1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
|
//===--- ByteCodeExprGen.cpp - Code generator for expressions ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ByteCodeExprGen.h"
#include "ByteCodeEmitter.h"
#include "ByteCodeGenError.h"
#include "ByteCodeStmtGen.h"
#include "Context.h"
#include "Function.h"
#include "PrimType.h"
#include "Program.h"
#include "State.h"
using namespace clang;
using namespace clang::interp;
using APSInt = llvm::APSInt;
namespace clang {
namespace interp {
/// Scope used to handle temporaries in toplevel variable declarations.
template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
public:
DeclScope(ByteCodeExprGen<Emitter> *Ctx, const VarDecl *VD)
: LocalScope<Emitter>(Ctx), Scope(Ctx->P, VD) {}
void addExtended(const Scope::Local &Local) override {
return this->addLocal(Local);
}
private:
Program::DeclScope Scope;
};
/// Scope used to handle initialization methods.
template <class Emitter> class OptionScope {
public:
/// Root constructor, compiling or discarding primitives.
OptionScope(ByteCodeExprGen<Emitter> *Ctx, bool NewDiscardResult)
: Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult) {
Ctx->DiscardResult = NewDiscardResult;
}
~OptionScope() { Ctx->DiscardResult = OldDiscardResult; }
private:
/// Parent context.
ByteCodeExprGen<Emitter> *Ctx;
/// Old discard flag to restore.
bool OldDiscardResult;
};
} // namespace interp
} // namespace clang
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCastExpr(const CastExpr *CE) {
auto *SubExpr = CE->getSubExpr();
switch (CE->getCastKind()) {
case CK_LValueToRValue: {
return dereference(
CE->getSubExpr(), DerefKind::Read,
[](PrimType) {
// Value loaded - nothing to do here.
return true;
},
[this, CE](PrimType T) {
// Pointer on stack - dereference it.
if (!this->emitLoadPop(T, CE))
return false;
return DiscardResult ? this->emitPop(T, CE) : true;
});
}
case CK_UncheckedDerivedToBase:
case CK_DerivedToBase: {
if (!this->visit(SubExpr))
return false;
const CXXRecordDecl *FromDecl = getRecordDecl(SubExpr);
assert(FromDecl);
const CXXRecordDecl *ToDecl = getRecordDecl(CE);
assert(ToDecl);
const Record *R = getRecord(FromDecl);
const Record::Base *ToBase = R->getBase(ToDecl);
assert(ToBase);
return this->emitGetPtrBase(ToBase->Offset, CE);
}
case CK_ArrayToPointerDecay:
case CK_AtomicToNonAtomic:
case CK_ConstructorConversion:
case CK_FunctionToPointerDecay:
case CK_NonAtomicToAtomic:
case CK_NoOp:
case CK_UserDefinedConversion:
case CK_NullToPointer:
return this->visit(SubExpr);
case CK_IntegralToBoolean:
case CK_IntegralCast: {
std::optional<PrimType> FromT = classify(SubExpr->getType());
std::optional<PrimType> ToT = classify(CE->getType());
if (!FromT || !ToT)
return false;
if (!this->visit(SubExpr))
return false;
// TODO: Emit this only if FromT != ToT.
return this->emitCast(*FromT, *ToT, CE);
}
case CK_ToVoid:
return discard(SubExpr);
default:
assert(false && "Cast not implemented");
}
llvm_unreachable("Unhandled clang::CastKind enum");
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
if (DiscardResult)
return true;
return this->emitConst(LE->getValue(), LE);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitParenExpr(const ParenExpr *PE) {
return this->visit(PE->getSubExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
const Expr *LHS = BO->getLHS();
const Expr *RHS = BO->getRHS();
// Deal with operations which have composite or void types.
switch (BO->getOpcode()) {
case BO_Comma:
if (!discard(LHS))
return false;
if (!this->visit(RHS))
return false;
return true;
default:
break;
}
// Typecheck the args.
std::optional<PrimType> LT = classify(LHS->getType());
std::optional<PrimType> RT = classify(RHS->getType());
std::optional<PrimType> T = classify(BO->getType());
if (!LT || !RT || !T) {
return this->bail(BO);
}
auto Discard = [this, T, BO](bool Result) {
if (!Result)
return false;
return DiscardResult ? this->emitPop(*T, BO) : true;
};
// Pointer arithmetic special case.
