aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16/lib/CodeGen/CGCUDANV.cpp
blob: bb887df3e4e0461b505de0f08bfd87c81087f994 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
//===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides a class for CUDA code generation targeting the NVIDIA CUDA
// runtime library.
//
//===----------------------------------------------------------------------===//

#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Cuda.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/Support/Format.h"

using namespace clang;
using namespace CodeGen;

namespace {
constexpr unsigned CudaFatMagic = 0x466243b1;
constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"

class CGNVCUDARuntime : public CGCUDARuntime {

private:
  llvm::IntegerType *IntTy, *SizeTy;
  llvm::Type *VoidTy;
  llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;

  /// Convenience reference to LLVM Context
  llvm::LLVMContext &Context;
  /// Convenience reference to the current module
  llvm::Module &TheModule;
  /// Keeps track of kernel launch stubs and handles emitted in this module
  struct KernelInfo {
    llvm::Function *Kernel; // stub function to help launch kernel
    const Decl *D;
  };
  llvm::SmallVector<KernelInfo, 16> EmittedKernels;
  // Map a kernel mangled name to a symbol for identifying kernel in host code
  // For CUDA, the symbol for identifying the kernel is the same as the device
  // stub function. For HIP, they are different.
  llvm::DenseMap<StringRef, llvm::GlobalValue *> KernelHandles;
  // Map a kernel handle to the kernel stub.
  llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
  struct VarInfo {
    llvm::GlobalVariable *Var;
    const VarDecl *D;
    DeviceVarFlags Flags;
  };
  llvm::SmallVector<VarInfo, 16> DeviceVars;
  /// Keeps track of variable containing handle of GPU binary. Populated by
  /// ModuleCtorFunction() and used to create corresponding cleanup calls in
  /// ModuleDtorFunction()
  llvm::GlobalVariable *GpuBinaryHandle = nullptr;
  /// Whether we generate relocatable device code.
  bool RelocatableDeviceCode;
  /// Mangle context for device.
  std::unique_ptr<MangleContext> DeviceMC;
  /// Some zeros used for GEPs.
  llvm::Constant *Zeros[2];

  llvm::FunctionCallee getSetupArgumentFn() const;
  llvm::FunctionCallee getLaunchFn() const;

  llvm::FunctionType *getRegisterGlobalsFnTy() const;
  llvm::FunctionType *getCallbackFnTy() const;
  llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
  std::string addPrefixToName(StringRef FuncName) const;
  std::string addUnderscoredPrefixToName(StringRef FuncName) const;

  /// Creates a function to register all kernel stubs generated in this module.
  llvm::Function *makeRegisterGlobalsFn();

  /// Helper function that generates a constant string and returns a pointer to
  /// the start of the string.  The result of this function can be used anywhere
  /// where the C code specifies const char*.
  llvm::Constant *makeConstantString(const std::string &Str,
                                     const std::string &Name = "") {
    auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
    return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
                                                ConstStr.getPointer(), Zeros);
  }

  /// Helper function which generates an initialized constant array from Str,
  /// and optionally sets section name and alignment. AddNull specifies whether
  /// the array should nave NUL termination.
  llvm::Constant *makeConstantArray(StringRef Str,
                                    StringRef Name = "",
                                    StringRef SectionName = "",
                                    unsigned Alignment = 0,
                                    bool AddNull = false) {
    llvm::Constant *Value =
        llvm::ConstantDataArray::getString(Context, Str, AddNull);
    auto *GV = new llvm::GlobalVariable(
        TheModule, Value->getType(), /*isConstant=*/true,
        llvm::GlobalValue::PrivateLinkage, Value, Name);
    if (!SectionName.empty()) {
      GV->setSection(SectionName);
      // Mark the address as used which make sure that this section isn't
      // merged and we will really have it in the object file.
      GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
    }
    if (Alignment)
      GV->setAlignment(llvm::Align(Alignment));
    return llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
  }

  /// Helper function that generates an empty dummy function returning void.
  llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
    assert(FnTy->getReturnType()->isVoidTy() &&
           "Can only generate dummy functions returning void!");
    llvm::Function *DummyFunc = llvm::Function::Create(
        FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);

    llvm::BasicBlock *DummyBlock =
        llvm::BasicBlock::Create(Context, "", DummyFunc);
    CGBuilderTy FuncBuilder(CGM, Context);
    FuncBuilder.SetInsertPoint(DummyBlock);
    FuncBuilder.CreateRetVoid();

    return DummyFunc;
  }

  void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
  void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
  std::string getDeviceSideName(const NamedDecl *ND) override;

  void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
                         bool Extern, bool Constant) {
    DeviceVars.push_back({&Var,
                          VD,
                          {DeviceVarFlags::Variable, Extern, Constant,
                           VD->hasAttr<HIPManagedAttr>(),
                           /*Normalized*/ false, 0}});
  }
  void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
                          bool Extern, int Type) {
    DeviceVars.push_back({&Var,
                          VD,
                          {DeviceVarFlags::Surface, Extern, /*Constant*/ false,
                           /*Managed*/ false,
                           /*Normalized*/ false, Type}});
  }
  void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
                         bool Extern, int Type, bool Normalized) {
    DeviceVars.push_back({&Var,
                          VD,
                          {DeviceVarFlags::Texture, Extern, /*Constant*/ false,
                           /*Managed*/ false, Normalized, Type}});
  }

