1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
//===-- DataflowAnalysisContext.cpp -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a DataflowAnalysisContext class that owns objects that
// encompass the state of a program and stores context that is used during
// dataflow analysis.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Analysis/FlowSensitive/DebugSupport.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/Support/Debug.h"
#include <cassert>
#include <memory>
#include <utility>
namespace clang {
namespace dataflow {
void DataflowAnalysisContext::addModeledFields(
const llvm::DenseSet<const FieldDecl *> &Fields) {
llvm::set_union(ModeledFields, Fields);
}
llvm::DenseSet<const FieldDecl *>
DataflowAnalysisContext::getReferencedFields(QualType Type) {
llvm::DenseSet<const FieldDecl *> Fields = getObjectFields(Type);
llvm::set_intersect(Fields, ModeledFields);
return Fields;
}
StorageLocation &DataflowAnalysisContext::createStorageLocation(QualType Type) {
if (!Type.isNull() &&
(Type->isStructureOrClassType() || Type->isUnionType())) {
llvm::DenseMap<const ValueDecl *, StorageLocation *> FieldLocs;
// During context-sensitive analysis, a struct may be allocated in one
// function, but its field accessed in a function lower in the stack than
// the allocation. Since we only collect fields used in the function where
// the allocation occurs, we can't apply that filter when performing
// context-sensitive analysis. But, this only applies to storage locations,
// since field access it not allowed to fail. In contrast, field *values*
// don't need this allowance, since the API allows for uninitialized fields.
auto Fields = Opts.ContextSensitiveOpts ? getObjectFields(Type)
: getReferencedFields(Type);
for (const FieldDecl *Field : Fields)
FieldLocs.insert({Field, &createStorageLocation(Field->getType())});
return takeOwnership(
std::make_unique<AggregateStorageLocation>(Type, std::move(FieldLocs)));
}
return takeOwnership(std::make_unique<ScalarStorageLocation>(Type));
}
StorageLocation &
DataflowAnalysisContext::getStableStorageLocation(const VarDecl &D) {
if (auto *Loc = getStorageLocation(D))
return *Loc;
auto &Loc = createStorageLocation(D.getType());
setStorageLocation(D, Loc);
return Loc;
}
StorageLocation &
DataflowAnalysisContext::getStableStorageLocation(const Expr &E) {
if (auto *Loc = getStorageLocation(E))
return *Loc;
auto &Loc = createStorageLocation(E.getType());
setStorageLocation(E, Loc);
return Loc;
}
PointerValue &
DataflowAnalysisContext::getOrCreateNullPointerValue(QualType PointeeType) {
auto CanonicalPointeeType =
PointeeType.isNull() ? PointeeType : PointeeType.getCanonicalType();
auto Res = NullPointerVals.try_emplace(CanonicalPointeeType, nullptr);
if (Res.second) {
auto &PointeeLoc = createStorageLocation(CanonicalPointeeType);
Res.first->second =
&takeOwnership(std::make_unique<PointerValue>(PointeeLoc));
}
return *Res.first->second;
}
static std::pair<BoolValue *, BoolValue *>
makeCanonicalBoolValuePair(BoolValue &LHS, BoolValue &RHS) {
auto Res = std::make_pair(&LHS, &RHS);
if (&RHS < &LHS)
std::swap(Res.first, Res.second);
return Res;
}
BoolValue &DataflowAnalysisContext::getOrCreateConjunction(BoolValue &LHS,
BoolValue &RHS) {
if (&LHS == &RHS)
return LHS;
auto Res = ConjunctionVals.try_emplace(makeCanonicalBoolValuePair(LHS, RHS),
nullptr);
if (Res.second)
Res.first->second =
&takeOwnership(std::make_unique<ConjunctionValue>(LHS, RHS));
