aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16/lib/Analysis/FlowSensitive/Transfer.cpp
blob: 0e6c484b67e7d06ec8df0be0d8fae8c652e95f02 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
//===-- Transfer.cpp --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines transfer functions that evaluate program statements and
//  update an environment accordingly.
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/FlowSensitive/Transfer.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/FlowSensitive/ControlFlowContext.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/NoopAnalysis.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/OperatorKinds.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <memory>
#include <tuple>

namespace clang {
namespace dataflow {

static BoolValue &evaluateBooleanEquality(const Expr &LHS, const Expr &RHS,
                                          Environment &Env) {
  if (auto *LHSValue =
          dyn_cast_or_null<BoolValue>(Env.getValue(LHS, SkipPast::Reference)))
    if (auto *RHSValue =
            dyn_cast_or_null<BoolValue>(Env.getValue(RHS, SkipPast::Reference)))
      return Env.makeIff(*LHSValue, *RHSValue);

  return Env.makeAtomicBoolValue();
}

// Functionally updates `V` such that any instances of `TopBool` are replaced
// with fresh atomic bools. Note: This implementation assumes that `B` is a
// tree; if `B` is a DAG, it will lose any sharing between subvalues that was
// present in the original .
static BoolValue &unpackValue(BoolValue &V, Environment &Env);

template <typename Derived, typename M>
BoolValue &unpackBinaryBoolValue(Environment &Env, BoolValue &B, M build) {
  auto &V = *cast<Derived>(&B);
  BoolValue &Left = V.getLeftSubValue();
  BoolValue &Right = V.getRightSubValue();
  BoolValue &ULeft = unpackValue(Left, Env);
  BoolValue &URight = unpackValue(Right, Env);

  if (&ULeft == &Left && &URight == &Right)
    return V;

  return (Env.*build)(ULeft, URight);
}

static BoolValue &unpackValue(BoolValue &V, Environment &Env) {
  switch (V.getKind()) {
  case Value::Kind::Integer:
  case Value::Kind::Reference:
  case Value::Kind::Pointer:
  case Value::Kind::Struct:
    llvm_unreachable("BoolValue cannot have any of these kinds.");

  case Value::Kind::AtomicBool:
    return V;

  case Value::Kind::TopBool:
    // Unpack `TopBool` into a fresh atomic bool.
    return Env.makeAtomicBoolValue();

  case Value::Kind::Negation: {
    auto &N = *cast<NegationValue>(&V);
    BoolValue &Sub = N.getSubVal();
    BoolValue &USub = unpackValue(Sub, Env);

    if (&USub == &Sub)
      return V;
    return Env.makeNot(USub);
  }
  case Value::Kind::Conjunction:
    return unpackBinaryBoolValue<ConjunctionValue>(Env, V,
                                                   &Environment::makeAnd);
  case Value::Kind::Disjunction:
    return unpackBinaryBoolValue<DisjunctionValue>(Env, V,
                                                   &Environment::makeOr);
  case Value::Kind::Implication:
    return unpackBinaryBoolValue<ImplicationValue>(
        Env, V, &Environment::makeImplication);
  case Value::Kind::Biconditional:
    return unpackBinaryBoolValue<BiconditionalValue>(Env, V,
                                                     &Environment::makeIff);
  }
  llvm_unreachable("All reachable cases in switch return");
}

// Unpacks the value (if any) associated with `E` and updates `E` to the new
// value, if any unpacking occured.
static Value *maybeUnpackLValueExpr(const Expr &E, Environment &Env) {
  // FIXME: this is too flexible: it _allows_ a reference, while it should
  // _require_ one, since lvalues should always be wrapped in `ReferenceValue`.
  auto *Loc = Env.getStorageLocation(E, SkipPast::Reference);
  if (Loc == nullptr)
    return nullptr;
  auto *Val = Env.getValue(*Loc);

  auto *B = dyn_cast_or_null<BoolValue>(Val);
  if (B == nullptr)
    return Val;

  auto &UnpackedVal = unpackValue(*B, Env);
  if (&UnpackedVal == Val)
    return Val;
  Env.setValue(*Loc, UnpackedVal);
  return &UnpackedVal;
}

class TransferVisitor : public ConstStmtVisitor<TransferVisitor> {
public:
  TransferVisitor(const StmtToEnvMap &StmtToEnv, Environment &Env)
      : StmtToEnv(StmtToEnv), Env(Env) {}

  void VisitBinaryOperator(const BinaryOperator *S) {
    const Expr *LHS = S->getLHS();
    assert(LHS != nullptr);

    const Expr *RHS = S->getRHS();
    assert(RHS != nullptr);

    switch (S->getOpcode()) {
    case BO_Assign: {
      auto *LHSLoc = Env.getStorageLocation(*LHS, SkipPast::Reference);
      if (LHSLoc == nullptr)
        break;

      auto *RHSVal = Env.getValue(*RHS, SkipPast::Reference);
      if (RHSVal == nullptr)
        break;

