1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
//===- WatchedLiteralsSolver.cpp --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a SAT solver implementation that can be used by dataflow
// analyses.
//
//===----------------------------------------------------------------------===//
#include <cassert>
#include <cstdint>
#include <iterator>
#include <queue>
#include <vector>
#include "clang/Analysis/FlowSensitive/Solver.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
namespace clang {
namespace dataflow {
// `WatchedLiteralsSolver` is an implementation of Algorithm D from Knuth's
// The Art of Computer Programming Volume 4: Satisfiability, Fascicle 6. It is
// based on the backtracking DPLL algorithm [1], keeps references to a single
// "watched" literal per clause, and uses a set of "active" variables to perform
// unit propagation.
//
// The solver expects that its input is a boolean formula in conjunctive normal
// form that consists of clauses of at least one literal. A literal is either a
// boolean variable or its negation. Below we define types, data structures, and
// utilities that are used to represent boolean formulas in conjunctive normal
// form.
//
// [1] https://en.wikipedia.org/wiki/DPLL_algorithm
/// Boolean variables are represented as positive integers.
using Variable = uint32_t;
/// A null boolean variable is used as a placeholder in various data structures
/// and algorithms.
static constexpr Variable NullVar = 0;
/// Literals are represented as positive integers. Specifically, for a boolean
/// variable `V` that is represented as the positive integer `I`, the positive
/// literal `V` is represented as the integer `2*I` and the negative literal
/// `!V` is represented as the integer `2*I+1`.
using Literal = uint32_t;
/// A null literal is used as a placeholder in various data structures and
/// algorithms.
static constexpr Literal NullLit = 0;
/// Returns the positive literal `V`.
static constexpr Literal posLit(Variable V) { return 2 * V; }
/// Returns the negative literal `!V`.
static constexpr Literal negLit(Variable V) { return 2 * V + 1; }
/// Returns the negated literal `!L`.
static constexpr Literal notLit(Literal L) { return L ^ 1; }
/// Returns the variable of `L`.
static constexpr Variable var(Literal L) { return L >> 1; }
/// Clause identifiers are represented as positive integers.
using ClauseID = uint32_t;
/// A null clause identifier is used as a placeholder in various data structures
/// and algorithms.
static constexpr ClauseID NullClause = 0;
/// A boolean formula in conjunctive normal form.
struct BooleanFormula {
/// `LargestVar` is equal to the largest positive integer that represents a
/// variable in the formula.
const Variable LargestVar;
/// Literals of all clauses in the formula.
///
/// The element at index 0 stands for the literal in the null clause. It is
/// set to 0 and isn't used. Literals of clauses in the formula start from the
/// element at index 1.
///
/// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of
/// `Clauses` will be `[0, L1, L2, L2, L3, L4]`.
std::vector<Literal> Clauses;
/// Start indices of clauses of the formula in `Clauses`.
///
/// The element at index 0 stands for the start index of the null clause. It
/// is set to 0 and isn't used. Start indices of clauses in the formula start
/// from the element at index 1.
///
/// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of
/// `ClauseStarts` will be `[0, 1, 3]`. Note that the literals of the first
/// clause always start at index 1. The start index for the literals of the
/// second clause depends on the size of the first clause and so on.
std::vector<size_t> ClauseStarts;
/// Maps literals (indices of the vector) to clause identifiers (elements of
/// the vector) that watch the respective literals.
///
/// For a given clause, its watched literal is always its first literal in
/// `Clauses`. This invariant is maintained when watched literals change.
std::vector<ClauseID> WatchedHead;
/// Maps clause identifiers (elements of the vector) to identifiers of other
/// clauses that watch the same literals, forming a set of linked lists.
///
/// The element at index 0 stands for the identifier of the clause that
/// follows the null clause. It is set to 0 and isn't used. Identifiers of
/// clauses in the formula start from the element at index 1.
std::vector<ClauseID> NextWatched;
/// Stores the variable identifier and value location for atomic booleans in
/// the formula.
llvm::DenseMap<Variable, AtomicBoolValue *> Atomics;
explicit BooleanFormula(Variable LargestVar,
llvm::DenseMap<Variable, AtomicBoolValue *> Atomics)
: LargestVar(LargestVar), Atomics(std::move(Atomics)) {
Clauses.push_back(0);
ClauseStarts.push_back(0);
NextWatched.push_back(0);
const size_t NumLiterals = 2 * LargestVar + 1;
WatchedHead.resize(NumLiterals + 1, 0);
}
/// Adds the `L1 v L2 v L3` clause to the formula. If `L2` or `L3` are
/// `NullLit` they are respectively omitted from the clause.