  /// Creates module constructor function
  llvm::Function *makeModuleCtorFunction();
  /// Creates module destructor function
  llvm::Function *makeModuleDtorFunction();
  /// Transform managed variables for device compilation.
  void transformManagedVars();
  /// Create offloading entries to register globals in RDC mode.
  void createOffloadingEntries();

public:
  CGNVCUDARuntime(CodeGenModule &CGM);

  llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
  llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
    auto Loc = KernelStubs.find(Handle);
    assert(Loc != KernelStubs.end());
    return Loc->second;
  }
  void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
  void handleVarRegistration(const VarDecl *VD,
                             llvm::GlobalVariable &Var) override;
  void
  internalizeDeviceSideVar(const VarDecl *D,
                           llvm::GlobalValue::LinkageTypes &Linkage) override;

  llvm::Function *finalizeModule() override;
};

} // end anonymous namespace

std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
  if (CGM.getLangOpts().HIP)
    return ((Twine("hip") + Twine(FuncName)).str());
  return ((Twine("cuda") + Twine(FuncName)).str());
}
std::string
CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
  if (CGM.getLangOpts().HIP)
    return ((Twine("__hip") + Twine(FuncName)).str());
  return ((Twine("__cuda") + Twine(FuncName)).str());
}

static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) {
  // If the host and device have different C++ ABIs, mark it as the device
  // mangle context so that the mangling needs to retrieve the additional
  // device lambda mangling number instead of the regular host one.
  if (CGM.getContext().getAuxTargetInfo() &&
      CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
      CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
    return std::unique_ptr<MangleContext>(
        CGM.getContext().createDeviceMangleContext(
            *CGM.getContext().getAuxTargetInfo()));
  }

  return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext(
      CGM.getContext().getAuxTargetInfo()));
}

CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
    : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
      TheModule(CGM.getModule()),
      RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
      DeviceMC(InitDeviceMC(CGM)) {
  CodeGen::CodeGenTypes &Types = CGM.getTypes();
  ASTContext &Ctx = CGM.getContext();

  IntTy = CGM.IntTy;
  SizeTy = CGM.SizeTy;
  VoidTy = CGM.VoidTy;
  Zeros[0] = llvm::ConstantInt::get(SizeTy, 0);
  Zeros[1] = Zeros[0];

  CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
  VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
  VoidPtrPtrTy = VoidPtrTy->getPointerTo();
}

llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
  // cudaError_t cudaSetupArgument(void *, size_t, size_t)
  llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
  return CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(IntTy, Params, false),
      addPrefixToName("SetupArgument"));
}

llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
  if (CGM.getLangOpts().HIP) {
    // hipError_t hipLaunchByPtr(char *);
    return CGM.CreateRuntimeFunction(
        llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
  }
  // cudaError_t cudaLaunch(char *);
  return CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
}

llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
  return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
}

llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
  return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
}

llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
  auto *CallbackFnTy = getCallbackFnTy();
  auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
  llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
                          VoidPtrTy, CallbackFnTy->getPointerTo()};
  return llvm::FunctionType::get(VoidTy, Params, false);
}

std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
  GlobalDecl GD;
  // D could be either a kernel or a variable.
  if (auto *FD = dyn_cast<FunctionDecl>(ND))
    GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
  else
    GD = GlobalDecl(ND);
  std::string DeviceSideName;
  MangleContext *MC;
  if (CGM.getLangOpts().CUDAIsDevice)
    MC = &CGM.getCXXABI().getMangleContext();
  else
    MC = DeviceMC.get();
  if (MC->shouldMangleDeclName(ND)) {
    SmallString<256> Buffer;
    llvm::raw_svector_ostream Out(Buffer);
    MC->mangleName(GD, Out);
    DeviceSideName = std::string(Out.str());
  } else
    DeviceSideName = std::string(ND->getIdentifier()->getName());

  // Make unique name for device side static file-scope variable for HIP.
  if (CGM.getContext().shouldExternalize(ND) &&
      CGM.getLangOpts().GPURelocatableDeviceCode) {
    SmallString<256> Buffer;
    llvm::raw_svector_ostream Out(Buffer);
    Out << DeviceSideName;
    CGM.printPostfixForExternalizedDecl(Out, ND);
    DeviceSideName = std::string(Out.str());
  }
  return DeviceSideName;
}

void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
                                     FunctionArgList &Args) {
  EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
  if (auto *GV =
          dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn->getName()])) {
    GV->setLinkage(CGF.CurFn->getLinkage());
    GV->setInitializer(CGF.CurFn);
  }
  if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
                         CudaFeature::CUDA_USES_NEW_LAUNCH) ||
      (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
    emitDeviceStubBodyNew(CGF, Args);
  else
    emitDeviceStubBodyLegacy(CGF, Args);
}

// CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
// array and kernels are launched using cudaLaunchKernel().
void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
                                            FunctionArgList &Args) {
  // Build the shadow stack entry at the very start of the function.