      // Assign a value to the storage location of the left-hand side.
      Env.setValue(*LHSLoc, *RHSVal);

      // Assign a storage location for the whole expression.
      Env.setStorageLocation(*S, *LHSLoc);
      break;
    }
    case BO_LAnd:
    case BO_LOr: {
      BoolValue &LHSVal = getLogicOperatorSubExprValue(*LHS);
      BoolValue &RHSVal = getLogicOperatorSubExprValue(*RHS);

      auto &Loc = Env.createStorageLocation(*S);
      Env.setStorageLocation(*S, Loc);
      if (S->getOpcode() == BO_LAnd)
        Env.setValue(Loc, Env.makeAnd(LHSVal, RHSVal));
      else
        Env.setValue(Loc, Env.makeOr(LHSVal, RHSVal));
      break;
    }
    case BO_NE:
    case BO_EQ: {
      auto &LHSEqRHSValue = evaluateBooleanEquality(*LHS, *RHS, Env);
      auto &Loc = Env.createStorageLocation(*S);
      Env.setStorageLocation(*S, Loc);
      Env.setValue(Loc, S->getOpcode() == BO_EQ ? LHSEqRHSValue
                                                : Env.makeNot(LHSEqRHSValue));
      break;
    }
    case BO_Comma: {
      if (auto *Loc = Env.getStorageLocation(*RHS, SkipPast::None))
        Env.setStorageLocation(*S, *Loc);
      break;
    }
    default:
      break;
    }
  }

  void VisitDeclRefExpr(const DeclRefExpr *S) {
    const ValueDecl *VD = S->getDecl();
    assert(VD != nullptr);
    auto *DeclLoc = Env.getStorageLocation(*VD, SkipPast::None);
    if (DeclLoc == nullptr)
      return;

    if (VD->getType()->isReferenceType()) {
      assert(isa_and_nonnull<ReferenceValue>(Env.getValue((*DeclLoc))) &&
             "reference-typed declarations map to `ReferenceValue`s");
      Env.setStorageLocation(*S, *DeclLoc);
    } else {
      auto &Loc = Env.createStorageLocation(*S);
      auto &Val = Env.takeOwnership(std::make_unique<ReferenceValue>(*DeclLoc));
      Env.setStorageLocation(*S, Loc);
      Env.setValue(Loc, Val);
    }
  }

  void VisitDeclStmt(const DeclStmt *S) {
    // Group decls are converted into single decls in the CFG so the cast below
    // is safe.
    const auto &D = *cast<VarDecl>(S->getSingleDecl());

    // Static local vars are already initialized in `Environment`.
    if (D.hasGlobalStorage())
      return;

    // The storage location for `D` could have been created earlier, before the
    // variable's declaration statement (for example, in the case of
    // BindingDecls).
    auto *MaybeLoc = Env.getStorageLocation(D, SkipPast::None);
    if (MaybeLoc == nullptr) {
      MaybeLoc = &Env.createStorageLocation(D);
      Env.setStorageLocation(D, *MaybeLoc);
    }
    auto &Loc = *MaybeLoc;

    const Expr *InitExpr = D.getInit();
    if (InitExpr == nullptr) {
      // No initializer expression - associate `Loc` with a new value.
      if (Value *Val = Env.createValue(D.getType()))
        Env.setValue(Loc, *Val);
      return;
    }

    if (D.getType()->isReferenceType()) {
      // Initializing a reference variable - do not create a reference to
      // reference.
      if (auto *InitExprLoc =
              Env.getStorageLocation(*InitExpr, SkipPast::Reference)) {
        auto &Val =
            Env.takeOwnership(std::make_unique<ReferenceValue>(*InitExprLoc));
        Env.setValue(Loc, Val);
      }
    } else if (auto *InitExprVal = Env.getValue(*InitExpr, SkipPast::None)) {
      Env.setValue(Loc, *InitExprVal);
    }