///
/// Requirements:
///
/// `L1` must not be `NullLit`.
///
/// All literals in the input that are not `NullLit` must be distinct.
void addClause(Literal L1, Literal L2 = NullLit, Literal L3 = NullLit) {
// The literals are guaranteed to be distinct from properties of BoolValue
// and the construction in `buildBooleanFormula`.
assert(L1 != NullLit && L1 != L2 && L1 != L3 &&
(L2 != L3 || L2 == NullLit));
const ClauseID C = ClauseStarts.size();
const size_t S = Clauses.size();
ClauseStarts.push_back(S);
Clauses.push_back(L1);
if (L2 != NullLit)
Clauses.push_back(L2);
if (L3 != NullLit)
Clauses.push_back(L3);
// Designate the first literal as the "watched" literal of the clause.
NextWatched.push_back(WatchedHead[L1]);
WatchedHead[L1] = C;
}
/// Returns the number of literals in clause `C`.
size_t clauseSize(ClauseID C) const {
return C == ClauseStarts.size() - 1 ? Clauses.size() - ClauseStarts[C]
: ClauseStarts[C + 1] - ClauseStarts[C];
}
/// Returns the literals of clause `C`.
llvm::ArrayRef<Literal> clauseLiterals(ClauseID C) const {
return llvm::ArrayRef<Literal>(&Clauses[ClauseStarts[C]], clauseSize(C));
}
};
/// Converts the conjunction of `Vals` into a formula in conjunctive normal
/// form where each clause has at least one and at most three literals.
BooleanFormula buildBooleanFormula(const llvm::DenseSet<BoolValue *> &Vals) {
// The general strategy of the algorithm implemented below is to map each
// of the sub-values in `Vals` to a unique variable and use these variables in
// the resulting CNF expression to avoid exponential blow up. The number of
// literals in the resulting formula is guaranteed to be linear in the number
// of sub-values in `Vals`.
// Map each sub-value in `Vals` to a unique variable.
llvm::DenseMap<BoolValue *, Variable> SubValsToVar;
// Store variable identifiers and value location of atomic booleans.
llvm::DenseMap<Variable, AtomicBoolValue *> Atomics;
Variable NextVar = 1;
{
std::queue<BoolValue *> UnprocessedSubVals;
for (BoolValue *Val : Vals)
UnprocessedSubVals.push(Val);
while (!UnprocessedSubVals.empty()) {
Variable Var = NextVar;
BoolValue *Val = UnprocessedSubVals.front();
UnprocessedSubVals.pop();
if (!SubValsToVar.try_emplace(Val, Var).second)
continue;
++NextVar;
// Visit the sub-values of `Val`.
switch (Val->getKind()) {
case Value::Kind::Conjunction: {
auto *C = cast<ConjunctionValue>(Val);
UnprocessedSubVals.push(&C->getLeftSubValue());
UnprocessedSubVals.push(&C->getRightSubValue());
break;
}
case Value::Kind::Disjunction: {
auto *D = cast<DisjunctionValue>(Val);
UnprocessedSubVals.push(&D->getLeftSubValue());
UnprocessedSubVals.push(&D->getRightSubValue());
break;
}
case Value::Kind::Negation: {
auto *N = cast<NegationValue>(Val);
UnprocessedSubVals.push(&N->getSubVal());
break;
}
case Value::Kind::Implication: {
auto *I = cast<ImplicationValue>(Val);
UnprocessedSubVals.push(&I->getLeftSubValue());
UnprocessedSubVals.push(&I->getRightSubValue());
break;
}
case Value::Kind::Biconditional: {
auto *B = cast<BiconditionalValue>(Val);
UnprocessedSubVals.push(&B->getLeftSubValue());
UnprocessedSubVals.push(&B->getRightSubValue());
break;
}
case Value::Kind::TopBool:
// Nothing more to do. This `TopBool` instance has already been mapped
// to a fresh solver variable (`NextVar`, above) and is thereafter
// anonymous. The solver never sees `Top`.