  // Calculate amount of space we will need for all arguments.  If we have no
  // args, allocate a single pointer so we still have a valid pointer to the
  // argument array that we can pass to runtime, even if it will be unused.
  Address KernelArgs = CGF.CreateTempAlloca(
      VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
      llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
  // Store pointers to the arguments in a locally allocated launch_args.
  for (unsigned i = 0; i < Args.size(); ++i) {
    llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
    llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
    CGF.Builder.CreateDefaultAlignedStore(
        VoidVarPtr,
        CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i));
  }

  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");

  // Lookup cudaLaunchKernel/hipLaunchKernel function.
  // HIP kernel launching API name depends on -fgpu-default-stream option. For
  // the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
  // it is hipLaunchKernel_spt.
  // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
  //                              void **args, size_t sharedMem,
  //                              cudaStream_t stream);
  // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
  //                                  dim3 blockDim, void **args,
  //                                  size_t sharedMem, hipStream_t stream);
  TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
  DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
  std::string KernelLaunchAPI = "LaunchKernel";
  if (CGF.getLangOpts().HIP && CGF.getLangOpts().GPUDefaultStream ==
                                   LangOptions::GPUDefaultStreamKind::PerThread)
    KernelLaunchAPI = KernelLaunchAPI + "_spt";
  auto LaunchKernelName = addPrefixToName(KernelLaunchAPI);
  IdentifierInfo &cudaLaunchKernelII =
      CGM.getContext().Idents.get(LaunchKernelName);
  FunctionDecl *cudaLaunchKernelFD = nullptr;
  for (auto *Result : DC->lookup(&cudaLaunchKernelII)) {
    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
      cudaLaunchKernelFD = FD;
  }

  if (cudaLaunchKernelFD == nullptr) {
    CGM.Error(CGF.CurFuncDecl->getLocation(),
              "Can't find declaration for " + LaunchKernelName);
    return;
  }
  // Create temporary dim3 grid_dim, block_dim.
  ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
  QualType Dim3Ty = GridDimParam->getType();
  Address GridDim =
      CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
  Address BlockDim =
      CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
  Address ShmemSize =
      CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
  Address Stream =
      CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
  llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(IntTy,
                              {/*gridDim=*/GridDim.getType(),
                               /*blockDim=*/BlockDim.getType(),
                               /*ShmemSize=*/ShmemSize.getType(),
                               /*Stream=*/Stream.getType()},
                              /*isVarArg=*/false),
      addUnderscoredPrefixToName("PopCallConfiguration"));

  CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
                              {GridDim.getPointer(), BlockDim.getPointer(),
                               ShmemSize.getPointer(), Stream.getPointer()});

  // Emit the call to cudaLaunch
  llvm::Value *Kernel = CGF.Builder.CreatePointerCast(
      KernelHandles[CGF.CurFn->getName()], VoidPtrTy);
  CallArgList LaunchKernelArgs;
  LaunchKernelArgs.add(RValue::get(Kernel),
                       cudaLaunchKernelFD->getParamDecl(0)->getType());
  LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
  LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
  LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
                       cudaLaunchKernelFD->getParamDecl(3)->getType());
  LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
                       cudaLaunchKernelFD->getParamDecl(4)->getType());
  LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
                       cudaLaunchKernelFD->getParamDecl(5)->getType());

  QualType QT = cudaLaunchKernelFD->getType();
  QualType CQT = QT.getCanonicalType();
  llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
  llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);

  const CGFunctionInfo &FI =
      CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
  llvm::FunctionCallee cudaLaunchKernelFn =
      CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
  CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
               LaunchKernelArgs);
  CGF.EmitBranch(EndBlock);

  CGF.EmitBlock(EndBlock);
}

void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
                                               FunctionArgList &Args) {
  // Emit a call to cudaSetupArgument for each arg in Args.
  llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
  CharUnits Offset = CharUnits::Zero();
  for (const VarDecl *A : Args) {
    auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
    Offset = Offset.alignTo(TInfo.Align);
    llvm::Value *Args[] = {
        CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
                                      VoidPtrTy),
        llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
        llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
    };
    llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
    llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
    llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
    llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
    CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
    CGF.EmitBlock(NextBlock);
    Offset += TInfo.Width;
  }

  // Emit the call to cudaLaunch
  llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
  llvm::Value *Arg = CGF.Builder.CreatePointerCast(
      KernelHandles[CGF.CurFn->getName()], CharPtrTy);
  CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
  CGF.EmitBranch(EndBlock);

