t. That's just a gloss, though, and it's wrong in one
// important way: if the count is negative, it's an error even if
// the cookie size would bring the total size >= 0.
bool isSigned
= (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
llvm::IntegerType *numElementsType
= cast<llvm::IntegerType>(numElements->getType());
unsigned numElementsWidth = numElementsType->getBitWidth();
// Compute the constant factor.
llvm::APInt arraySizeMultiplier(sizeWidth, 1);
while (const ConstantArrayType *CAT
= CGF.getContext().getAsConstantArrayType(type)) {
type = CAT->getElementType();
arraySizeMultiplier *= CAT->getSize();
}
CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
typeSizeMultiplier *= arraySizeMultiplier;
// This will be a size_t.
llvm::Value *size;
// If someone is doing 'new int[42]' there is no need to do a dynamic check.
// Don't bloat the -O0 code.
if (llvm::ConstantInt *numElementsC =
dyn_cast<llvm::ConstantInt>(numElements)) {
const llvm::APInt &count = numElementsC->getValue();
bool hasAnyOverflow = false;
// If 'count' was a negative number, it's an overflow.
if (isSigned && count.isNegative())
hasAnyOverflow = true;
// We want to do all this arithmetic in size_t. If numElements is
// wider than that, check whether it's already too big, and if so,
// overflow.
else if (numElementsWidth > sizeWidth &&
numElementsWidth - sizeWidth > count.countLeadingZeros())
hasAnyOverflow = true;
// Okay, compute a count at the right width.
llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
// If there is a brace-initializer, we cannot allocate fewer elements than
// there are initializers. If we do, that's treated like an overflow.
if (adjustedCount.ult(minElements))
hasAnyOverflow = true;
// Scale numElements by that. This might overflow, but we don't
// care because it only overflows if allocationSize does, too, and
// if that overflows then we shouldn't use this.
numElements = llvm::ConstantInt::get(CGF.SizeTy,
adjustedCount * arraySizeMultiplier);
// Compute the size before cookie, and track whether it overflowed.
bool overflow;
llvm::APInt allocationSize
= adjustedCount.umul_ov(typeSizeMultiplier, overflow);
hasAnyOverflow |= overflow;
// Add in the cookie, and check whether it's overflowed.
if (cookieSize != 0) {
// Save the current size without a cookie. This shouldn't be
// used if there was overflow.
sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
hasAnyOverflow |= overflow;
}
// On overflow, produce a -1 so operator new will fail.
if (hasAnyOverflow) {
size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
} else {
size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
}
// Otherwise, we might need to use the overflow intrinsics.
} else {
// There are up to five conditions we need to test for:
// 1) if isSigned, we need to check whether numElements is negative;
// 2) if numElementsWidth > sizeWidth, we need to check whether
// numElements is larger than something representable in size_t;
// 3) if minElements > 0, we need to check whether numElements is smaller
// than that.
// 4) we need to compute
// sizeWithoutCookie := numElements * typeSizeMultiplier
// and check whether it overflows; and
// 5) if we need a cookie, we need to compute
// size := sizeWithoutCookie + cookieSize
// and check whether it overflows.
llvm::Value *hasOverflow = nullptr;
// If numElementsWidth > sizeWidth, then one way or another, we're
// going to have to do a comparison for (2), and this happens to
// take care of (1), too.
if (numElementsWidth > sizeWidth) {
llvm::APInt threshold(numElementsWidth, 1);
threshold <<= sizeWidth;
llvm::Value *thresholdV
= llvm::ConstantInt::get(numElementsType, threshold);
hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
// Otherwise, if we're signed, we want to sext up to size_t.
} else if (isSigned) {
if (numElementsWidth < sizeWidth)
numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
// If there's a non-1 type size multiplier, then we can do the
// signedness check at the same time as we do the multiply
// because a negative number times anything will cause an
// unsigned overflow. Otherwise, we have to do it here. But at least
// in this case, we can subsume the >= minElements check.
if (typeSizeMultiplier == 1)
hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
llvm::ConstantInt::get(CGF.SizeTy, minElements));
// Otherwise, zext up to size_t if necessary.
} else if (numElementsWidth < sizeWidth) {
numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
}
assert(numElements->getType() == CGF.SizeTy);
if (minElements) {
// Don't allow allocation of fewer elements than we have initializers.
if (!hasOverflow) {
hasOverflow = CGF.Builder.CreateICmpULT(numElements,
llvm::ConstantInt::get(CGF.SizeTy, minElements));
} else if (numElementsWidth > sizeWidth) {
// The other existing overflow subsumes this check.
// We do an unsigned comparison, since any signed value < -1 is
// taken care of either above or below.
hasOverflow = CGF.Builder.CreateOr(hasOverflow,
CGF.Builder.CreateICmpULT(numElements,
llvm::ConstantInt::get(CGF.SizeTy, minElements)));
}
}
size = numElements;
// Multiply by the type size if necessary. This multiplier
// includes all the factors for nested arrays.
//
// This step also causes numElements to be scaled up by the
// nested-array factor if necessary. Overflow on this computation
// can be ignored because the result shouldn't be used if
// allocation fails.
if (typeSizeMultiplier != 1) {
llvm::Function *umul_with_overflow
= CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
llvm::Value *tsmV =
llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
llvm::Value *result =
CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
if (hasOverflow)
hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
else
hasOverflow = overflowed;
size = CGF.Builder.CreateExtractValue(result, 0);
// Also scale up numElements by the array size multiplier.
if (arraySizeMultiplier != 1) {
// If the base element type size is 1, then we can re-use the
// multiply we just did.
if (typeSize.isOne()) {
assert(arraySizeMultiplier == typeSizeMultiplier);
numElements = size;
// Otherwise we need a separate multiply.