break;
case Value::Kind::AtomicBool: {
Atomics[Var] = cast<AtomicBoolValue>(Val);
break;
}
default:
llvm_unreachable("buildBooleanFormula: unhandled value kind");
}
}
}
auto GetVar = [&SubValsToVar](const BoolValue *Val) {
auto ValIt = SubValsToVar.find(Val);
assert(ValIt != SubValsToVar.end());
return ValIt->second;
};
BooleanFormula Formula(NextVar - 1, std::move(Atomics));
std::vector<bool> ProcessedSubVals(NextVar, false);
// Add a conjunct for each variable that represents a top-level conjunction
// value in `Vals`.
for (BoolValue *Val : Vals)
Formula.addClause(posLit(GetVar(Val)));
// Add conjuncts that represent the mapping between newly-created variables
// and their corresponding sub-values.
std::queue<BoolValue *> UnprocessedSubVals;
for (BoolValue *Val : Vals)
UnprocessedSubVals.push(Val);
while (!UnprocessedSubVals.empty()) {
const BoolValue *Val = UnprocessedSubVals.front();
UnprocessedSubVals.pop();
const Variable Var = GetVar(Val);
if (ProcessedSubVals[Var])
continue;
ProcessedSubVals[Var] = true;
if (auto *C = dyn_cast<ConjunctionValue>(Val)) {
const Variable LeftSubVar = GetVar(&C->getLeftSubValue());
const Variable RightSubVar = GetVar(&C->getRightSubValue());
if (LeftSubVar == RightSubVar) {
// `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is
// already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
Formula.addClause(negLit(Var), posLit(LeftSubVar));
Formula.addClause(posLit(Var), negLit(LeftSubVar));
// Visit a sub-value of `Val` (pick any, they are identical).
UnprocessedSubVals.push(&C->getLeftSubValue());
} else {
// `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v !B)`
// which is already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
Formula.addClause(negLit(Var), posLit(LeftSubVar));
Formula.addClause(negLit(Var), posLit(RightSubVar));
Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar));
// Visit the sub-values of `Val`.
UnprocessedSubVals.push(&C->getLeftSubValue());
UnprocessedSubVals.push(&C->getRightSubValue());
}
} else if (auto *D = dyn_cast<DisjunctionValue>(Val)) {
const Variable LeftSubVar = GetVar(&D->getLeftSubValue());
const Variable RightSubVar = GetVar(&D->getRightSubValue());
if (LeftSubVar == RightSubVar) {
// `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is
// already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
Formula.addClause(negLit(Var), posLit(LeftSubVar));
Formula.addClause(posLit(Var), negLit(LeftSubVar));
// Visit a sub-value of `Val` (pick any, they are identical).
UnprocessedSubVals.push(&D->getLeftSubValue());
} else {
// `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v !B)`
// which is already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
Formula.addClause(negLit(Var), posLit(LeftSubVar), posLit(RightSubVar));
Formula.addClause(posLit(Var), negLit(LeftSubVar));
Formula.addClause(posLit(Var), negLit(RightSubVar));
// Visit the sub-values of `Val`.
UnprocessedSubVals.push(&D->getLeftSubValue());
UnprocessedSubVals.push(&D->getRightSubValue());
}
} else if (auto *N = dyn_cast<NegationValue>(Val)) {
const Variable SubVar = GetVar(&N->getSubVal());
// `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is already in
// conjunctive normal form. Below we add each of the conjuncts of the
// latter expression to the result.
Formula.addClause(negLit(Var), negLit(SubVar));
Formula.addClause(posLit(Var), posLit(SubVar));
// Visit the sub-values of `Val`.
UnprocessedSubVals.push(&N->getSubVal());
} else if (auto *I = dyn_cast<ImplicationValue>(Val)) {
const Variable LeftSubVar = GetVar(&I->getLeftSubValue());
const Variable RightSubVar = GetVar(&I->getRightSubValue());
// `X <=> (A => B)` is equivalent to
// `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in
// conjunctive normal form. Below we add each of the conjuncts of the
// latter expression to the result.
Formula.addClause(posLit(Var), posLit(LeftSubVar));
Formula.addClause(posLit(Var), negLit(RightSubVar));
Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar));
// Visit the sub-values of `Val`.
UnprocessedSubVals.push(&I->getLeftSubValue());
UnprocessedSubVals.push(&I->getRightSubValue());
} else if (auto *B = dyn_cast<BiconditionalValue>(Val)) {
const Variable LeftSubVar = GetVar(&B->getLeftSubValue());
const Variable RightSubVar = GetVar(&B->getRightSubValue());
if (LeftSubVar == RightSubVar) {
// `X <=> (A <=> A)` is equvalent to `X` which is already in
// conjunctive normal form. Below we add each of the conjuncts of the
// latter expression to the result.