  CGF.EmitBlock(EndBlock);
}

// Replace the original variable Var with the address loaded from variable
// ManagedVar populated by HIP runtime.
static void replaceManagedVar(llvm::GlobalVariable *Var,
                              llvm::GlobalVariable *ManagedVar) {
  SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
  for (auto &&VarUse : Var->uses()) {
    WorkList.push_back({VarUse.getUser()});
  }
  while (!WorkList.empty()) {
    auto &&WorkItem = WorkList.pop_back_val();
    auto *U = WorkItem.back();
    if (isa<llvm::ConstantExpr>(U)) {
      for (auto &&UU : U->uses()) {
        WorkItem.push_back(UU.getUser());
        WorkList.push_back(WorkItem);
        WorkItem.pop_back();
      }
      continue;
    }
    if (auto *I = dyn_cast<llvm::Instruction>(U)) {
      llvm::Value *OldV = Var;
      llvm::Instruction *NewV =
          new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
                             llvm::Align(Var->getAlignment()), I);
      WorkItem.pop_back();
      // Replace constant expressions directly or indirectly using the managed
      // variable with instructions.
      for (auto &&Op : WorkItem) {
        auto *CE = cast<llvm::ConstantExpr>(Op);
        auto *NewInst = CE->getAsInstruction(I);
        NewInst->replaceUsesOfWith(OldV, NewV);
        OldV = CE;
        NewV = NewInst;
      }
      I->replaceUsesOfWith(OldV, NewV);
    } else {
      llvm_unreachable("Invalid use of managed variable");
    }
  }
}

/// Creates a function that sets up state on the host side for CUDA objects that
/// have a presence on both the host and device sides. Specifically, registers
/// the host side of kernel functions and device global variables with the CUDA
/// runtime.
/// \code
/// void __cuda_register_globals(void** GpuBinaryHandle) {
///    __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
///    ...
///    __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
///    __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
///    ...
///    __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
  // No need to register anything
  if (EmittedKernels.empty() && DeviceVars.empty())
    return nullptr;

  llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
      getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
      addUnderscoredPrefixToName("_register_globals"), &TheModule);
  llvm::BasicBlock *EntryBB =
      llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
  CGBuilderTy Builder(CGM, Context);
  Builder.SetInsertPoint(EntryBB);

  // void __cudaRegisterFunction(void **, const char *, char *, const char *,
  //                             int, uint3*, uint3*, dim3*, dim3*, int*)
  llvm::Type *RegisterFuncParams[] = {
      VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
      VoidPtrTy,    VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
  llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
      addUnderscoredPrefixToName("RegisterFunction"));

  // Extract GpuBinaryHandle passed as the first argument passed to
  // __cuda_register_globals() and generate __cudaRegisterFunction() call for
  // each emitted kernel.
  llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
  for (auto &&I : EmittedKernels) {
    llvm::Constant *KernelName =
        makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
    llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
    llvm::Value *Args[] = {
        &GpuBinaryHandlePtr,
        Builder.CreateBitCast(KernelHandles[I.Kernel->getName()], VoidPtrTy),
        KernelName,
        KernelName,
        llvm::ConstantInt::get(IntTy, -1),
        NullPtr,
        NullPtr,
        NullPtr,
        NullPtr,
        llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
    Builder.CreateCall(RegisterFunc, Args);
  }

  llvm::Type *VarSizeTy = IntTy;
  // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
  if (CGM.getLangOpts().HIP ||
      ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
    VarSizeTy = SizeTy;

  // void __cudaRegisterVar(void **, char *, char *, const char *,
  //                        int, int, int, int)
  llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
                                     CharPtrTy,    IntTy,     VarSizeTy,
                                     IntTy,        IntTy};
  llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
      addUnderscoredPrefixToName("RegisterVar"));
  // void __hipRegisterManagedVar(void **, char *, char *, const char *,
  //                              size_t, unsigned)
  llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
                                            CharPtrTy,    VarSizeTy, IntTy};
  llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
      addUnderscoredPrefixToName("RegisterManagedVar"));
  // void __cudaRegisterSurface(void **, const struct surfaceReference *,
  //                            const void **, const char *, int, int);
  llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(
          VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
          false),
      addUnderscoredPrefixToName("RegisterSurface"));
  // void __cudaRegisterTexture(void **, const struct textureReference *,
  //                            const void **, const char *, int, int, int)
  llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(
          VoidTy,
          {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
          false),
      addUnderscoredPrefixToName("RegisterTexture"));
  for (auto &&Info : DeviceVars) {
    llvm::GlobalVariable *Var = Info.Var;
    assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&
           "External variables should not show up here, except HIP managed "
           "variables");
    llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
    switch (Info.Flags.getKind()) {
    case DeviceVarFlags::Variable: {
      uint64_t VarSize =
          CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
      if (Info.Flags.isManaged()) {
        auto *ManagedVar = new llvm::GlobalVariable(
            CGM.getModule(), Var->getType(),
            /*isConstant=*/false, Var->getLinkage(),
            /*Init=*/Var->isDeclaration()
                ? nullptr
                : llvm::ConstantPointerNull::get(Var->getType()),
            /*Name=*/"", /*InsertBefore=*/nullptr,
            llvm::GlobalVariable::NotThreadLocal);
        ManagedVar->setDSOLocal(Var->isDSOLocal());
        ManagedVar->setVisibility(Var->getVisibility());
        ManagedVar->setExternallyInitialized(true);
        ManagedVar->takeName(Var);
        Var->setName(Twine(ManagedVar->getName() + ".managed"));
        replaceManagedVar(Var, ManagedVar);
        llvm::Value *Args[] = {
            &GpuBinaryHandlePtr,
            Builder.CreateBitCast(ManagedVar, VoidPtrTy),
            Builder.CreateBitCast(Var, VoidPtrTy),
            VarName,
            llvm::ConstantInt::get(VarSizeTy, VarSize),
            llvm::ConstantInt::get(IntTy, Var->getAlignment())};
        if (!Var->isDeclaration())
          Builder.CreateCall(RegisterManagedVar, Args);
      } else {
        llvm::Value *Args[] = {
            &GpuBinaryHandlePtr,
            Builder.CreateBitCast(Var, VoidPtrTy),
            VarName,
            VarName,
            llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
            llvm::ConstantInt::get(VarSizeTy, VarSize),
            llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
            llvm::ConstantInt::get(IntTy, 0)};
        Builder.CreateCall(RegisterVar, Args);
      }
      break;
    }
    case DeviceVarFlags::Surface:
      Builder.CreateCall(
          RegisterSurf,
          {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
           VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
           llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
      break;
    case DeviceVarFlags::Texture:
      Builder.CreateCall(
          RegisterTex,
          {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
           VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
           llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
           llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
      break;
    }
  }