} else {
llvm::Value *asmV =
llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
numElements = CGF.Builder.CreateMul(numElements, asmV);
}
}
} else {
// numElements doesn't need to be scaled.
assert(arraySizeMultiplier == 1);
}
// Add in the cookie size if necessary.
if (cookieSize != 0) {
sizeWithoutCookie = size;
llvm::Function *uadd_with_overflow
= CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
llvm::Value *result =
CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
if (hasOverflow)
hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
else
hasOverflow = overflowed;
size = CGF.Builder.CreateExtractValue(result, 0);
}
// If we had any possibility of dynamic overflow, make a select to
// overwrite 'size' with an all-ones value, which should cause
// operator new to throw.
if (hasOverflow)
size = CGF.Builder.CreateSelect(hasOverflow,
llvm::Constant::getAllOnesValue(CGF.SizeTy),
size);
}
if (cookieSize == 0)
sizeWithoutCookie = size;
else
assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
return size;
}
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
QualType AllocType, Address NewPtr,
AggValueSlot::Overlap_t MayOverlap) {
// FIXME: Refactor with EmitExprAsInit.
switch (CGF.getEvaluationKind(AllocType)) {
case TEK_Scalar:
CGF.EmitScalarInit(Init, nullptr,
CGF.MakeAddrLValue(NewPtr, AllocType), false);
return;
case TEK_Complex:
CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
/*isInit*/ true);
return;
case TEK_Aggregate: {
AggValueSlot Slot
= AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
AggValueSlot::IsDestructed,
AggValueSlot::DoesNotNeedGCBarriers,
AggValueSlot::IsNotAliased,
MayOverlap, AggValueSlot::IsNotZeroed,
AggValueSlot::IsSanitizerChecked);
CGF.EmitAggExpr(Init, Slot);
return;
}
}
llvm_unreachable("bad evaluation kind");
}
void CodeGenFunction::EmitNewArrayInitializer(
const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
Address BeginPtr, llvm::Value *NumElements,
llvm::Value *AllocSizeWithoutCookie) {
// If we have a type with trivial initialization and no initializer,
// there's nothing to do.
if (!E->hasInitializer())
return;
Address CurPtr = BeginPtr;
unsigned InitListElements = 0;
const Expr *Init = E->getInitializer();
Address EndOfInit = Address::invalid();
QualType::DestructionKind DtorKind = ElementType.isDestructedType();
EHScopeStack::stable_iterator Cleanup;
llvm::Instruction *CleanupDominator = nullptr;
CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
CharUnits ElementAlign =
BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
// Attempt to perform zero-initialization using memset.
auto TryMemsetInitialization = [&]() -> bool {
// FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
// we can initialize with a memset to -1.
if (!CGM.getTypes().isZeroInitializable(ElementType))
return false;
// Optimization: since zero initialization will just set the memory
// to all zeroes, generate a single memset to do it in one shot.
// Subtract out the size of any elements we've already initialized.
auto *RemainingSize = AllocSizeWithoutCookie;
if (InitListElements) {
// We know this can't overflow; we check this when doing the allocation.
auto *InitializedSize = llvm::ConstantInt::get(
RemainingSize->getType(),
getContext().getTypeSizeInChars(ElementType).getQuantity() *
InitListElements);
RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
}
// Create the memset.
Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
return true;
};
// If the initializer is an initializer list, first do the explicit elements.
if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
// Initializing from a (braced) string literal is a special case; the init
// list element does not initialize a (single) array element.
if (ILE->isStringLiteralInit()) {
// Initialize the initial portion of length equal to that of the string
// literal. The allocation must be for at least this much; we emitted a
// check for that earlier.
AggValueSlot Slot =
AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
AggValueSlot::IsDestructed,
AggValueSlot::DoesNotNeedGCBarriers,
AggValueSlot::IsNotAliased,
AggValueSlot::DoesNotOverlap,
AggValueSlot::IsNotZeroed,
AggValueSlot::IsSanitizerChecked);
EmitAggExpr(ILE->getInit(0), Slot);
// Move past these elements.
InitListElements =
cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
->getSize().getZExtValue();
CurPtr = Builder.CreateConstInBoundsGEP(
CurPtr, InitListElements, "string.init.end");
// Zero out the rest, if any remain.
llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
bool OK = TryMemsetInitialization();
(void)OK;
assert(OK && "couldn't memset character type?");
}
return;
}
InitListElements = ILE->getNumInits();
// If this is a multi-dimensional array new, we will initialize multiple
// elements with each init list element.
QualType AllocType = E->getAllocatedType();
if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
AllocType->getAsArrayTypeUnsafe())) {
ElementTy = ConvertTypeForMem(AllocType);
CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
InitListElements *= getContext().getConstantArrayElementCount(CAT);
}
// Enter a partial-destruction Cleanup if necessary.
if (needsEHCleanup(DtorKind)) {
// In principle we could tell the Cleanup where we are more
// directly, but the control flow can get so varied here that it
// would actually be quite complex. Therefore we go through an
// alloca.
EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
"array.init.end");
CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
ElementType, ElementAlign,
getDestroyer(DtorKind));
Cleanup = EHStack.stable_begin();
}
CharUnits StartAlign = CurPtr.getAlignment();
for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
// Tell the cleanup that it needs to destroy up to this
// element. TODO: some of these stores can be trivially
// observed to be unnecessary.
if (EndOfInit.isValid()) {
auto FinishedPtr =
Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
Builder.CreateStore(FinishedPtr, EndOfInit);
}
// FIXME: If the last initializer is an incomplete initializer list for
// an array, and we have an array filler, we can fold together the two
// initialization loops.
StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
ILE->getInit(i)->getType(), CurPtr,
AggValueSlot::DoesNotOverlap);
CurPtr = Address(Builder.CreateInBoundsGEP(
CurPtr.getElementType(), CurPtr.getPointer(),
Builder.getSize(1), "array.exp.next"),
CurPtr.getElementType(),
StartAlign.alignmentAtOffset((i + 1) * ElementSize));
}
// The remaining elements are filled with the array filler expression.
Init = ILE->getArrayFiller();
// Extract the initializer for the individual array elements by pulling
// out the array filler from all the nested initializer lists. This avoids
// generating a nested loop for the initialization.
while (Init && Init->getType()->isConstantArrayType()) {
auto *SubILE = dyn_cast<InitListExpr>(Init);
if (!SubILE)
break;
assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
Init = SubILE->getArrayFiller();
}
// Switch back to initializing one base element at a time.
CurPtr = Builder.CreateElementBitCast(CurPtr, BeginPtr.getElementType());
}
// If all elements have already been initialized, skip any further
// initialization.
llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
// If there was a Cleanup, deactivate it.
if (CleanupDominator)
DeactivateCleanupBlock(Cleanup, CleanupDominator);
return;
}
assert(Init && "have trailing elements to initialize but no initializer");
// If this is a constructor call, try to optimize it out, and failing that
// emit a single loop to initialize all remaining elements.
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
CXXConstructorDecl *Ctor = CCE->getConstructor();
if (Ctor->isTrivial()) {
// If new expression did not specify value-initialization, then there
// is no initialization.
if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
return;
if (TryMemsetInitialization())
return;
}
// Store the new Cleanup position for irregular Cleanups.
//
// FIXME: Share this cleanup with the constructor call emission rather than
// having it create a cleanup of its own.
if (EndOfInit.isValid())
Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
// Emit a constructor call loop to initialize the remaining elements.
if (InitListElements)
NumElements = Builder.CreateSub(
NumElements,
llvm::ConstantInt::get(NumElements->getType(), InitListElements));
EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
/*NewPointerIsChecked*/true,
CCE->requiresZeroInitialization());
return;
}
// If this is value-initialization, we can usually use memset.
ImplicitValueInitExpr IVIE(ElementType);
if (isa<ImplicitValueInitExpr>(Init)) {
if (TryMemsetInitialization())
return;
// Switch to an ImplicitValueInitExpr for the element type. This handles
// only one case: multidimensional array new of pointers to members. In
// all other cases, we already have an initializer for the array element.
Init = &IVIE;
}
// At this point we should have found an initializer for the individual
// elements of the array.
assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
"got wrong type of element to initialize");
// If we have an empty initializer list, we can usually use memset.
if (auto *ILE = dyn_cast<InitListExpr>(Init))
if (ILE->getNumInits() == 0 && TryMemsetInitialization())
return;
// If we have a struct whose every field is value-initialized, we can
// usually use memset.
if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
if (RType->getDecl()->isStruct()) {
unsigned NumElements = 0;
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
NumElements = CXXRD->getNumBases();
for (auto *Field : RType->getDecl()->fields())
if (!Field->isUnnamedBitfield())
++NumElements;
// FIXME: Recurse into nested InitListExprs.
if (ILE->getNumInits() == NumElements)
for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
--NumElements;
if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
return;
}
}
}
// Create the loop blocks.
llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
// Find the end of the array, hoisted out of the loop.
llvm::Value *EndPtr =
Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(),
NumElements, "array.end");
// If the number of elements isn't constant, we have to now check if there is
// anything left to initialize.
if (!ConstNum) {
llvm::Value *IsEmpty =
Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
}
// Enter the loop.
EmitBlock(LoopBB);
// Set up the current-element phi.
llvm::PHINode *CurPtrPhi =
Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
// Store the new Cleanup position for irregular Cleanups.
if (EndOfInit.isValid())
Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
// Enter a partial-destruction Cleanup if necessary.
if (!CleanupDominator && needsEHCleanup(DtorKind)) {
pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
ElementType, ElementAlign,
getDestroyer(DtorKind));
Cleanup = EHStack.stable_begin();
CleanupDominator = Builder.CreateUnreachable();
}
// Emit the initializer into this element.
StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
AggValueSlot::DoesNotOverlap);
// Leave the Cleanup if we entered one.
if (CleanupDominator) {
DeactivateCleanupBlock(Cleanup, CleanupDominator);
CleanupDominator->eraseFromParent();
}
// Advance to the next element by adjusting the pointer type as necessary.
llvm::Value *NextPtr =
Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
"array.next");
// Check whether we've gotten to the end of the array and, if so,
// exit the loop.
llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
EmitBlock(ContBB);
}
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
QualType ElementType, llvm::Type *ElementTy,
Address NewPtr, llvm::Value *NumElements,
llvm::Value *AllocSizeWithoutCookie) {
ApplyDebugLocation DL(CGF, E);
if (E->isArray())
CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
AllocSizeWithoutCookie);
else if (const Expr *Init = E->getInitializer())
StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
AggValueSlot::DoesNotOverlap);
}
/// Emit a call to an operator new or operator delete function, as implicitly
/// created by new-expressions and delete-expressions.
static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
const FunctionDecl *CalleeDecl,
const FunctionProtoType *CalleeType,
const CallArgList &Args) {
llvm::CallBase *CallOrInvoke;
llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
RValue RV =
CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
Args, CalleeType, /*ChainCall=*/false),
Callee, ReturnValueSlot(), Args, &CallOrInvoke);
/// C++1y [expr.new]p10:
/// [In a new-expression,] an implementation is allowed to omit a call
/// to a replaceable global allocation function.