Formula.addClause(posLit(Var));
// No need to visit the sub-values of `Val`.
} else {
// `X <=> (A <=> B)` is equivalent to
// `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which is
// already in conjunctive normal form. Below we add each of the conjuncts
// of the latter expression to the result.
Formula.addClause(posLit(Var), posLit(LeftSubVar), posLit(RightSubVar));
Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar));
Formula.addClause(negLit(Var), posLit(LeftSubVar), negLit(RightSubVar));
Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar));
// Visit the sub-values of `Val`.
UnprocessedSubVals.push(&B->getLeftSubValue());
UnprocessedSubVals.push(&B->getRightSubValue());
}
}
}
return Formula;
}
class WatchedLiteralsSolverImpl {
/// A boolean formula in conjunctive normal form that the solver will attempt
/// to prove satisfiable. The formula will be modified in the process.
BooleanFormula Formula;
/// The search for a satisfying assignment of the variables in `Formula` will
/// proceed in levels, starting from 1 and going up to `Formula.LargestVar`
/// (inclusive). The current level is stored in `Level`. At each level the
/// solver will assign a value to an unassigned variable. If this leads to a
/// consistent partial assignment, `Level` will be incremented. Otherwise, if
/// it results in a conflict, the solver will backtrack by decrementing
/// `Level` until it reaches the most recent level where a decision was made.
size_t Level = 0;
/// Maps levels (indices of the vector) to variables (elements of the vector)
/// that are assigned values at the respective levels.
///
/// The element at index 0 isn't used. Variables start from the element at
/// index 1.
std::vector<Variable> LevelVars;
/// State of the solver at a particular level.
enum class State : uint8_t {
/// Indicates that the solver made a decision.
Decision = 0,
/// Indicates that the solver made a forced move.
Forced = 1,
};
/// State of the solver at a particular level. It keeps track of previous
/// decisions that the solver can refer to when backtracking.
///
/// The element at index 0 isn't used. States start from the element at index
/// 1.
std::vector<State> LevelStates;
enum class Assignment : int8_t {
Unassigned = -1,
AssignedFalse = 0,
AssignedTrue = 1
};
/// Maps variables (indices of the vector) to their assignments (elements of
/// the vector).
///
/// The element at index 0 isn't used. Variable assignments start from the
/// element at index 1.
std::vector<Assignment> VarAssignments;
/// A set of unassigned variables that appear in watched literals in
/// `Formula`. The vector is guaranteed to contain unique elements.
std::vector<Variable> ActiveVars;
public:
explicit WatchedLiteralsSolverImpl(const llvm::DenseSet<BoolValue *> &Vals)
: Formula(buildBooleanFormula(Vals)), LevelVars(Formula.LargestVar + 1),
LevelStates(Formula.LargestVar + 1) {
assert(!Vals.empty());
// Initialize the state at the root level to a decision so that in
// `reverseForcedMoves` we don't have to check that `Level >= 0` on each
// iteration.
LevelStates[0] = State::Decision;
// Initialize all variables as unassigned.
VarAssignments.resize(Formula.LargestVar + 1, Assignment::Unassigned);
// Initialize the active variables.
for (Variable Var = Formula.LargestVar; Var != NullVar; --Var) {
if (isWatched(posLit(Var)) || isWatched(negLit(Var)))
ActiveVars.push_back(Var);
}
}
Solver::Result solve() && {
size_t I = 0;
while (I < ActiveVars.size()) {
// Assert that the following invariants hold:
// 1. All active variables are unassigned.
// 2. All active variables form watched literals.
// 3. Unassigned variables that form watched literals are active.
// FIXME: Consider replacing these with test cases that fail if the any
// of the invariants is broken. That might not be easy due to the
// transformations performed by `buildBooleanFormula`.
assert(activeVarsAreUnassigned());
assert(activeVarsFormWatchedLiterals());
assert(unassignedVarsFormingWatchedLiteralsAreActive());
const Variable ActiveVar = ActiveVars[I];
// Look for unit clauses that contain the active variable.
const bool unitPosLit = watchedByUnitClause(posLit(ActiveVar));
const bool unitNegLit = watchedByUnitClause(negLit(ActiveVar));
if (unitPosLit && unitNegLit) {
// We found a conflict!