    if (Env.getValue(Loc) == nullptr) {
      // We arrive here in (the few) cases where an expression is intentionally
      // "uninterpreted". There are two ways to handle this situation: propagate
      // the status, so that uninterpreted initializers result in uninterpreted
      // variables, or provide a default value. We choose the latter so that
      // later refinements of the variable can be used for reasoning about the
      // surrounding code.
      //
      // FIXME. If and when we interpret all language cases, change this to
      // assert that `InitExpr` is interpreted, rather than supplying a default
      // value (assuming we don't update the environment API to return
      // references).
      if (Value *Val = Env.createValue(D.getType()))
        Env.setValue(Loc, *Val);
    }

    if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D)) {
      // If VarDecl is a DecompositionDecl, evaluate each of its bindings. This
      // needs to be evaluated after initializing the values in the storage for
      // VarDecl, as the bindings refer to them.
      // FIXME: Add support for ArraySubscriptExpr.
      // FIXME: Consider adding AST nodes used in BindingDecls to the CFG.
      for (const auto *B : Decomp->bindings()) {
        if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding())) {
          auto *DE = dyn_cast_or_null<DeclRefExpr>(ME->getBase());
          if (DE == nullptr)
            continue;

          // ME and its base haven't been visited because they aren't included
          // in the statements of the CFG basic block.
          VisitDeclRefExpr(DE);
          VisitMemberExpr(ME);

          if (auto *Loc = Env.getStorageLocation(*ME, SkipPast::Reference))
            Env.setStorageLocation(*B, *Loc);
        } else if (auto *VD = B->getHoldingVar()) {
          // Holding vars are used to back the BindingDecls of tuple-like
          // types. The holding var declarations appear *after* this statement,
          // so we have to create a location for them here to share with `B`. We
          // don't visit the binding, because we know it will be a DeclRefExpr
          // to `VD`.
          auto &VDLoc = Env.createStorageLocation(*VD);
          Env.setStorageLocation(*VD, VDLoc);
          Env.setStorageLocation(*B, VDLoc);
        }
      }
    }
  }

  void VisitImplicitCastExpr(const ImplicitCastExpr *S) {
    const Expr *SubExpr = S->getSubExpr();
    assert(SubExpr != nullptr);

    switch (S->getCastKind()) {
    case CK_IntegralToBoolean: {
      // This cast creates a new, boolean value from the integral value. We
      // model that with a fresh value in the environment, unless it's already a
      // boolean.
      auto &Loc = Env.createStorageLocation(*S);
      Env.setStorageLocation(*S, Loc);
      if (auto *SubExprVal = dyn_cast_or_null<BoolValue>(
              Env.getValue(*SubExpr, SkipPast::Reference)))
        Env.setValue(Loc, *SubExprVal);
      else
        // FIXME: If integer modeling is added, then update this code to create
        // the boolean based on the integer model.
        Env.setValue(Loc, Env.makeAtomicBoolValue());
      break;
    }

    case CK_LValueToRValue: {
      // When an L-value is used as an R-value, it may result in sharing, so we
      // need to unpack any nested `Top`s.
      auto *SubExprVal = maybeUnpackLValueExpr(*SubExpr, Env);
      if (SubExprVal == nullptr)
        break;

      auto &ExprLoc = Env.createStorageLocation(*S);
      Env.setStorageLocation(*S, ExprLoc);
      Env.setValue(ExprLoc, *SubExprVal);
      break;
    }

    case CK_IntegralCast:
      // FIXME: This cast creates a new integral value from the
      // subexpression. But, because we don't model integers, we don't
      // distinguish between this new value and the underlying one. If integer
      // modeling is added, then update this code to create a fresh location and
      // value.
    case CK_UncheckedDerivedToBase:
    case CK_ConstructorConversion:
    case CK_UserDefinedConversion:
      // FIXME: Add tests that excercise CK_UncheckedDerivedToBase,
      // CK_ConstructorConversion, and CK_UserDefinedConversion.
    case CK_NoOp: {
      // FIXME: Consider making `Environment::getStorageLocation` skip noop
      // expressions (this and other similar expressions in the file) instead of
      // assigning them storage locations.
      auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
      if (SubExprLoc == nullptr)
        break;