  Builder.CreateRetVoid();
  return RegisterKernelsFunc;
}

/// Creates a global constructor function for the module:
///
/// For CUDA:
/// \code
/// void __cuda_module_ctor() {
///     Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
///     __cuda_register_globals(Handle);
/// }
/// \endcode
///
/// For HIP:
/// \code
/// void __hip_module_ctor() {
///     if (__hip_gpubin_handle == 0) {
///         __hip_gpubin_handle  = __hipRegisterFatBinary(GpuBinaryBlob);
///         __hip_register_globals(__hip_gpubin_handle);
///     }
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
  bool IsHIP = CGM.getLangOpts().HIP;
  bool IsCUDA = CGM.getLangOpts().CUDA;
  // No need to generate ctors/dtors if there is no GPU binary.
  StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
  if (CudaGpuBinaryFileName.empty() && !IsHIP)
    return nullptr;
  if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
      DeviceVars.empty())
    return nullptr;

  // void __{cuda|hip}_register_globals(void* handle);
  llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
  // We always need a function to pass in as callback. Create a dummy
  // implementation if we don't need to register anything.
  if (RelocatableDeviceCode && !RegisterGlobalsFunc)
    RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());

  // void ** __{cuda|hip}RegisterFatBinary(void *);
  llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
      addUnderscoredPrefixToName("RegisterFatBinary"));
  // struct { int magic, int version, void * gpu_binary, void * dont_care };
  llvm::StructType *FatbinWrapperTy =
      llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);

  // Register GPU binary with the CUDA runtime, store returned handle in a
  // global variable and save a reference in GpuBinaryHandle to be cleaned up
  // in destructor on exit. Then associate all known kernels with the GPU binary
  // handle so CUDA runtime can figure out what to call on the GPU side.
  std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
  if (!CudaGpuBinaryFileName.empty()) {
    llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr =
        llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName);
    if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
      CGM.getDiags().Report(diag::err_cannot_open_file)
          << CudaGpuBinaryFileName << EC.message();
      return nullptr;
    }
    CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
  }

  llvm::Function *ModuleCtorFunc = llvm::Function::Create(
      llvm::FunctionType::get(VoidTy, false),
      llvm::GlobalValue::InternalLinkage,
      addUnderscoredPrefixToName("_module_ctor"), &TheModule);
  llvm::BasicBlock *CtorEntryBB =
      llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
  CGBuilderTy CtorBuilder(CGM, Context);

  CtorBuilder.SetInsertPoint(CtorEntryBB);

  const char *FatbinConstantName;
  const char *FatbinSectionName;
  const char *ModuleIDSectionName;
  StringRef ModuleIDPrefix;
  llvm::Constant *FatBinStr;
  unsigned FatMagic;
  if (IsHIP) {
    FatbinConstantName = ".hip_fatbin";
    FatbinSectionName = ".hipFatBinSegment";

    ModuleIDSectionName = "__hip_module_id";
    ModuleIDPrefix = "__hip_";

    if (CudaGpuBinary) {
      // If fatbin is available from early finalization, create a string
      // literal containing the fat binary loaded from the given file.
      const unsigned HIPCodeObjectAlign = 4096;
      FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "",
                                    FatbinConstantName, HIPCodeObjectAlign);
    } else {
      // If fatbin is not available, create an external symbol
      // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
      // to contain the fat binary but will be populated somewhere else,
      // e.g. by lld through link script.
      FatBinStr = new llvm::GlobalVariable(
        CGM.getModule(), CGM.Int8Ty,
        /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
        "__hip_fatbin", nullptr,
        llvm::GlobalVariable::NotThreadLocal);
      cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
    }