// Backtrack and rewind the `Level` until the most recent non-forced
// assignment.
reverseForcedMoves();
// If the root level is reached, then all possible assignments lead to
// a conflict.
if (Level == 0)
return Solver::Result::Unsatisfiable();
// Otherwise, take the other branch at the most recent level where a
// decision was made.
LevelStates[Level] = State::Forced;
const Variable Var = LevelVars[Level];
VarAssignments[Var] = VarAssignments[Var] == Assignment::AssignedTrue
? Assignment::AssignedFalse
: Assignment::AssignedTrue;
updateWatchedLiterals();
} else if (unitPosLit || unitNegLit) {
// We found a unit clause! The value of its unassigned variable is
// forced.
++Level;
LevelVars[Level] = ActiveVar;
LevelStates[Level] = State::Forced;
VarAssignments[ActiveVar] =
unitPosLit ? Assignment::AssignedTrue : Assignment::AssignedFalse;
// Remove the variable that was just assigned from the set of active
// variables.
if (I + 1 < ActiveVars.size()) {
// Replace the variable that was just assigned with the last active
// variable for efficient removal.
ActiveVars[I] = ActiveVars.back();
} else {
// This was the last active variable. Repeat the process from the
// beginning.
I = 0;
}
ActiveVars.pop_back();
updateWatchedLiterals();
} else if (I + 1 == ActiveVars.size()) {
// There are no remaining unit clauses in the formula! Make a decision
// for one of the active variables at the current level.
++Level;
LevelVars[Level] = ActiveVar;
LevelStates[Level] = State::Decision;
VarAssignments[ActiveVar] = decideAssignment(ActiveVar);
// Remove the variable that was just assigned from the set of active
// variables.
ActiveVars.pop_back();
updateWatchedLiterals();
// This was the last active variable. Repeat the process from the
// beginning.
I = 0;
} else {
++I;
}
}
return Solver::Result::Satisfiable(buildSolution());
}
private:
/// Returns a satisfying truth assignment to the atomic values in the boolean
/// formula.
llvm::DenseMap<AtomicBoolValue *, Solver::Result::Assignment>
buildSolution() {
llvm::DenseMap<AtomicBoolValue *, Solver::Result::Assignment> Solution;
for (auto &Atomic : Formula.Atomics) {
// A variable may have a definite true/false assignment, or it may be
// unassigned indicating its truth value does not affect the result of
// the formula. Unassigned variables are assigned to true as a default.
Solution[Atomic.second] =
VarAssignments[Atomic.first] == Assignment::AssignedFalse
? Solver::Result::Assignment::AssignedFalse
: Solver::Result::Assignment::AssignedTrue;
}
return Solution;
}
/// Reverses forced moves until the most recent level where a decision was
/// made on the assignment of a variable.
void reverseForcedMoves() {
for (; LevelStates[Level] == State::Forced; --Level) {
const Variable Var = LevelVars[Level];
VarAssignments[Var] = Assignment::Unassigned;
// If the variable that we pass through is watched then we add it to the
// active variables.
if (isWatched(posLit(Var)) || isWatched(negLit(Var)))
ActiveVars.push_back(Var);
}
}
/// Updates watched literals that are affected by a variable assignment.
void updateWatchedLiterals() {
const Variable Var = LevelVars[Level];
// Update the watched literals of clauses that currently watch the literal
// that falsifies `Var`.
const Literal FalseLit = VarAssignments[Var] == Assignment::AssignedTrue
? negLit(Var)
: posLit(Var);
ClauseID FalseLitWatcher = Formula.WatchedHead[FalseLit];
Formula.WatchedHead[FalseLit] = NullClause;
while (FalseLitWatcher != NullClause) {
const ClauseID NextFalseLitWatcher = Formula.NextWatched[FalseLitWatcher];
// Pick the first non-false literal as the new watched literal.
const size_t FalseLitWatcherStart = Formula.ClauseStarts[FalseLitWatcher];
size_t NewWatchedLitIdx = FalseLitWatcherStart + 1;
while (isCurrentlyFalse(Formula.Clauses[NewWatchedLitIdx]))
++NewWatchedLitIdx;
const Literal NewWatchedLit = Formula.Clauses[NewWatchedLitIdx];
const Variable NewWatchedLitVar = var(NewWatchedLit);
// Swap the old watched literal for the new one in `FalseLitWatcher` to
// maintain the invariant that the watched literal is at the beginning of
// the clause.