      Env.setStorageLocation(*S, *SubExprLoc);
      break;
    }
    case CK_NullToPointer:
    case CK_NullToMemberPointer: {
      auto &Loc = Env.createStorageLocation(S->getType());
      Env.setStorageLocation(*S, Loc);

      auto &NullPointerVal =
          Env.getOrCreateNullPointerValue(S->getType()->getPointeeType());
      Env.setValue(Loc, NullPointerVal);
      break;
    }
    default:
      break;
    }
  }

  void VisitUnaryOperator(const UnaryOperator *S) {
    const Expr *SubExpr = S->getSubExpr();
    assert(SubExpr != nullptr);

    switch (S->getOpcode()) {
    case UO_Deref: {
      // Skip past a reference to handle dereference of a dependent pointer.
      const auto *SubExprVal = cast_or_null<PointerValue>(
          Env.getValue(*SubExpr, SkipPast::Reference));
      if (SubExprVal == nullptr)
        break;

      auto &Loc = Env.createStorageLocation(*S);
      Env.setStorageLocation(*S, Loc);
      Env.setValue(Loc, Env.takeOwnership(std::make_unique<ReferenceValue>(
                            SubExprVal->getPointeeLoc())));
      break;
    }
    case UO_AddrOf: {
      // Do not form a pointer to a reference. If `SubExpr` is assigned a
      // `ReferenceValue` then form a value that points to the location of its
      // pointee.
      StorageLocation *PointeeLoc =
          Env.getStorageLocation(*SubExpr, SkipPast::Reference);
      if (PointeeLoc == nullptr)
        break;

      auto &PointerLoc = Env.createStorageLocation(*S);
      auto &PointerVal =
          Env.takeOwnership(std::make_unique<PointerValue>(*PointeeLoc));
      Env.setStorageLocation(*S, PointerLoc);
      Env.setValue(PointerLoc, PointerVal);
      break;
    }
    case UO_LNot: {
      auto *SubExprVal =
          dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr, SkipPast::None));
      if (SubExprVal == nullptr)
        break;

      auto &ExprLoc = Env.createStorageLocation(*S);
      Env.setStorageLocation(*S, ExprLoc);
      Env.setValue(ExprLoc, Env.makeNot(*SubExprVal));
      break;
    }
    default:
      break;
    }
  }

  void VisitCXXThisExpr(const CXXThisExpr *S) {
    auto *ThisPointeeLoc = Env.getThisPointeeStorageLocation();
    if (ThisPointeeLoc == nullptr)
      // Unions are not supported yet, and will not have a location for the
      // `this` expression's pointee.
      return;

    auto &Loc = Env.createStorageLocation(*S);
    Env.setStorageLocation(*S, Loc);
    Env.setValue(Loc, Env.takeOwnership(
                          std::make_unique<PointerValue>(*ThisPointeeLoc)));
  }

  void VisitReturnStmt(const ReturnStmt *S) {
    if (!Env.getAnalysisOptions().ContextSensitiveOpts)
      return;

    auto *Ret = S->getRetValue();
    if (Ret == nullptr)
      return;

    auto *Val = Env.getValue(*Ret, SkipPast::None);
    if (Val == nullptr)
      return;

    // FIXME: Support reference-type returns.
    if (Val->getKind() == Value::Kind::Reference)
      return;

    auto *Loc = Env.getReturnStorageLocation();
    assert(Loc != nullptr);
    // FIXME: Support reference-type returns.
    if (Loc->getType()->isReferenceType())
      return;

    // FIXME: Model NRVO.
    Env.setValue(*Loc, *Val);
  }

  void VisitMemberExpr(const MemberExpr *S) {
    ValueDecl *Member = S->getMemberDecl();
    assert(Member != nullptr);

    // FIXME: Consider assigning pointer values to function member expressions.
    if (Member->isFunctionOrFunctionTemplate())
      return;

    // FIXME: if/when we add support for modeling enums, use that support here.
    if (isa<EnumConstantDecl>(Member))
      return;

    if (auto *D = dyn_cast<VarDecl>(Member)) {
      if (D->hasGlobalStorage()) {
        auto *VarDeclLoc = Env.getStorageLocation(*D, SkipPast::None);
        if (VarDeclLoc == nullptr)
          return;

        if (VarDeclLoc->getType()->isReferenceType()) {
          assert(isa_and_nonnull<ReferenceValue>(Env.getValue((*VarDeclLoc))) &&
                 "reference-typed declarations map to `ReferenceValue`s");
          Env.setStorageLocation(*S, *VarDeclLoc);
        } else {
          auto &Loc = Env.createStorageLocation(*S);
          Env.setStorageLocation(*S, Loc);
          Env.setValue(Loc, Env.takeOwnership(
                                std::make_unique<ReferenceValue>(*VarDeclLoc)));
        }
        return;
      }
    }