///
/// We model such elidable calls with the 'builtin' attribute.
llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
}
return RV;
}
RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
const CallExpr *TheCall,
bool IsDelete) {
CallArgList Args;
EmitCallArgs(Args, Type, TheCall->arguments());
// Find the allocation or deallocation function that we're calling.
ASTContext &Ctx = getContext();
DeclarationName Name = Ctx.DeclarationNames
.getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
if (auto *FD = dyn_cast<FunctionDecl>(Decl))
if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
return EmitNewDeleteCall(*this, FD, Type, Args);
llvm_unreachable("predeclared global operator new/delete is missing");
}
namespace {
/// The parameters to pass to a usual operator delete.
struct UsualDeleteParams {
bool DestroyingDelete = false;
bool Size = false;
bool Alignment = false;
};
}
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
UsualDeleteParams Params;
const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
// The first argument is always a void*.
++AI;
// The next parameter may be a std::destroying_delete_t.
if (FD->isDestroyingOperatorDelete()) {
Params.DestroyingDelete = true;
assert(AI != AE);
++AI;
}
// Figure out what other parameters we should be implicitly passing.
if (AI != AE && (*AI)->isIntegerType()) {
Params.Size = true;
++AI;
}
if (AI != AE && (*AI)->isAlignValT()) {
Params.Alignment = true;
++AI;
}
assert(AI == AE && "unexpected usual deallocation function parameter");
return Params;
}
namespace {
/// A cleanup to call the given 'operator delete' function upon abnormal
/// exit from a new expression. Templated on a traits type that deals with
/// ensuring that the arguments dominate the cleanup if necessary.
template<typename Traits>
class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
/// Type used to hold llvm::Value*s.
typedef typename Traits::ValueTy ValueTy;
/// Type used to hold RValues.
typedef typename Traits::RValueTy RValueTy;
struct PlacementArg {
RValueTy ArgValue;
QualType ArgType;
};
unsigned NumPlacementArgs : 31;
unsigned PassAlignmentToPlacementDelete : 1;
const FunctionDecl *OperatorDelete;
ValueTy Ptr;
ValueTy AllocSize;
CharUnits AllocAlign;
PlacementArg *getPlacementArgs() {
return reinterpret_cast<PlacementArg *>(this + 1);
}
public:
static size_t getExtraSize(size_t NumPlacementArgs) {
return NumPlacementArgs * sizeof(PlacementArg);
}
CallDeleteDuringNew(size_t NumPlacementArgs,
const FunctionDecl *OperatorDelete, ValueTy Ptr,
ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
CharUnits AllocAlign)
: NumPlacementArgs(NumPlacementArgs),
PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
AllocAlign(AllocAlign) {}
void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
assert(I < NumPlacementArgs && "index out of range");
getPlacementArgs()[I] = {Arg, Type};
}
void Emit(CodeGenFunction &CGF, Flags flags) override {
const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
CallArgList DeleteArgs;
// The first argument is always a void* (or C* for a destroying operator
// delete for class type C).
DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
// Figure out what other parameters we should be implicitly passing.
UsualDeleteParams Params;
if (NumPlacementArgs) {
// A placement deallocation function is implicitly passed an alignment
// if the placement allocation function was, but is never passed a size.
Params.Alignment = PassAlignmentToPlacementDelete;
} else {
// For a non-placement new-expression, 'operator delete' can take a
// size and/or an alignment if it has the right parameters.
Params = getUsualDeleteParams(OperatorDelete);
}
assert(!Params.DestroyingDelete &&
"should not call destroying delete in a new-expression");
// The second argument can be a std::size_t (for non-placement delete).
if (Params.Size)
DeleteArgs.add(Traits::get(CGF, AllocSize),
CGF.getContext().getSizeType());
// The next (second or third) argument can be a std::align_val_t, which
// is an enum whose underlying type is std::size_t.
// FIXME: Use the right type as the parameter type. Note that in a call
// to operator delete(size_t, ...), we may not have it available.
if (Params.Alignment)
DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
CGF.SizeTy, AllocAlign.getQuantity())),
CGF.getContext().getSizeType());
// Pass the rest of the arguments, which must match exactly.
for (unsigned I = 0; I != NumPlacementArgs; ++I) {
auto Arg = getPlacementArgs()[I];
DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
}
// Call 'operator delete'.
EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
}
};
}
/// Enter a cleanup to call 'operator delete' if the initializer in a
/// new-expression throws.
static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
const CXXNewExpr *E,
Address NewPtr,
llvm::Value *AllocSize,
CharUnits AllocAlign,
const CallArgList &NewArgs) {
unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
// If we're not inside a conditional branch, then the cleanup will
// dominate and we can do the easier (and more efficient) thing.
if (!CGF.isInConditionalBranch()) {
struct DirectCleanupTraits {
typedef llvm::Value *ValueTy;
typedef RValue RValueTy;
static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
static RValue get(CodeGenFunction &, RValueTy V) { return V; }
};
typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
DirectCleanup *Cleanup = CGF.EHStack
.pushCleanupWithExtra<DirectCleanup>(EHCleanup,
E->getNumPlacementArgs(),
E->getOperatorDelete(),
NewPtr.getPointer(),
AllocSize,
E->passAlignment(),
AllocAlign);
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
auto &Arg = NewArgs[I + NumNonPlacementArgs];
Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
}
return;
}
// Otherwise, we need to save all this stuff.