if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
if (*T == PT_Ptr || (*LT == PT_Ptr && *RT == PT_Ptr))
return this->VisitPointerArithBinOp(BO);
}
if (!visit(LHS) || !visit(RHS))
return false;
switch (BO->getOpcode()) {
case BO_EQ:
return Discard(this->emitEQ(*LT, BO));
case BO_NE:
return Discard(this->emitNE(*LT, BO));
case BO_LT:
return Discard(this->emitLT(*LT, BO));
case BO_LE:
return Discard(this->emitLE(*LT, BO));
case BO_GT:
return Discard(this->emitGT(*LT, BO));
case BO_GE:
return Discard(this->emitGE(*LT, BO));
case BO_Sub:
return Discard(this->emitSub(*T, BO));
case BO_Add:
return Discard(this->emitAdd(*T, BO));
case BO_Mul:
return Discard(this->emitMul(*T, BO));
case BO_Rem:
return Discard(this->emitRem(*T, BO));
case BO_Div:
return Discard(this->emitDiv(*T, BO));
case BO_Assign:
if (DiscardResult)
return this->emitStorePop(*T, BO);
return this->emitStore(*T, BO);
case BO_And:
return Discard(this->emitBitAnd(*T, BO));
case BO_Or:
return Discard(this->emitBitOr(*T, BO));
case BO_Shl:
return Discard(this->emitShl(*LT, *RT, BO));
case BO_Shr:
return Discard(this->emitShr(*LT, *RT, BO));
case BO_Xor:
return Discard(this->emitBitXor(*T, BO));
case BO_LAnd:
case BO_LOr:
default:
return this->bail(BO);
}
llvm_unreachable("Unhandled binary op");
}
/// Perform addition/subtraction of a pointer and an integer or
/// subtraction of two pointers.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
BinaryOperatorKind Op = E->getOpcode();
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
if ((Op != BO_Add && Op != BO_Sub) ||
(!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
return false;
std::optional<PrimType> LT = classify(LHS);
std::optional<PrimType> RT = classify(RHS);
if (!LT || !RT)
return false;
if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
if (Op != BO_Sub)
return false;
assert(E->getType()->isIntegerType());
if (!visit(RHS) || !visit(LHS))
return false;
return this->emitSubPtr(classifyPrim(E->getType()), E);
}
PrimType OffsetType;
if (LHS->getType()->isIntegerType()) {
if (!visit(RHS) || !visit(LHS))
return false;
OffsetType = *LT;
} else if (RHS->getType()->isIntegerType()) {
if (!visit(LHS) || !visit(RHS))
return false;
OffsetType = *RT;
} else {
return false;
}
if (Op == BO_Add)
return this->emitAddOffset(OffsetType, E);
else if (Op == BO_Sub)
return this->emitSubOffset(OffsetType, E);
return this->bail(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
if (std::optional<PrimType> T = classify(E))
return this->emitZero(*T, E);
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitArraySubscriptExpr(
const ArraySubscriptExpr *E) {
const Expr *Base = E->getBase();
const Expr *Index = E->getIdx();
PrimType IndexT = classifyPrim(Index->getType());
// Take pointer of LHS, add offset from RHS, narrow result.
// What's left on the stack after this is a pointer.
if (!this->visit(Base))
return false;
if (!this->visit(Index))
return false;
if (!this->emitAddOffset(IndexT, E))
return false;
if (!this->emitNarrowPtr(E))
return false;
if (DiscardResult)
return this->emitPopPtr(E);
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitInitListExpr(const InitListExpr *E) {
for (const Expr *Init : E->inits()) {
if (!this->visit(Init))
return false;
}
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitSubstNonTypeTemplateParmExpr(
const SubstNonTypeTemplateParmExpr *E) {
return this->visit(E->getReplacement());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
// TODO: Check if the ConstantExpr already has a value set and if so,
// use that instead of evaluating it again.
return this->visit(E->getSubExpr());
}
static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
UnaryExprOrTypeTrait Kind) {
bool AlignOfReturnsPreferred =
ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
// C++ [expr.alignof]p3:
// When alignof is applied to a reference type, the result is the
// alignment of the referenced type.
if (const auto *Ref = T->getAs<ReferenceType>())
T = Ref->getPointeeType();
// __alignof is defined to return the preferred alignment.