    FatMagic = HIPFatMagic;
  } else {
    if (RelocatableDeviceCode)
      FatbinConstantName = CGM.getTriple().isMacOSX()
                               ? "__NV_CUDA,__nv_relfatbin"
                               : "__nv_relfatbin";
    else
      FatbinConstantName =
          CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
    // NVIDIA's cuobjdump looks for fatbins in this section.
    FatbinSectionName =
        CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";

    ModuleIDSectionName = CGM.getTriple().isMacOSX()
                              ? "__NV_CUDA,__nv_module_id"
                              : "__nv_module_id";
    ModuleIDPrefix = "__nv_";

    // For CUDA, create a string literal containing the fat binary loaded from
    // the given file.
    FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "",
                                  FatbinConstantName, 8);
    FatMagic = CudaFatMagic;
  }

  // Create initialized wrapper structure that points to the loaded GPU binary
  ConstantInitBuilder Builder(CGM);
  auto Values = Builder.beginStruct(FatbinWrapperTy);
  // Fatbin wrapper magic.
  Values.addInt(IntTy, FatMagic);
  // Fatbin version.
  Values.addInt(IntTy, 1);
  // Data.
  Values.add(FatBinStr);
  // Unused in fatbin v1.
  Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
  llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
      addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
      /*constant*/ true);
  FatbinWrapper->setSection(FatbinSectionName);

  // There is only one HIP fat binary per linked module, however there are
  // multiple constructor functions. Make sure the fat binary is registered
  // only once. The constructor functions are executed by the dynamic loader
  // before the program gains control. The dynamic loader cannot execute the
  // constructor functions concurrently since doing that would not guarantee
  // thread safety of the loaded program. Therefore we can assume sequential
  // execution of constructor functions here.
  if (IsHIP) {
    auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
        llvm::GlobalValue::LinkOnceAnyLinkage;
    llvm::BasicBlock *IfBlock =
        llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
    llvm::BasicBlock *ExitBlock =
        llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
    // The name, size, and initialization pattern of this variable is part
    // of HIP ABI.
    GpuBinaryHandle = new llvm::GlobalVariable(
        TheModule, VoidPtrPtrTy, /*isConstant=*/false,
        Linkage,
        /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
        "__hip_gpubin_handle");
    if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage)
      GpuBinaryHandle->setComdat(
          CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName()));
    GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
    // Prevent the weak symbol in different shared libraries being merged.
    if (Linkage != llvm::GlobalValue::InternalLinkage)
      GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
    Address GpuBinaryAddr(
        GpuBinaryHandle, VoidPtrPtrTy,
        CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
    {
      auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
      llvm::Constant *Zero =
          llvm::Constant::getNullValue(HandleValue->getType());
      llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
      CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
    }
    {
      CtorBuilder.SetInsertPoint(IfBlock);
      // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
      llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
          RegisterFatbinFunc,
          CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
      CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
      CtorBuilder.CreateBr(ExitBlock);
    }
    {
      CtorBuilder.SetInsertPoint(ExitBlock);
      // Call __hip_register_globals(GpuBinaryHandle);
      if (RegisterGlobalsFunc) {
        auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
        CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
      }
    }
  } else if (!RelocatableDeviceCode) {
    // Register binary with CUDA runtime. This is substantially different in
    // default mode vs. separate compilation!
    // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
    llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
        RegisterFatbinFunc,
        CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
    GpuBinaryHandle = new llvm::GlobalVariable(
        TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
        llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
    GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
    CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
                                   CGM.getPointerAlign());

    // Call __cuda_register_globals(GpuBinaryHandle);
    if (RegisterGlobalsFunc)
      CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);

    // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
    if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
                           CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
      // void __cudaRegisterFatBinaryEnd(void **);
      llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
          llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
          "__cudaRegisterFatBinaryEnd");
      CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
    }
  } else {
    // Generate a unique module ID.
    SmallString<64> ModuleID;
    llvm::raw_svector_ostream OS(ModuleID);
    OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
    llvm::Constant *ModuleIDConstant = makeConstantArray(
        std::string(ModuleID.str()), "", ModuleIDSectionName, 32, /*AddNull=*/true);

    // Create an alias for the FatbinWrapper that nvcc will look for.
    llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
                              Twine("__fatbinwrap") + ModuleID, FatbinWrapper);

    // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
    // void *, void (*)(void **))
    SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
    RegisterLinkedBinaryName += ModuleID;
    llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
        getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);

    assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
    llvm::Value *Args[] = {RegisterGlobalsFunc,
                           CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
                           ModuleIDConstant,
                           makeDummyFunction(getCallbackFnTy())};
    CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
  }

  // Create destructor and register it with atexit() the way NVCC does it. Doing
  // it during regular destructor phase worked in CUDA before 9.2 but results in
  // double-free in 9.2.
  if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
    // extern "C" int atexit(void (*f)(void));
    llvm::FunctionType *AtExitTy =
        llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
    llvm::FunctionCallee AtExitFunc =
        CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
                                  /*Local=*/true);
    CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
  }