    // The receiver can be either a value or a pointer to a value. Skip past the
    // indirection to handle both cases.
    auto *BaseLoc = cast_or_null<AggregateStorageLocation>(
        Env.getStorageLocation(*S->getBase(), SkipPast::ReferenceThenPointer));
    if (BaseLoc == nullptr)
      return;

    auto &MemberLoc = BaseLoc->getChild(*Member);
    if (MemberLoc.getType()->isReferenceType()) {
      // Based on its type, `MemberLoc` must be mapped either to nothing or to a
      // `ReferenceValue`. For the former, we won't set a storage location for
      // this expression, so as to maintain an invariant lvalue expressions;
      // namely, that their location maps to a `ReferenceValue`.  In this,
      // lvalues are unlike other expressions, where it is valid for their
      // location to map to nothing (because they are not modeled).
      //
      // Note: we need this invariant for lvalues so that, when accessing a
      // value, we can distinguish an rvalue from an lvalue. An alternative
      // design, which takes the expression's value category into account, would
      // avoid the need for this invariant.
      if (auto *V = Env.getValue(MemberLoc)) {
        assert(isa<ReferenceValue>(V) &&
               "reference-typed declarations map to `ReferenceValue`s");
        Env.setStorageLocation(*S, MemberLoc);
      }
    } else {
      auto &Loc = Env.createStorageLocation(*S);
      Env.setStorageLocation(*S, Loc);
      Env.setValue(
          Loc, Env.takeOwnership(std::make_unique<ReferenceValue>(MemberLoc)));
    }
  }

  void VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) {
    const Expr *InitExpr = S->getExpr();
    assert(InitExpr != nullptr);

    Value *InitExprVal = Env.getValue(*InitExpr, SkipPast::None);
    if (InitExprVal == nullptr)
      return;

    const FieldDecl *Field = S->getField();
    assert(Field != nullptr);

    auto &ThisLoc =
        *cast<AggregateStorageLocation>(Env.getThisPointeeStorageLocation());
    auto &FieldLoc = ThisLoc.getChild(*Field);
    Env.setValue(FieldLoc, *InitExprVal);
  }

  void VisitCXXConstructExpr(const CXXConstructExpr *S) {
    const CXXConstructorDecl *ConstructorDecl = S->getConstructor();
    assert(ConstructorDecl != nullptr);

    if (ConstructorDecl->isCopyOrMoveConstructor()) {
      assert(S->getNumArgs() == 1);

      const Expr *Arg = S->getArg(0);
      assert(Arg != nullptr);

      if (S->isElidable()) {
        auto *ArgLoc = Env.getStorageLocation(*Arg, SkipPast::Reference);
        if (ArgLoc == nullptr)
          return;

        Env.setStorageLocation(*S, *ArgLoc);
      } else if (auto *ArgVal = Env.getValue(*Arg, SkipPast::Reference)) {
        auto &Loc = Env.createStorageLocation(*S);
        Env.setStorageLocation(*S, Loc);
        Env.setValue(Loc, *ArgVal);
      }
      return;
    }

    auto &Loc = Env.createStorageLocation(*S);
    Env.setStorageLocation(*S, Loc);
    if (Value *Val = Env.createValue(S->getType()))
      Env.setValue(Loc, *Val);

    transferInlineCall(S, ConstructorDecl);
  }

  void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) {
    if (S->getOperator() == OO_Equal) {
      assert(S->getNumArgs() == 2);

      const Expr *Arg0 = S->getArg(0);
      assert(Arg0 != nullptr);

      const Expr *Arg1 = S->getArg(1);
      assert(Arg1 != nullptr);

      // Evaluate only copy and move assignment operators.
      auto *Arg0Type = Arg0->getType()->getUnqualifiedDesugaredType();
      auto *Arg1Type = Arg1->getType()->getUnqualifiedDesugaredType();
      if (Arg0Type != Arg1Type)
        return;

      auto *ObjectLoc = Env.getStorageLocation(*Arg0, SkipPast::Reference);
      if (ObjectLoc == nullptr)
        return;

      auto *Val = Env.getValue(*Arg1, SkipPast::Reference);
      if (Val == nullptr)
        return;