// Before 8, clang returned the preferred alignment for alignof and
// _Alignof as well.
if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
return ASTCtx.getTypeAlignInChars(T);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitUnaryExprOrTypeTraitExpr(
const UnaryExprOrTypeTraitExpr *E) {
UnaryExprOrTypeTrait Kind = E->getKind();
ASTContext &ASTCtx = Ctx.getASTContext();
if (Kind == UETT_SizeOf) {
QualType ArgType = E->getTypeOfArgument();
CharUnits Size;
if (ArgType->isVoidType() || ArgType->isFunctionType())
Size = CharUnits::One();
else {
if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
return false;
Size = ASTCtx.getTypeSizeInChars(ArgType);
}
return this->emitConst(Size.getQuantity(), E);
}
if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
CharUnits Size;
if (E->isArgumentType()) {
QualType ArgType = E->getTypeOfArgument();
Size = AlignOfType(ArgType, ASTCtx, Kind);
} else {
// Argument is an expression, not a type.
const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
// The kinds of expressions that we have special-case logic here for
// should be kept up to date with the special checks for those
// expressions in Sema.
// alignof decl is always accepted, even if it doesn't make sense: we
// default to 1 in those cases.
if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
Size = ASTCtx.getDeclAlign(DRE->getDecl(),
/*RefAsPointee*/ true);
else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
/*RefAsPointee*/ true);
else
Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
}
return this->emitConst(Size.getQuantity(), E);
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitMemberExpr(const MemberExpr *E) {
if (DiscardResult)
return true;
// 'Base.Member'
const Expr *Base = E->getBase();
const ValueDecl *Member = E->getMemberDecl();
if (!this->visit(Base))
return false;
// Base above gives us a pointer on the stack.
// TODO: Implement non-FieldDecl members.
if (const auto *FD = dyn_cast<FieldDecl>(Member)) {
const RecordDecl *RD = FD->getParent();
const Record *R = getRecord(RD);
const Record::Field *F = R->getField(FD);
// Leave a pointer to the field on the stack.
if (F->Decl->getType()->isReferenceType())
return this->emitGetFieldPop(PT_Ptr, F->Offset, E);
return this->emitGetPtrField(F->Offset, E);
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitArrayInitIndexExpr(
const ArrayInitIndexExpr *E) {
// ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
// stand-alone, e.g. via EvaluateAsInt().
if (!ArrayIndex)
return false;
return this->emitConst(*ArrayIndex, E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
return this->visit(E->getSourceExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitAbstractConditionalOperator(
const AbstractConditionalOperator *E) {
const Expr *Condition = E->getCond();
const Expr *TrueExpr = E->getTrueExpr();
const Expr *FalseExpr = E->getFalseExpr();
LabelTy LabelEnd = this->getLabel(); // Label after the operator.
LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
if (!this->visit(Condition))
return false;
if (!this->jumpFalse(LabelFalse))
return false;
if (!this->visit(TrueExpr))
return false;
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelFalse);
if (!this->visit(FalseExpr))
return false;
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
return true;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitStringLiteral(const StringLiteral *E) {
unsigned StringIndex = P.createGlobalString(E);
return this->emitGetPtrGlobal(StringIndex, E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCharacterLiteral(
const CharacterLiteral *E) {
return this->emitConst(E->getValue(), E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCompoundAssignOperator(
const CompoundAssignOperator *E) {
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
std::optional<PrimType> LT = classify(E->getLHS()->getType());
std::optional<PrimType> RT = classify(E->getRHS()->getType());
if (!LT || !RT)
return false;
assert(!E->getType()->isPointerType() &&
"Support pointer arithmethic in compound assignment operators");
// Get LHS pointer, load its value and get RHS value.
if (!visit(LHS))
return false;
if (!this->emitLoad(*LT, E))
return false;
if (!visit(RHS))
return false;
// Perform operation.
switch (E->getOpcode()) {
case BO_AddAssign:
if (!this->emitAdd(*LT, E))
return false;
break;
case BO_SubAssign:
if (!this->emitSub(*LT, E))
return false;
break;
case BO_MulAssign:
case BO_DivAssign:
case BO_RemAssign:
case BO_ShlAssign:
if (!this->emitShl(*LT, *RT, E))
return false;
break;
case BO_ShrAssign:
if (!this->emitShr(*LT, *RT, E))
return false;
break;
case BO_AndAssign:
case BO_XorAssign:
case BO_OrAssign:
default:
llvm_unreachable("Unimplemented compound assign operator");
}
// And store the result in LHS.