  CtorBuilder.CreateRetVoid();
  return ModuleCtorFunc;
}

/// Creates a global destructor function that unregisters the GPU code blob
/// registered by constructor.
///
/// For CUDA:
/// \code
/// void __cuda_module_dtor() {
///     __cudaUnregisterFatBinary(Handle);
/// }
/// \endcode
///
/// For HIP:
/// \code
/// void __hip_module_dtor() {
///     if (__hip_gpubin_handle) {
///         __hipUnregisterFatBinary(__hip_gpubin_handle);
///         __hip_gpubin_handle = 0;
///     }
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
  // No need for destructor if we don't have a handle to unregister.
  if (!GpuBinaryHandle)
    return nullptr;

  // void __cudaUnregisterFatBinary(void ** handle);
  llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
      addUnderscoredPrefixToName("UnregisterFatBinary"));

  llvm::Function *ModuleDtorFunc = llvm::Function::Create(
      llvm::FunctionType::get(VoidTy, false),
      llvm::GlobalValue::InternalLinkage,
      addUnderscoredPrefixToName("_module_dtor"), &TheModule);

  llvm::BasicBlock *DtorEntryBB =
      llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
  CGBuilderTy DtorBuilder(CGM, Context);
  DtorBuilder.SetInsertPoint(DtorEntryBB);

  Address GpuBinaryAddr(
      GpuBinaryHandle, GpuBinaryHandle->getValueType(),
      CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
  auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
  // There is only one HIP fat binary per linked module, however there are
  // multiple destructor functions. Make sure the fat binary is unregistered
  // only once.
  if (CGM.getLangOpts().HIP) {
    llvm::BasicBlock *IfBlock =
        llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
    llvm::BasicBlock *ExitBlock =
        llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
    llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
    llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
    DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);

    DtorBuilder.SetInsertPoint(IfBlock);
    DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
    DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
    DtorBuilder.CreateBr(ExitBlock);

    DtorBuilder.SetInsertPoint(ExitBlock);
  } else {
    DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
  }
  DtorBuilder.CreateRetVoid();
  return ModuleDtorFunc;
}

CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
  return new CGNVCUDARuntime(CGM);
}

void CGNVCUDARuntime::internalizeDeviceSideVar(
    const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
  // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
  // global variables become internal definitions. These have to be internal in
  // order to prevent name conflicts with global host variables with the same
  // name in a different TUs.
  //
  // For -fgpu-rdc, the shadow variables should not be internalized because
  // they may be accessed by different TU.
  if (CGM.getLangOpts().GPURelocatableDeviceCode)
    return;

  // __shared__ variables are odd. Shadows do get created, but
  // they are not registered with the CUDA runtime, so they
  // can't really be used to access their device-side
  // counterparts. It's not clear yet whether it's nvcc's bug or
  // a feature, but we've got to do the same for compatibility.
  if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
      D->hasAttr<CUDASharedAttr>() ||
      D->getType()->isCUDADeviceBuiltinSurfaceType() ||
      D->getType()->isCUDADeviceBuiltinTextureType()) {
    Linkage = llvm::GlobalValue::InternalLinkage;
  }
}

void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
                                            llvm::GlobalVariable &GV) {
  if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
    // Shadow variables and their properties must be registered with CUDA
    // runtime. Skip Extern global variables, which will be registered in
    // the TU where they are defined.
    //
    // Don't register a C++17 inline variable. The local symbol can be
    // discarded and referencing a discarded local symbol from outside the
    // comdat (__cuda_register_globals) is disallowed by the ELF spec.
    //
    // HIP managed variables need to be always recorded in device and host
    // compilations for transformation.
    //
    // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
    // added to llvm.compiler-used, therefore they are safe to be registered.
    if ((!D->hasExternalStorage() && !D->isInline()) ||
        CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) ||
        D->hasAttr<HIPManagedAttr>()) {
      registerDeviceVar(D, GV, !D->hasDefinition(),
                        D->hasAttr<CUDAConstantAttr>());
    }
  } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
             D->getType()->isCUDADeviceBuiltinTextureType()) {
    // Builtin surfaces and textures and their template arguments are
    // also registered with CUDA runtime.
    const auto *TD = cast<ClassTemplateSpecializationDecl>(
        D->getType()->castAs<RecordType>()->getDecl());
    const TemplateArgumentList &Args = TD->getTemplateArgs();
    if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
      assert(Args.size() == 2 &&
             "Unexpected number of template arguments of CUDA device "
             "builtin surface type.");
      auto SurfType = Args[1].getAsIntegral();
      if (!D->hasExternalStorage())
        registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
    } else {
      assert(Args.size() == 3 &&
             "Unexpected number of template arguments of CUDA device "
             "builtin texture type.");
      auto TexType = Args[1].getAsIntegral();
      auto Normalized = Args[2].getAsIntegral();
      if (!D->hasExternalStorage())
        registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
                          Normalized.getZExtValue());
    }
  }
}