      // Assign a value to the storage location of the object.
      Env.setValue(*ObjectLoc, *Val);

      // FIXME: Add a test for the value of the whole expression.
      // Assign a storage location for the whole expression.
      Env.setStorageLocation(*S, *ObjectLoc);
    }
  }

  void VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *S) {
    if (S->getCastKind() == CK_ConstructorConversion) {
      const Expr *SubExpr = S->getSubExpr();
      assert(SubExpr != nullptr);

      auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
      if (SubExprLoc == nullptr)
        return;

      Env.setStorageLocation(*S, *SubExprLoc);
    }
  }

  void VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *S) {
    auto &Loc = Env.createStorageLocation(*S);
    Env.setStorageLocation(*S, Loc);
    if (Value *Val = Env.createValue(S->getType()))
      Env.setValue(Loc, *Val);
  }

  void VisitCallExpr(const CallExpr *S) {
    // Of clang's builtins, only `__builtin_expect` is handled explicitly, since
    // others (like trap, debugtrap, and unreachable) are handled by CFG
    // construction.
    if (S->isCallToStdMove()) {
      assert(S->getNumArgs() == 1);

      const Expr *Arg = S->getArg(0);
      assert(Arg != nullptr);

      auto *ArgLoc = Env.getStorageLocation(*Arg, SkipPast::None);
      if (ArgLoc == nullptr)
        return;

      Env.setStorageLocation(*S, *ArgLoc);
    } else if (S->getDirectCallee() != nullptr &&
               S->getDirectCallee()->getBuiltinID() ==
                   Builtin::BI__builtin_expect) {
      assert(S->getNumArgs() > 0);
      assert(S->getArg(0) != nullptr);
      // `__builtin_expect` returns by-value, so strip away any potential
      // references in the argument.
      auto *ArgLoc = Env.getStorageLocation(*S->getArg(0), SkipPast::Reference);
      if (ArgLoc == nullptr)
        return;
      Env.setStorageLocation(*S, *ArgLoc);
    } else if (const FunctionDecl *F = S->getDirectCallee()) {
      transferInlineCall(S, F);
    }
  }

  void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *S) {
    const Expr *SubExpr = S->getSubExpr();
    assert(SubExpr != nullptr);

    auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
    if (SubExprLoc == nullptr)
      return;

    Env.setStorageLocation(*S, *SubExprLoc);
  }

  void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) {
    const Expr *SubExpr = S->getSubExpr();
    assert(SubExpr != nullptr);

    auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
    if (SubExprLoc == nullptr)
      return;

    Env.setStorageLocation(*S, *SubExprLoc);
  }

  void VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) {
    if (S->getCastKind() == CK_NoOp) {
      const Expr *SubExpr = S->getSubExpr();
      assert(SubExpr != nullptr);

      auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
      if (SubExprLoc == nullptr)
        return;

      Env.setStorageLocation(*S, *SubExprLoc);
    }
  }

  void VisitConditionalOperator(const ConditionalOperator *S) {
    // FIXME: Revisit this once flow conditions are added to the framework. For
    // `a = b ? c : d` we can add `b => a == c && !b => a == d` to the flow
    // condition.
    auto &Loc = Env.createStorageLocation(*S);
    Env.setStorageLocation(*S, Loc);
    if (Value *Val = Env.createValue(S->getType()))
      Env.setValue(Loc, *Val);
  }

  void VisitInitListExpr(const InitListExpr *S) {
    QualType Type = S->getType();

    auto &Loc = Env.createStorageLocation(*S);
    Env.setStorageLocation(*S, Loc);

    auto *Val = Env.createValue(Type);
    if (Val == nullptr)
      return;

    Env.setValue(Loc, *Val);

    if (Type->isStructureOrClassType()) {
      for (auto It : llvm::zip(Type->getAsRecordDecl()->fields(), S->inits())) {
        const FieldDecl *Field = std::get<0>(It);
        assert(Field != nullptr);

        const Expr *Init = std::get<1>(It);
        assert(Init != nullptr);

        if (Value *InitVal = Env.getValue(*Init, SkipPast::None))
          cast<StructValue>(Val)->setChild(*Field, *InitVal);
      }
    }
    // FIXME: Implement array initialization.
  }

  void VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) {
    auto &Loc = Env.createStorageLocation(*S);
    Env.setStorageLocation(*S, Loc);
    Env.setValue(Loc, Env.getBoolLiteralValue(S->getValue()));
  }