DominatingValue<RValue>::saved_type SavedNewPtr =
DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
DominatingValue<RValue>::saved_type SavedAllocSize =
DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
struct ConditionalCleanupTraits {
typedef DominatingValue<RValue>::saved_type ValueTy;
typedef DominatingValue<RValue>::saved_type RValueTy;
static RValue get(CodeGenFunction &CGF, ValueTy V) {
return V.restore(CGF);
}
};
typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
ConditionalCleanup *Cleanup = CGF.EHStack
.pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
E->getNumPlacementArgs(),
E->getOperatorDelete(),
SavedNewPtr,
SavedAllocSize,
E->passAlignment(),
AllocAlign);
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
auto &Arg = NewArgs[I + NumNonPlacementArgs];
Cleanup->setPlacementArg(
I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
}
CGF.initFullExprCleanup();
}
llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
// The element type being allocated.
QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
// 1. Build a call to the allocation function.
FunctionDecl *allocator = E->getOperatorNew();
// If there is a brace-initializer, cannot allocate fewer elements than inits.
unsigned minElements = 0;
if (E->isArray() && E->hasInitializer()) {
const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
if (ILE && ILE->isStringLiteralInit())
minElements =
cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
->getSize().getZExtValue();
else if (ILE)
minElements = ILE->getNumInits();
}
llvm::Value *numElements = nullptr;
llvm::Value *allocSizeWithoutCookie = nullptr;
llvm::Value *allocSize =
EmitCXXNewAllocSize(*this, E, minElements, numElements,
allocSizeWithoutCookie);
CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
// Emit the allocation call. If the allocator is a global placement
// operator, just "inline" it directly.
Address allocation = Address::invalid();
CallArgList allocatorArgs;
if (allocator->isReservedGlobalPlacementOperator()) {
assert(E->getNumPlacementArgs() == 1);
const Expr *arg = *E->placement_arguments().begin();
LValueBaseInfo BaseInfo;
allocation = EmitPointerWithAlignment(arg, &BaseInfo);
// The pointer expression will, in many cases, be an opaque void*.
// In these cases, discard the computed alignment and use the
// formal alignment of the allocated type.
if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
allocation = allocation.withAlignment(allocAlign);
// Set up allocatorArgs for the call to operator delete if it's not
// the reserved global operator.
if (E->getOperatorDelete() &&
!E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
}
} else {
const FunctionProtoType *allocatorType =
allocator->getType()->castAs<FunctionProtoType>();
unsigned ParamsToSkip = 0;
// The allocation size is the first argument.
QualType sizeType = getContext().getSizeType();
allocatorArgs.add(RValue::get(allocSize), sizeType);
++ParamsToSkip;
if (allocSize != allocSizeWithoutCookie) {
CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
allocAlign = std::max(allocAlign, cookieAlign);
}
// The allocation alignment may be passed as the second argument.
if (E->passAlignment()) {
QualType AlignValT = sizeType;
if (allocatorType->getNumParams() > 1) {
AlignValT = allocatorType->getParamType(1);
assert(getContext().hasSameUnqualifiedType(
AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
sizeType) &&
"wrong type for alignment parameter");
++ParamsToSkip;
} else {
// Corner case, passing alignment to 'operator new(size_t, ...)'.
assert(allocator->isVariadic() && "can't pass alignment to allocator");
}
allocatorArgs.add(
RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
AlignValT);
}
// FIXME: Why do we not pass a CalleeDecl here?
EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
/*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
RValue RV =
EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
// Set !heapallocsite metadata on the call to operator new.
if (getDebugInfo())
if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
E->getExprLoc());
// If this was a call to a global replaceable allocation function that does
// not take an alignment argument, the allocator is known to produce
// storage that's suitably aligned for any object that fits, up to a known
// threshold. Otherwise assume it's suitably aligned for the allocated type.
CharUnits allocationAlign = allocAlign;
if (!E->passAlignment() &&
allocator->isReplaceableGlobalAllocationFunction()) {
unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
Target.getNewAlign(), getContext().getTypeSize(allocType)));
allocationAlign = std::max(
allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
}
allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
}
// Emit a null check on the allocation result if the allocation
// function is allowed to return null (because it has a non-throwing
// exception spec or is the reserved placement new) and we have an
// interesting initializer will be running sanitizers on the initialization.
bool nullCheck = E->shouldNullCheckAllocation() &&
(!allocType.isPODType(getContext()) || E->hasInitializer() ||
sanitizePerformTypeCheck());
llvm::BasicBlock *nullCheckBB = nullptr;
llvm::BasicBlock *contBB = nullptr;
// The null-check means that the initializer is conditionally
// evaluated.
ConditionalEvaluation conditional(*this);
if (nullCheck) {
conditional.begin(*this);
nullCheckBB = Builder.GetInsertBlock();
llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
contBB = createBasicBlock("new.cont");
llvm::Value *isNull =
Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
Builder.CreateCondBr(isNull, contBB, notNullBB);
EmitBlock(notNullBB);
}
// If there's an operator delete, enter a cleanup to call it if an
// exception is thrown.
EHScopeStack::stable_iterator operatorDeleteCleanup;
llvm::Instruction *cleanupDominator = nullptr;
if (E->getOperatorDelete() &&
!E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
allocatorArgs);
operatorDeleteCleanup = EHStack.stable_begin();
cleanupDominator = Builder.CreateUnreachable();
}
assert((allocSize == allocSizeWithoutCookie) ==
CalculateCookiePadding(*this, E).isZero());
if (allocSize != allocSizeWithoutCookie) {
assert(E->isArray());
allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
numElements,
E, allocType);
}
llvm::Type *elementTy = ConvertTypeForMem(allocType);
Address result = Builder.CreateElementBitCast(allocation, elementTy);
// Passing pointer through launder.invariant.group to avoid propagation of
// vptrs information which may be included in previous type.