if (DiscardResult)
return this->emitStorePop(*LT, E);
return this->emitStore(*LT, E);
}
template <class Emitter> bool ByteCodeExprGen<Emitter>::discard(const Expr *E) {
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true);
return this->Visit(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visit(const Expr *E) {
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false);
return this->Visit(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitBool(const Expr *E) {
if (std::optional<PrimType> T = classify(E->getType())) {
return visit(E);
} else {
return this->bail(E);
}
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitZeroInitializer(PrimType T, const Expr *E) {
switch (T) {
case PT_Bool:
return this->emitZeroBool(E);
case PT_Sint8:
return this->emitZeroSint8(E);
case PT_Uint8:
return this->emitZeroUint8(E);
case PT_Sint16:
return this->emitZeroSint16(E);
case PT_Uint16:
return this->emitZeroUint16(E);
case PT_Sint32:
return this->emitZeroSint32(E);
case PT_Uint32:
return this->emitZeroUint32(E);
case PT_Sint64:
return this->emitZeroSint64(E);
case PT_Uint64:
return this->emitZeroUint64(E);
case PT_Ptr:
return this->emitNullPtr(E);
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereference(
const Expr *LV, DerefKind AK, llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
if (std::optional<PrimType> T = classify(LV->getType())) {
if (!LV->refersToBitField()) {
// Only primitive, non bit-field types can be dereferenced directly.
if (auto *DE = dyn_cast<DeclRefExpr>(LV)) {
if (!DE->getDecl()->getType()->isReferenceType()) {
if (auto *PD = dyn_cast<ParmVarDecl>(DE->getDecl()))
return dereferenceParam(LV, *T, PD, AK, Direct, Indirect);
if (auto *VD = dyn_cast<VarDecl>(DE->getDecl()))
return dereferenceVar(LV, *T, VD, AK, Direct, Indirect);
}
}
}
if (!visit(LV))
return false;
return Indirect(*T);
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereferenceParam(
const Expr *LV, PrimType T, const ParmVarDecl *PD, DerefKind AK,
llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
auto It = this->Params.find(PD);
if (It != this->Params.end()) {
unsigned Idx = It->second;
switch (AK) {
case DerefKind::Read:
return DiscardResult ? true : this->emitGetParam(T, Idx, LV);
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetParam(T, Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrParam(Idx, LV);
case DerefKind::ReadWrite:
if (!this->emitGetParam(T, Idx, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetParam(T, Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrParam(Idx, LV);
}
return true;
}
// If the param is a pointer, we can dereference a dummy value.
if (!DiscardResult && T == PT_Ptr && AK == DerefKind::Read) {
if (auto Idx = P.getOrCreateDummy(PD))
return this->emitGetPtrGlobal(*Idx, PD);
return false;
}
// Value cannot be produced - try to emit pointer and do stuff with it.
return visit(LV) && Indirect(T);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::dereferenceVar(
const Expr *LV, PrimType T, const VarDecl *VD, DerefKind AK,
llvm::function_ref<bool(PrimType)> Direct,
llvm::function_ref<bool(PrimType)> Indirect) {
auto It = Locals.find(VD);
if (It != Locals.end()) {
const auto &L = It->second;
switch (AK) {
case DerefKind::Read:
if (!this->emitGetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? this->emitPop(T, LV) : true;
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV);
case DerefKind::ReadWrite:
if (!this->emitGetLocal(T, L.Offset, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetLocal(T, L.Offset, LV))
return false;
return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV);
}
} else if (auto Idx = P.getGlobal(VD)) {
switch (AK) {
case DerefKind::Read:
if (!this->emitGetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? this->emitPop(T, LV) : true;
case DerefKind::Write:
if (!Direct(T))
return false;
if (!this->emitSetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV);
case DerefKind::ReadWrite:
if (!this->emitGetGlobal(T, *Idx, LV))
return false;
if (!Direct(T))
return false;
if (!this->emitSetGlobal(T, *Idx, LV))
return false;
return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV);
}
}
// If the declaration is a constant value, emit it here even
// though the declaration was not evaluated in the current scope.