return *Res.first->second;
}
BoolValue &DataflowAnalysisContext::getOrCreateDisjunction(BoolValue &LHS,
BoolValue &RHS) {
if (&LHS == &RHS)
return LHS;
auto Res = DisjunctionVals.try_emplace(makeCanonicalBoolValuePair(LHS, RHS),
nullptr);
if (Res.second)
Res.first->second =
&takeOwnership(std::make_unique<DisjunctionValue>(LHS, RHS));
return *Res.first->second;
}
BoolValue &DataflowAnalysisContext::getOrCreateNegation(BoolValue &Val) {
auto Res = NegationVals.try_emplace(&Val, nullptr);
if (Res.second)
Res.first->second = &takeOwnership(std::make_unique<NegationValue>(Val));
return *Res.first->second;
}
BoolValue &DataflowAnalysisContext::getOrCreateImplication(BoolValue &LHS,
BoolValue &RHS) {
if (&LHS == &RHS)
return getBoolLiteralValue(true);
auto Res = ImplicationVals.try_emplace(std::make_pair(&LHS, &RHS), nullptr);
if (Res.second)
Res.first->second =
&takeOwnership(std::make_unique<ImplicationValue>(LHS, RHS));
return *Res.first->second;
}
BoolValue &DataflowAnalysisContext::getOrCreateIff(BoolValue &LHS,
BoolValue &RHS) {
if (&LHS == &RHS)
return getBoolLiteralValue(true);
auto Res = BiconditionalVals.try_emplace(makeCanonicalBoolValuePair(LHS, RHS),
nullptr);
if (Res.second)
Res.first->second =
&takeOwnership(std::make_unique<BiconditionalValue>(LHS, RHS));
return *Res.first->second;
}
AtomicBoolValue &DataflowAnalysisContext::makeFlowConditionToken() {
return createAtomicBoolValue();
}
void DataflowAnalysisContext::addFlowConditionConstraint(
AtomicBoolValue &Token, BoolValue &Constraint) {
auto Res = FlowConditionConstraints.try_emplace(&Token, &Constraint);
if (!Res.second) {
Res.first->second = &getOrCreateConjunction(*Res.first->second, Constraint);
}
}
AtomicBoolValue &
DataflowAnalysisContext::forkFlowCondition(AtomicBoolValue &Token) {
auto &ForkToken = makeFlowConditionToken();
FlowConditionDeps[&ForkToken].insert(&Token);
addFlowConditionConstraint(ForkToken, Token);
return ForkToken;
}
AtomicBoolValue &
DataflowAnalysisContext::joinFlowConditions(AtomicBoolValue &FirstToken,
AtomicBoolValue &SecondToken) {
auto &Token = makeFlowConditionToken();
FlowConditionDeps[&Token].insert(&FirstToken);
FlowConditionDeps[&Token].insert(&SecondToken);
addFlowConditionConstraint(Token,
getOrCreateDisjunction(FirstToken, SecondToken));
return Token;
}
Solver::Result
DataflowAnalysisContext::querySolver(llvm::DenseSet<BoolValue *> Constraints) {
Constraints.insert(&getBoolLiteralValue(true));
Constraints.insert(&getOrCreateNegation(getBoolLiteralValue(false)));
return S->solve(std::move(Constraints));
}
bool DataflowAnalysisContext::flowConditionImplies(AtomicBoolValue &Token,
BoolValue &Val) {
// Returns true if and only if truth assignment of the flow condition implies
// that `Val` is also true. We prove whether or not this property holds by
// reducing the problem to satisfiability checking. In other words, we attempt
// to show that assuming `Val` is false makes the constraints induced by the
// flow condition unsatisfiable.
llvm::DenseSet<BoolValue *> Constraints = {&Token, &getOrCreateNegation(Val)};
llvm::DenseSet<AtomicBoolValue *> VisitedTokens;
addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
return isUnsatisfiable(std::move(Constraints));
}
bool DataflowAnalysisContext::flowConditionIsTautology(AtomicBoolValue &Token) {
// Returns true if and only if we cannot prove that the flow condition can
// ever be false.