// Transform managed variables to pointers to managed variables in device code.
// Each use of the original managed variable is replaced by a load from the
// transformed managed variable. The transformed managed variable contains
// the address of managed memory which will be allocated by the runtime.
void CGNVCUDARuntime::transformManagedVars() {
  for (auto &&Info : DeviceVars) {
    llvm::GlobalVariable *Var = Info.Var;
    if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
        Info.Flags.isManaged()) {
      auto *ManagedVar = new llvm::GlobalVariable(
          CGM.getModule(), Var->getType(),
          /*isConstant=*/false, Var->getLinkage(),
          /*Init=*/Var->isDeclaration()
              ? nullptr
              : llvm::ConstantPointerNull::get(Var->getType()),
          /*Name=*/"", /*InsertBefore=*/nullptr,
          llvm::GlobalVariable::NotThreadLocal,
          CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
      ManagedVar->setDSOLocal(Var->isDSOLocal());
      ManagedVar->setVisibility(Var->getVisibility());
      ManagedVar->setExternallyInitialized(true);
      replaceManagedVar(Var, ManagedVar);
      ManagedVar->takeName(Var);
      Var->setName(Twine(ManagedVar->getName()) + ".managed");
      // Keep managed variables even if they are not used in device code since
      // they need to be allocated by the runtime.
      if (!Var->isDeclaration()) {
        assert(!ManagedVar->isDeclaration());
        CGM.addCompilerUsedGlobal(Var);
        CGM.addCompilerUsedGlobal(ManagedVar);
      }
    }
  }
}

// Creates offloading entries for all the kernels and globals that must be
// registered. The linker will provide a pointer to this section so we can
// register the symbols with the linked device image.
void CGNVCUDARuntime::createOffloadingEntries() {
  llvm::OpenMPIRBuilder OMPBuilder(CGM.getModule());
  OMPBuilder.initialize();

  StringRef Section = CGM.getLangOpts().HIP ? "hip_offloading_entries"
                                            : "cuda_offloading_entries";
  for (KernelInfo &I : EmittedKernels)
    OMPBuilder.emitOffloadingEntry(KernelHandles[I.Kernel->getName()],
                                   getDeviceSideName(cast<NamedDecl>(I.D)), 0,
                                   DeviceVarFlags::OffloadGlobalEntry, Section);

  for (VarInfo &I : DeviceVars) {
    uint64_t VarSize =
        CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType());
    if (I.Flags.getKind() == DeviceVarFlags::Variable) {
      OMPBuilder.emitOffloadingEntry(
          I.Var, getDeviceSideName(I.D), VarSize,
          I.Flags.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry
                              : DeviceVarFlags::OffloadGlobalEntry,
          Section);
    } else if (I.Flags.getKind() == DeviceVarFlags::Surface) {
      OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize,
                                     DeviceVarFlags::OffloadGlobalSurfaceEntry,
                                     Section);
    } else if (I.Flags.getKind() == DeviceVarFlags::Texture) {
      OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize,
                                     DeviceVarFlags::OffloadGlobalTextureEntry,
                                     Section);
    }
  }
}

// Returns module constructor to be added.
llvm::Function *CGNVCUDARuntime::finalizeModule() {
  if (CGM.getLangOpts().CUDAIsDevice) {
    transformManagedVars();

    // Mark ODR-used device variables as compiler used to prevent it from being
    // eliminated by optimization. This is necessary for device variables
    // ODR-used by host functions. Sema correctly marks them as ODR-used no
    // matter whether they are ODR-used by device or host functions.
    //
    // We do not need to do this if the variable has used attribute since it
    // has already been added.
    //
    // Static device variables have been externalized at this point, therefore
    // variables with LLVM private or internal linkage need not be added.
    for (auto &&Info : DeviceVars) {
      auto Kind = Info.Flags.getKind();
      if (!Info.Var->isDeclaration() &&
          !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) &&
          (Kind == DeviceVarFlags::Variable ||
           Kind == DeviceVarFlags::Surface ||
           Kind == DeviceVarFlags::Texture) &&
          Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) {
        CGM.addCompilerUsedGlobal(Info.Var);
      }
    }
    return nullptr;
  }
  if (CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode)
    createOffloadingEntries();
  else
    return makeModuleCtorFunction();

  return nullptr;
}

llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
                                                    GlobalDecl GD) {
  auto Loc = KernelHandles.find(F->getName());
  if (Loc != KernelHandles.end())
    return Loc->second;

  if (!CGM.getLangOpts().HIP) {
    KernelHandles[F->getName()] = F;
    KernelStubs[F] = F;
    return F;
  }

  auto *Var = new llvm::GlobalVariable(
      TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
      /*Initializer=*/nullptr,
      CGM.getMangledName(
          GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
  Var->setAlignment(CGM.getPointerAlign().getAsAlign());
  Var->setDSOLocal(F->isDSOLocal());
  Var->setVisibility(F->getVisibility());
  CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var);
  KernelHandles[F->getName()] = Var;
  KernelStubs[Var] = F;
  return Var;
}