// The access mode can only be read in this case.
if (!DiscardResult && AK == DerefKind::Read) {
if (VD->hasLocalStorage() && VD->hasInit() && !VD->isConstexpr()) {
QualType VT = VD->getType();
if (VT.isConstQualified() && VT->isFundamentalType())
return this->visit(VD->getInit());
}
}
// Value cannot be produced - try to emit pointer.
return visit(LV) && Indirect(T);
}
template <class Emitter>
template <typename T>
bool ByteCodeExprGen<Emitter>::emitConst(T Value, const Expr *E) {
switch (classifyPrim(E->getType())) {
case PT_Sint8:
return this->emitConstSint8(Value, E);
case PT_Uint8:
return this->emitConstUint8(Value, E);
case PT_Sint16:
return this->emitConstSint16(Value, E);
case PT_Uint16:
return this->emitConstUint16(Value, E);
case PT_Sint32:
return this->emitConstSint32(Value, E);
case PT_Uint32:
return this->emitConstUint32(Value, E);
case PT_Sint64:
return this->emitConstSint64(Value, E);
case PT_Uint64:
return this->emitConstUint64(Value, E);
case PT_Bool:
return this->emitConstBool(Value, E);
case PT_Ptr:
llvm_unreachable("Invalid integral type");
break;
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
if (Value.isSigned())
return this->emitConst(Value.getSExtValue(), E);
return this->emitConst(Value.getZExtValue(), E);
}
template <class Emitter>
unsigned ByteCodeExprGen<Emitter>::allocateLocalPrimitive(DeclTy &&Src,
PrimType Ty,
bool IsConst,
bool IsExtended) {
// Make sure we don't accidentally register the same decl twice.
if (const auto *VD =
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
assert(!P.getGlobal(VD));
assert(Locals.find(VD) == Locals.end());
}
// FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
// (int){12} in C. Consider using Expr::isTemporaryObject() instead
// or isa<MaterializeTemporaryExpr>().
Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
Src.is<const Expr *>());
Scope::Local Local = this->createLocal(D);
if (auto *VD = dyn_cast_or_null<ValueDecl>(Src.dyn_cast<const Decl *>()))
Locals.insert({VD, Local});
VarScope->add(Local, IsExtended);
return Local.Offset;
}
template <class Emitter>
std::optional<unsigned>
ByteCodeExprGen<Emitter>::allocateLocal(DeclTy &&Src, bool IsExtended) {
// Make sure we don't accidentally register the same decl twice.
if (const auto *VD =
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
assert(!P.getGlobal(VD));
assert(Locals.find(VD) == Locals.end());
}
QualType Ty;
const ValueDecl *Key = nullptr;
const Expr *Init = nullptr;
bool IsTemporary = false;
if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
Key = VD;
Ty = VD->getType();
if (const auto *VarD = dyn_cast<VarDecl>(VD))
Init = VarD->getInit();
}
if (auto *E = Src.dyn_cast<const Expr *>()) {
IsTemporary = true;
Ty = E->getType();
}
Descriptor *D = P.createDescriptor(
Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
IsTemporary, /*IsMutable=*/false, Init);
if (!D)
return {};
Scope::Local Local = this->createLocal(D);
if (Key)
Locals.insert({Key, Local});
VarScope->add(Local, IsExtended);
return Local.Offset;
}
// NB: When calling this function, we have a pointer to the
// array-to-initialize on the stack.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitArrayInitializer(const Expr *Initializer) {
assert(Initializer->getType()->isArrayType());
// TODO: Fillers?
if (const auto *InitList = dyn_cast<InitListExpr>(Initializer)) {
unsigned ElementIndex = 0;
for (const Expr *Init : InitList->inits()) {
if (std::optional<PrimType> T = classify(Init->getType())) {
// Visit the primitive element like normal.
if (!this->emitDupPtr(Init))
return false;
if (!this->visit(Init))
return false;
if (!this->emitInitElem(*T, ElementIndex, Init))
return false;
} else {
// Advance the pointer currently on the stack to the given
// dimension and narrow().
if (!this->emitDupPtr(Init))
return false;
if (!this->emitConstUint32(ElementIndex, Init))
return false;
if (!this->emitAddOffsetUint32(Init))
return false;
if (!this->emitNarrowPtr(Init))
return false;
if (!visitInitializer(Init))
return false;
}
if (!this->emitPopPtr(Init))
return false;
++ElementIndex;
}
return true;
} else if (const auto *DIE = dyn_cast<CXXDefaultInitExpr>(Initializer)) {
return this->visitInitializer(DIE->getExpr());
} else if (const auto *AILE = dyn_cast<ArrayInitLoopExpr>(Initializer)) {
// TODO: This compiles to quite a lot of bytecode if the array is larger.