llvm::DenseSet<BoolValue *> Constraints = {&getOrCreateNegation(Token)};
llvm::DenseSet<AtomicBoolValue *> VisitedTokens;
addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
return isUnsatisfiable(std::move(Constraints));
}
bool DataflowAnalysisContext::equivalentBoolValues(BoolValue &Val1,
BoolValue &Val2) {
llvm::DenseSet<BoolValue *> Constraints = {
&getOrCreateNegation(getOrCreateIff(Val1, Val2))};
return isUnsatisfiable(Constraints);
}
void DataflowAnalysisContext::addTransitiveFlowConditionConstraints(
AtomicBoolValue &Token, llvm::DenseSet<BoolValue *> &Constraints,
llvm::DenseSet<AtomicBoolValue *> &VisitedTokens) {
auto Res = VisitedTokens.insert(&Token);
if (!Res.second)
return;
auto ConstraintsIt = FlowConditionConstraints.find(&Token);
if (ConstraintsIt == FlowConditionConstraints.end()) {
Constraints.insert(&Token);
} else {
// Bind flow condition token via `iff` to its set of constraints:
// FC <=> (C1 ^ C2 ^ ...), where Ci are constraints
Constraints.insert(&getOrCreateIff(Token, *ConstraintsIt->second));
}
auto DepsIt = FlowConditionDeps.find(&Token);
if (DepsIt != FlowConditionDeps.end()) {
for (AtomicBoolValue *DepToken : DepsIt->second) {
addTransitiveFlowConditionConstraints(*DepToken, Constraints,
VisitedTokens);
}
}
}
BoolValue &DataflowAnalysisContext::substituteBoolValue(
BoolValue &Val,
llvm::DenseMap<BoolValue *, BoolValue *> &SubstitutionsCache) {
auto It = SubstitutionsCache.find(&Val);
if (It != SubstitutionsCache.end()) {
// Return memoized result of substituting this boolean value.
return *It->second;
}
// Handle substitution on the boolean value (and its subvalues), saving the
// result into `SubstitutionsCache`.
BoolValue *Result;
switch (Val.getKind()) {
case Value::Kind::AtomicBool: {
Result = &Val;
break;
}
case Value::Kind::Negation: {
auto &Negation = *cast<NegationValue>(&Val);
auto &Sub = substituteBoolValue(Negation.getSubVal(), SubstitutionsCache);
Result = &getOrCreateNegation(Sub);
break;
}
case Value::Kind::Disjunction: {
auto &Disjunct = *cast<DisjunctionValue>(&Val);
auto &LeftSub =
substituteBoolValue(Disjunct.getLeftSubValue(), SubstitutionsCache);
auto &RightSub =
substituteBoolValue(Disjunct.getRightSubValue(), SubstitutionsCache);
Result = &getOrCreateDisjunction(LeftSub, RightSub);
break;
}
case Value::Kind::Conjunction: {
auto &Conjunct = *cast<ConjunctionValue>(&Val);
auto &LeftSub =
substituteBoolValue(Conjunct.getLeftSubValue(), SubstitutionsCache);
auto &RightSub =
substituteBoolValue(Conjunct.getRightSubValue(), SubstitutionsCache);
Result = &getOrCreateConjunction(LeftSub, RightSub);
break;
}
case Value::Kind::Implication: {
auto &IV = *cast<ImplicationValue>(&Val);
auto &LeftSub =
substituteBoolValue(IV.getLeftSubValue(), SubstitutionsCache);
auto &RightSub =
substituteBoolValue(IV.getRightSubValue(), SubstitutionsCache);
Result = &getOrCreateImplication(LeftSub, RightSub);
break;
}
case Value::Kind::Biconditional: {
auto &BV = *cast<BiconditionalValue>(&Val);
auto &LeftSub =
substituteBoolValue(BV.getLeftSubValue(), SubstitutionsCache);
auto &RightSub =
substituteBoolValue(BV.getRightSubValue(), SubstitutionsCache);
Result = &getOrCreateIff(LeftSub, RightSub);
break;
}
default:
llvm_unreachable("Unhandled Value Kind");
}
SubstitutionsCache[&Val] = Result;
return *Result;
}
BoolValue &DataflowAnalysisContext::buildAndSubstituteFlowCondition(
AtomicBoolValue &Token,