  void VisitParenExpr(const ParenExpr *S) {
    // The CFG does not contain `ParenExpr` as top-level statements in basic
    // blocks, however manual traversal to sub-expressions may encounter them.
    // Redirect to the sub-expression.
    auto *SubExpr = S->getSubExpr();
    assert(SubExpr != nullptr);
    Visit(SubExpr);
  }

  void VisitExprWithCleanups(const ExprWithCleanups *S) {
    // The CFG does not contain `ExprWithCleanups` as top-level statements in
    // basic blocks, however manual traversal to sub-expressions may encounter
    // them. Redirect to the sub-expression.
    auto *SubExpr = S->getSubExpr();
    assert(SubExpr != nullptr);
    Visit(SubExpr);
  }

private:
  BoolValue &getLogicOperatorSubExprValue(const Expr &SubExpr) {
    // `SubExpr` and its parent logic operator might be part of different basic
    // blocks. We try to access the value that is assigned to `SubExpr` in the
    // corresponding environment.
    if (const Environment *SubExprEnv = StmtToEnv.getEnvironment(SubExpr)) {
      if (auto *Val = dyn_cast_or_null<BoolValue>(
              SubExprEnv->getValue(SubExpr, SkipPast::Reference)))
        return *Val;
    }

    if (Env.getStorageLocation(SubExpr, SkipPast::None) == nullptr) {
      // Sub-expressions that are logic operators are not added in basic blocks
      // (e.g. see CFG for `bool d = a && (b || c);`). If `SubExpr` is a logic
      // operator, it may not have been evaluated and assigned a value yet. In
      // that case, we need to first visit `SubExpr` and then try to get the
      // value that gets assigned to it.
      Visit(&SubExpr);
    }

    if (auto *Val = dyn_cast_or_null<BoolValue>(
            Env.getValue(SubExpr, SkipPast::Reference)))
      return *Val;

    // If the value of `SubExpr` is still unknown, we create a fresh symbolic
    // boolean value for it.
    return Env.makeAtomicBoolValue();
  }

  // If context sensitivity is enabled, try to analyze the body of the callee
  // `F` of `S`. The type `E` must be either `CallExpr` or `CXXConstructExpr`.
  template <typename E>
  void transferInlineCall(const E *S, const FunctionDecl *F) {
    const auto &Options = Env.getAnalysisOptions();
    if (!(Options.ContextSensitiveOpts &&
          Env.canDescend(Options.ContextSensitiveOpts->Depth, F)))
      return;

    const ControlFlowContext *CFCtx = Env.getControlFlowContext(F);
    if (!CFCtx)
      return;

    // FIXME: We don't support context-sensitive analysis of recursion, so
    // we should return early here if `F` is the same as the `FunctionDecl`
    // holding `S` itself.

    auto ExitBlock = CFCtx->getCFG().getExit().getBlockID();

    if (const auto *NonConstructExpr = dyn_cast<CallExpr>(S)) {
      // Note that it is important for the storage location of `S` to be set
      // before `pushCall`, because the latter uses it to set the storage
      // location for `return`.
      auto &ReturnLoc = Env.createStorageLocation(*S);
      Env.setStorageLocation(*S, ReturnLoc);
    }
    auto CalleeEnv = Env.pushCall(S);

    // FIXME: Use the same analysis as the caller for the callee. Note,
    // though, that doing so would require support for changing the analysis's
    // ASTContext.
    assert(CFCtx->getDecl() != nullptr &&
           "ControlFlowContexts in the environment should always carry a decl");
    auto Analysis = NoopAnalysis(CFCtx->getDecl()->getASTContext(),
                                 DataflowAnalysisOptions{Options});

    auto BlockToOutputState =
        dataflow::runDataflowAnalysis(*CFCtx, Analysis, CalleeEnv);
    assert(BlockToOutputState);
    assert(ExitBlock < BlockToOutputState->size());

    auto ExitState = (*BlockToOutputState)[ExitBlock];
    assert(ExitState);

    Env.popCall(ExitState->Env);
  }

  const StmtToEnvMap &StmtToEnv;
  Environment &Env;
};

void transfer(const StmtToEnvMap &StmtToEnv, const Stmt &S, Environment &Env) {
  TransferVisitor(StmtToEnv, Env).Visit(&S);
}

} // namespace dataflow
} // namespace clang