Formula.Clauses[NewWatchedLitIdx] = FalseLit;
Formula.Clauses[FalseLitWatcherStart] = NewWatchedLit;
// If the new watched literal isn't watched by any other clause and its
// variable isn't assigned we need to add it to the active variables.
if (!isWatched(NewWatchedLit) && !isWatched(notLit(NewWatchedLit)) &&
VarAssignments[NewWatchedLitVar] == Assignment::Unassigned)
ActiveVars.push_back(NewWatchedLitVar);
Formula.NextWatched[FalseLitWatcher] = Formula.WatchedHead[NewWatchedLit];
Formula.WatchedHead[NewWatchedLit] = FalseLitWatcher;
// Go to the next clause that watches `FalseLit`.
FalseLitWatcher = NextFalseLitWatcher;
}
}
/// Returns true if and only if one of the clauses that watch `Lit` is a unit
/// clause.
bool watchedByUnitClause(Literal Lit) const {
for (ClauseID LitWatcher = Formula.WatchedHead[Lit];
LitWatcher != NullClause;
LitWatcher = Formula.NextWatched[LitWatcher]) {
llvm::ArrayRef<Literal> Clause = Formula.clauseLiterals(LitWatcher);
// Assert the invariant that the watched literal is always the first one
// in the clause.
// FIXME: Consider replacing this with a test case that fails if the
// invariant is broken by `updateWatchedLiterals`. That might not be easy
// due to the transformations performed by `buildBooleanFormula`.
assert(Clause.front() == Lit);
if (isUnit(Clause))
return true;
}
return false;
}
/// Returns true if and only if `Clause` is a unit clause.
bool isUnit(llvm::ArrayRef<Literal> Clause) const {
return llvm::all_of(Clause.drop_front(),
[this](Literal L) { return isCurrentlyFalse(L); });
}
/// Returns true if and only if `Lit` evaluates to `false` in the current
/// partial assignment.
bool isCurrentlyFalse(Literal Lit) const {
return static_cast<int8_t>(VarAssignments[var(Lit)]) ==
static_cast<int8_t>(Lit & 1);
}
/// Returns true if and only if `Lit` is watched by a clause in `Formula`.
bool isWatched(Literal Lit) const {
return Formula.WatchedHead[Lit] != NullClause;
}
/// Returns an assignment for an unassigned variable.
Assignment decideAssignment(Variable Var) const {
return !isWatched(posLit(Var)) || isWatched(negLit(Var))
? Assignment::AssignedFalse
: Assignment::AssignedTrue;
}
/// Returns a set of all watched literals.
llvm::DenseSet<Literal> watchedLiterals() const {
llvm::DenseSet<Literal> WatchedLiterals;
for (Literal Lit = 2; Lit < Formula.WatchedHead.size(); Lit++) {
if (Formula.WatchedHead[Lit] == NullClause)
continue;
WatchedLiterals.insert(Lit);
}
return WatchedLiterals;
}
/// Returns true if and only if all active variables are unassigned.
bool activeVarsAreUnassigned() const {
return llvm::all_of(ActiveVars, [this](Variable Var) {
return VarAssignments[Var] == Assignment::Unassigned;
});
}
/// Returns true if and only if all active variables form watched literals.
bool activeVarsFormWatchedLiterals() const {
const llvm::DenseSet<Literal> WatchedLiterals = watchedLiterals();
return llvm::all_of(ActiveVars, [&WatchedLiterals](Variable Var) {
return WatchedLiterals.contains(posLit(Var)) ||
WatchedLiterals.contains(negLit(Var));
});
}
/// Returns true if and only if all unassigned variables that are forming
/// watched literals are active.
bool unassignedVarsFormingWatchedLiteralsAreActive() const {
const llvm::DenseSet<Variable> ActiveVarsSet(ActiveVars.begin(),
ActiveVars.end());
for (Literal Lit : watchedLiterals()) {
const Variable Var = var(Lit);
if (VarAssignments[Var] != Assignment::Unassigned)
continue;
if (ActiveVarsSet.contains(Var))
continue;
return false;
}
return true;
}
};
Solver::Result WatchedLiteralsSolver::solve(llvm::DenseSet<BoolValue *> Vals) {
return Vals.empty() ? Solver::Result::Satisfiable({{}})
: WatchedLiteralsSolverImpl(Vals).solve();
}
} // namespace dataflow
} // namespace clang
|