llvm::DenseMap<AtomicBoolValue *, BoolValue *> Substitutions) {
assert(
Substitutions.find(&getBoolLiteralValue(true)) == Substitutions.end() &&
Substitutions.find(&getBoolLiteralValue(false)) == Substitutions.end() &&
"Do not substitute true/false boolean literals");
llvm::DenseMap<BoolValue *, BoolValue *> SubstitutionsCache(
Substitutions.begin(), Substitutions.end());
return buildAndSubstituteFlowConditionWithCache(Token, SubstitutionsCache);
}
BoolValue &DataflowAnalysisContext::buildAndSubstituteFlowConditionWithCache(
AtomicBoolValue &Token,
llvm::DenseMap<BoolValue *, BoolValue *> &SubstitutionsCache) {
auto ConstraintsIt = FlowConditionConstraints.find(&Token);
if (ConstraintsIt == FlowConditionConstraints.end()) {
return getBoolLiteralValue(true);
}
auto DepsIt = FlowConditionDeps.find(&Token);
if (DepsIt != FlowConditionDeps.end()) {
for (AtomicBoolValue *DepToken : DepsIt->second) {
auto &NewDep = buildAndSubstituteFlowConditionWithCache(
*DepToken, SubstitutionsCache);
SubstitutionsCache[DepToken] = &NewDep;
}
}
return substituteBoolValue(*ConstraintsIt->second, SubstitutionsCache);
}
void DataflowAnalysisContext::dumpFlowCondition(AtomicBoolValue &Token) {
llvm::DenseSet<BoolValue *> Constraints = {&Token};
llvm::DenseSet<AtomicBoolValue *> VisitedTokens;
addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
llvm::DenseMap<const AtomicBoolValue *, std::string> AtomNames = {
{&getBoolLiteralValue(false), "False"},
{&getBoolLiteralValue(true), "True"}};
llvm::dbgs() << debugString(Constraints, AtomNames);
}
const ControlFlowContext *
DataflowAnalysisContext::getControlFlowContext(const FunctionDecl *F) {
// Canonicalize the key:
F = F->getDefinition();
if (F == nullptr)
return nullptr;
auto It = FunctionContexts.find(F);
if (It != FunctionContexts.end())
return &It->second;
if (Stmt *Body = F->getBody()) {
auto CFCtx = ControlFlowContext::build(F, *Body, F->getASTContext());
// FIXME: Handle errors.
assert(CFCtx);
auto Result = FunctionContexts.insert({F, std::move(*CFCtx)});
return &Result.first->second;
}
return nullptr;
}
} // namespace dataflow
} // namespace clang
using namespace clang;
const Expr &clang::dataflow::ignoreCFGOmittedNodes(const Expr &E) {
const Expr *Current = &E;
if (auto *EWC = dyn_cast<ExprWithCleanups>(Current)) {
Current = EWC->getSubExpr();
assert(Current != nullptr);
}
Current = Current->IgnoreParens();
assert(Current != nullptr);
return *Current;
}
const Stmt &clang::dataflow::ignoreCFGOmittedNodes(const Stmt &S) {
if (auto *E = dyn_cast<Expr>(&S))
return ignoreCFGOmittedNodes(*E);
return S;
}
// FIXME: Does not precisely handle non-virtual diamond inheritance. A single
// field decl will be modeled for all instances of the inherited field.
static void
getFieldsFromClassHierarchy(QualType Type,
llvm::DenseSet<const FieldDecl *> &Fields) {
if (Type->isIncompleteType() || Type->isDependentType() ||
!Type->isRecordType())
return;
for (const FieldDecl *Field : Type->getAsRecordDecl()->fields())
Fields.insert(Field);
if (auto *CXXRecord = Type->getAsCXXRecordDecl())
for (const CXXBaseSpecifier &Base : CXXRecord->bases())
getFieldsFromClassHierarchy(Base.getType(), Fields);
}
/// Gets the set of all fields in the type.
llvm::DenseSet<const FieldDecl *>
clang::dataflow::getObjectFields(QualType Type) {
llvm::DenseSet<const FieldDecl *> Fields;
getFieldsFromClassHierarchy(Type, Fields);
return Fields;
}
|