// To not break LTO with different optimizations levels, we do it regardless
// of optimization level.
if (CGM.getCodeGenOpts().StrictVTablePointers &&
allocator->isReservedGlobalPlacementOperator())
result = Builder.CreateLaunderInvariantGroup(result);
// Emit sanitizer checks for pointer value now, so that in the case of an
// array it was checked only once and not at each constructor call. We may
// have already checked that the pointer is non-null.
// FIXME: If we have an array cookie and a potentially-throwing allocator,
// we'll null check the wrong pointer here.
SanitizerSet SkippedChecks;
SkippedChecks.set(SanitizerKind::Null, nullCheck);
EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
result.getPointer(), allocType, result.getAlignment(),
SkippedChecks, numElements);
EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
allocSizeWithoutCookie);
llvm::Value *resultPtr = result.getPointer();
if (E->isArray()) {
// NewPtr is a pointer to the base element type. If we're
// allocating an array of arrays, we'll need to cast back to the
// array pointer type.
llvm::Type *resultType = ConvertTypeForMem(E->getType());
if (resultPtr->getType() != resultType)
resultPtr = Builder.CreateBitCast(resultPtr, resultType);
}
// Deactivate the 'operator delete' cleanup if we finished
// initialization.
if (operatorDeleteCleanup.isValid()) {
DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
cleanupDominator->eraseFromParent();
}
if (nullCheck) {
conditional.end(*this);
llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
EmitBlock(contBB);
llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
PHI->addIncoming(resultPtr, notNullBB);
PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
nullCheckBB);
resultPtr = PHI;
}
return resultPtr;
}
void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
llvm::Value *Ptr, QualType DeleteTy,
llvm::Value *NumElements,
CharUnits CookieSize) {
assert((!NumElements && CookieSize.isZero()) ||
DeleteFD->getOverloadedOperator() == OO_Array_Delete);
const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
CallArgList DeleteArgs;
auto Params = getUsualDeleteParams(DeleteFD);
auto ParamTypeIt = DeleteFTy->param_type_begin();
// Pass the pointer itself.
QualType ArgTy = *ParamTypeIt++;
llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
// Pass the std::destroying_delete tag if present.
llvm::AllocaInst *DestroyingDeleteTag = nullptr;
if (Params.DestroyingDelete) {
QualType DDTag = *ParamTypeIt++;
llvm::Type *Ty = getTypes().ConvertType(DDTag);
CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
DestroyingDeleteTag->setAlignment(Align.getAsAlign());
DeleteArgs.add(
RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag);
}
// Pass the size if the delete function has a size_t parameter.
if (Params.Size) {
QualType SizeType = *ParamTypeIt++;
CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
DeleteTypeSize.getQuantity());
// For array new, multiply by the number of elements.
if (NumElements)
Size = Builder.CreateMul(Size, NumElements);
// If there is a cookie, add the cookie size.
if (!CookieSize.isZero())
Size = Builder.CreateAdd(
Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
DeleteArgs.add(RValue::get(Size), SizeType);
}
// Pass the alignment if the delete function has an align_val_t parameter.
if (Params.Alignment) {
QualType AlignValType = *ParamTypeIt++;
CharUnits DeleteTypeAlign =
getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
DeleteTy, true /* NeedsPreferredAlignment */));
llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
DeleteTypeAlign.getQuantity());
DeleteArgs.add(RValue::get(Align), AlignValType);
}
assert(ParamTypeIt == DeleteFTy->param_type_end() &&
"unknown parameter to usual delete function");
// Emit the call to delete.
EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
// If call argument lowering didn't use the destroying_delete_t alloca,
// remove it again.
if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
DestroyingDeleteTag->eraseFromParent();
}
namespace {
/// Calls the given 'operator delete' on a single object.
struct CallObjectDelete final : EHScopeStack::Cleanup {
llvm::Value *Ptr;
const FunctionDecl *OperatorDelete;
QualType ElementType;
CallObjectDelete(llvm::Value *Ptr,
const FunctionDecl *OperatorDelete,
QualType ElementType)
: Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
void Emit(CodeGenFunction &CGF, Flags flags) override {
CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
}
};
}
void
CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
llvm::Value *CompletePtr,
QualType ElementType) {
EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
OperatorDelete, ElementType);
}
/// Emit the code for deleting a single object with a destroying operator
/// delete. If the element type has a non-virtual destructor, Ptr has already
/// been converted to the type of the parameter of 'operator delete'. Otherwise
/// Ptr points to an object of the static type.
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
const CXXDeleteExpr *DE, Address Ptr,
QualType ElementType) {
auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
if (Dtor && Dtor->isVirtual())
CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
Dtor);
else
CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
}
/// Emit the code for deleting a single object.
/// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
/// if not.
static bool EmitObjectDelete(CodeGenFunction &CGF,
const CXXDeleteExpr *DE,
Address Ptr,
QualType ElementType,
llvm::BasicBlock *UnconditionalDeleteBlock) {
// C++11 [expr.delete]p3:
// If the static type of the object to be deleted is different from its
// dynamic type, the static type shall be a base class of the dynamic type
// of the object to be deleted and the static type shall have a virtual
// destructor or the behavior is undefined.
CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
DE->getExprLoc(), Ptr.getPointer(),
ElementType);
const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
assert(!OperatorDelete->isDestroyingOperatorDelete());
// Find the destructor for the type, if applicable. If the
// destructor is virtual, we'll just emit the vcall and return.
const CXXDestructorDecl *Dtor = nullptr;
if (const RecordType *RT = ElementType->getAs<RecordType>()) {
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
Dtor = RD->getDestructor();
if (Dtor->isVirtual()) {
bool UseVirtualCall = true;
const Expr *Base = DE->getArgument();
if (auto *DevirtualizedDtor =
dyn_cast_or_null<const CXXDestructorDecl>(
Dtor->getDevirtualizedMethod(
Base, CGF.CGM.getLangOpts().AppleKext))) {
UseVirtualCall = false;
const CXXRecordDecl *DevirtualizedClass =
DevirtualizedDtor->getParent();
if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
// Devirtualized to the class of the base type (the type of the
// whole expression).
Dtor = DevirtualizedDtor;
} else {
// Devirtualized to some other type. Would need to cast the this
// pointer to that type but we don't have support for that yet, so
// do a virtual call. FIXME: handle the case where it is
// devirtualized to the derived type (the type of the inner
// expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
UseVirtualCall = true;
}
}
if (UseVirtualCall) {
CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
Dtor);
return false;
}
}
}
}
// Make sure that we call delete even if the dtor throws.
// This doesn't have to a conditional cleanup because we're going
// to pop it off in a second.
CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
Ptr.getPointer(),
OperatorDelete, ElementType);
if (Dtor)
CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
/*ForVirtualBase=*/false,
/*Delegating=*/false,
Ptr, ElementType);
else if (auto Lifetime = ElementType.getObjCLifetime()) {
switch (Lifetime) {
case Qualifiers::OCL_None:
case Qualifiers::OCL_ExplicitNone:
case Qualifiers::OCL_Autoreleasing:
break;
case Qualifiers::OCL_Strong:
CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
break;
case Qualifiers::OCL_Weak:
CGF.EmitARCDestroyWeak(Ptr);
break;
}
}
// When optimizing for size, call 'operator delete' unconditionally.
if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
CGF.EmitBlock(UnconditionalDeleteBlock);
CGF.PopCleanupBlock();
return true;
}
CGF.PopCleanupBlock();
return false;
}
namespace {
/// Calls the given 'operator delete' on an array of objects.
struct CallArrayDelete final : EHScopeStack::Cleanup {
llvm::Value *Ptr;
const FunctionDecl *OperatorDelete;
llvm::Value *NumElements;
QualType ElementType;
CharUnits CookieSize;
CallArrayDelete(llvm::Value *Ptr,
const FunctionDecl *OperatorDelete,
llvm::Value *NumElements,
QualType ElementType,
CharUnits CookieSize)
: Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
ElementType(ElementType), CookieSize(CookieSize) {}
void Emit(CodeGenFunction &CGF, Flags flags) override {
CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
CookieSize);
}
};
}
/// Emit the code for deleting an array of objects.
static void EmitArrayDelete(CodeGenFunction &CGF,
const CXXDeleteExpr *E,
Address deletedPtr,
QualType elementType) {
llvm::Value *numElements = nullptr;
llvm::Value *allocatedPtr = nullptr;
CharUnits cookieSize;
CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
numElements, allocatedPtr, cookieSize);
assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
// Make sure that we call delete even if one of the dtors throws.
const FunctionDecl *operatorDelete = E->getOperatorDelete();
CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
allocatedPtr, operatorDelete,
numElements, elementType,
cookieSize);
// Destroy the elements.
if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
assert(numElements && "no element count for a type with a destructor!");
CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
CharUnits elementAlign =
deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
llvm::Value *arrayBegin = deletedPtr.getPointer();
llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
// Note that it is legal to allocate a zero-length array, and we
// can never fold the check away because the length should always
// come from a cookie.
CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
CGF.getDestroyer(dtorKind),
/*checkZeroLength*/ true,
CGF.needsEHCleanup(dtorKind));
}
// Pop the cleanup block.
CGF.PopCleanupBlock();
}
void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
const Expr *Arg = E->getArgument();
Address Ptr = EmitPointerWithAlignment(Arg);
// Null check the pointer.
//
// We could avoid this null check if we can determine that the object
// destruction is trivial and doesn't require an array cookie; we can
// unconditionally perform the operator delete call in that case. For now, we
// assume that deleted pointers are null rarely enough that it's better to
// keep the branch. This might be worth revisiting for a -O0 code size win.
llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
EmitBlock(DeleteNotNull);
QualType DeleteTy = E->getDestroyedType();
// A destroying operator delete overrides the entire operation of the
// delete expression.
if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
EmitBlock(DeleteEnd);
return;
}
// We might be deleting a pointer to array. If so, GEP down to the
// first non-array element.
// (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
if (DeleteTy->isConstantArrayType()) {
llvm::Value *Zero = Builder.getInt32(0);
SmallVector<llvm::Value*,8> GEP;
GEP.push_back(Zero); // point at the outermost array
// For each layer of array type we're pointing at:
while (const ConstantArrayType *Arr
= getContext().getAsConstantArrayType(DeleteTy)) {
// 1. Unpeel the array type.
DeleteTy = Arr->getElementType();
// 2. GEP to the first element of the array.
GEP.push_back(Zero);
}
Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(),
Ptr.getPointer(), GEP, "del.first"),
ConvertTypeForMem(DeleteTy), Ptr.getAlignment());
}
assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
if (E->isArrayForm()) {
EmitArrayDelete(*this, E, Ptr, DeleteTy);
EmitBlock(DeleteEnd);
} else {
if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
EmitBlock(DeleteEnd);
}
}
static bool isGLValueFromPointerDeref(const Expr *E) {
E = E->IgnoreParens();
if (const auto *CE = dyn_cast<CastExpr>(E)) {
if (!CE->getSubExpr()->isGLValue())
return false;
return isGLValueFromPointerDeref(CE->getSubExpr());
}
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
return isGLValueFromPointerDeref(OVE->getSourceExpr());
if (const auto *BO = dyn_cast<BinaryOperator>(E))
if (BO->getOpcode() == BO_Comma)
return isGLValueFromPointerDeref(BO->getRHS());
if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
isGLValueFromPointerDeref(ACO->getFalseExpr());
// C++11 [expr.sub]p1:
// The expression E1[E2] is identical (by definition) to *((E1)+(E2))
if (isa<ArraySubscriptExpr>(E))
return true;
if (const auto *UO = dyn_cast<UnaryOperator>(E))
if (UO->getOpcode() == UO_Deref)
return true;
return false;
}
static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
llvm::Type *StdTypeInfoPtrTy) {
// Get the vtable pointer.
Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
QualType SrcRecordTy = E->getType();
// C++ [class.cdtor]p4:
// If the operand of typeid refers to the object under construction or
// destruction and the static type of the operand is neither the constructor
// or destructor’s class nor one of its bases, the behavior is undefined.
CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
ThisPtr.getPointer(), SrcRecordTy);
// C++ [expr.typeid]p2:
// If the glvalue expression is obtained by applying the unary * operator to
// a pointer and the pointer is a null pointer value, the typeid expression
// throws the std::bad_typeid exception.
//
// However, this paragraph's intent is not clear. We choose a very generous
// interpretation which implores us to consider comma operators, conditional
// operators, parentheses and other such constructs.
if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
isGLValueFromPointerDeref(E), SrcRecordTy)) {
llvm::BasicBlock *BadTypeidBlock =
CGF.createBasicBlock("typeid.bad_typeid");
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
CGF.EmitBlock(BadTypeidBlock);
CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
CGF.EmitBlock(EndBlock);
}
return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
StdTypeInfoPtrTy);
}
llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
llvm::Type *StdTypeInfoPtrTy =
ConvertType(E->getType())->getPointerTo();
if (E->isTypeOperand()) {
llvm::Constant *TypeInfo =
CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
}
// C++ [expr.typeid]p2:
// When typeid is applied to a glvalue expression whose type is a
// polymorphic class type, the result refers to a std::type_info object
// representing the type of the most derived object (that is, the dynamic
// type) to which the glvalue refers.
// If the operand is already most derived object, no need to look up vtable.
if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
return EmitTypeidFromVTable(*this, E->getExprOperand(),
StdTypeInfoPtrTy);
QualType OperandTy = E->getExprOperand()->getType();
return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
StdTypeInfoPtrTy);
}
static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
QualType DestTy) {
llvm::Type *DestLTy = CGF.ConvertType(DestTy);
if (DestTy->isPointerType())
return llvm::Constant::getNullValue(DestLTy);
/// C++ [expr.dynamic.cast]p9:
/// A failed cast to reference type throws std::bad_cast
if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
return nullptr;
CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
return llvm::UndefValue::get(DestLTy);
}
llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
const CXXDynamicCastExpr *DCE) {
CGM.EmitExplicitCastExprType(DCE, this);
QualType DestTy = DCE->getTypeAsWritten();
QualType SrcTy = DCE->getSubExpr()->getType();
// C++ [expr.dynamic.cast]p7:
// If T is "pointer to cv void," then the result is a pointer to the most
// derived object pointed to by v.
const PointerType *DestPTy = DestTy->getAs<PointerType>();
bool isDynamicCastToVoid;
QualType SrcRecordTy;
QualType DestRecordTy;
if (DestPTy) {
isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
DestRecordTy = DestPTy->getPointeeType();
} else {
isDynamicCastToVoid = false;
SrcRecordTy = SrcTy;
DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
}
// C++ [class.cdtor]p5:
// If the operand of the dynamic_cast refers to the object under
// construction or destruction and the static type of the operand is not a
// pointer to or object of the constructor or destructor’s own class or one
// of its bases, the dynamic_cast results in undefined behavior.
EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
SrcRecordTy);
if (DCE->isAlwaysNull())
if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
return T;
assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
// C++ [expr.dynamic.cast]p4:
// If the value of v is a null pointer value in the pointer case, the result
// is the null pointer value of type T.
bool ShouldNullCheckSrcValue =
CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
SrcRecordTy);
llvm::BasicBlock *CastNull = nullptr;
llvm::BasicBlock *CastNotNull = nullptr;
llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
if (ShouldNullCheckSrcValue) {
CastNull = createBasicBlock("dynamic_cast.null");
CastNotNull = createBasicBlock("dynamic_cast.notnull");
llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
EmitBlock(CastNotNull);
}
llvm::Value *Value;
if (isDynamicCastToVoid) {
Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
DestTy);
} else {
assert(DestRecordTy->isRecordType() &&
"destination type must be a record type!");
Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
DestTy, DestRecordTy, CastEnd);
CastNotNull = Builder.GetInsertBlock();
}
if (ShouldNullCheckSrcValue) {
EmitBranch(CastEnd);
EmitBlock(CastNull);
EmitBranch(CastEnd);
}
EmitBlock(CastEnd);
if (ShouldNullCheckSrcValue) {
llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
PHI->addIncoming(Value, CastNotNull);
PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
Value = PHI;
}
return Value;
}
|