// Investigate compiling this to a loop, or at least try to use
// the AILE's Common expr.
const Expr *SubExpr = AILE->getSubExpr();
size_t Size = AILE->getArraySize().getZExtValue();
std::optional<PrimType> ElemT = classify(SubExpr->getType());
// So, every iteration, we execute an assignment here
// where the LHS is on the stack (the target array)
// and the RHS is our SubExpr.
for (size_t I = 0; I != Size; ++I) {
ArrayIndexScope<Emitter> IndexScope(this, I);
if (!this->emitDupPtr(SubExpr)) // LHS
return false;
if (ElemT) {
if (!this->visit(SubExpr))
return false;
if (!this->emitInitElem(*ElemT, I, Initializer))
return false;
} else {
// Narrow to our array element and recurse into visitInitializer()
if (!this->emitConstUint64(I, SubExpr))
return false;
if (!this->emitAddOffsetUint64(SubExpr))
return false;
if (!this->emitNarrowPtr(SubExpr))
return false;
if (!visitInitializer(SubExpr))
return false;
}
if (!this->emitPopPtr(Initializer))
return false;
}
return true;
} else if (const auto *IVIE = dyn_cast<ImplicitValueInitExpr>(Initializer)) {
const ArrayType *AT = IVIE->getType()->getAsArrayTypeUnsafe();
assert(AT);
const auto *CAT = cast<ConstantArrayType>(AT);
size_t NumElems = CAT->getSize().getZExtValue();
if (std::optional<PrimType> ElemT = classify(CAT->getElementType())) {
// TODO(perf): For int and bool types, we can probably just skip this
// since we memset our Block*s to 0 and so we have the desired value
// without this.
for (size_t I = 0; I != NumElems; ++I) {
if (!this->emitZero(*ElemT, Initializer))
return false;
if (!this->emitInitElem(*ElemT, I, Initializer))
return false;
}
} else {
assert(false && "default initializer for non-primitive type");
}
return true;
} else if (const auto *Ctor = dyn_cast<CXXConstructExpr>(Initializer)) {
const ConstantArrayType *CAT =
Ctx.getASTContext().getAsConstantArrayType(Ctor->getType());
assert(CAT);
size_t NumElems = CAT->getSize().getZExtValue();
const Function *Func = getFunction(Ctor->getConstructor());
if (!Func || !Func->isConstexpr())
return false;
// FIXME(perf): We're calling the constructor once per array element here,
// in the old intepreter we had a special-case for trivial constructors.
for (size_t I = 0; I != NumElems; ++I) {
if (!this->emitDupPtr(Initializer))
return false;
if (!this->emitConstUint64(I, Initializer))
return false;
if (!this->emitAddOffsetUint64(Initializer))
return false;
if (!this->emitNarrowPtr(Initializer))
return false;
// Constructor arguments.
for (const auto *Arg : Ctor->arguments()) {
if (!this->visit(Arg))
return false;
}
if (!this->emitCall(Func, Initializer))
return false;
}
return true;
}
assert(false && "Unknown expression for array initialization");
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitRecordInitializer(const Expr *Initializer) {
Initializer = Initializer->IgnoreParenImpCasts();
assert(Initializer->getType()->isRecordType());
if (const auto CtorExpr = dyn_cast<CXXConstructExpr>(Initializer)) {
const Function *Func = getFunction(CtorExpr->getConstructor());
if (!Func || !Func->isConstexpr())
return false;
// The This pointer is already on the stack because this is an initializer,
// but we need to dup() so the call() below has its own copy.
if (!this->emitDupPtr(Initializer))
return false;
// Constructor arguments.
for (const auto *Arg : CtorExpr->arguments()) {
if (!this->visit(Arg))
return false;
}
return this->emitCall(Func, Initializer);
} else if (const auto *InitList = dyn_cast<InitListExpr>(Initializer)) {
const Record *R = getRecord(InitList->getType());
unsigned InitIndex = 0;
for (const Expr *Init : InitList->inits()) {
const Record::Field *FieldToInit = R->getField(InitIndex);
if (!this->emitDupPtr(Initializer))
return false;
if (std::optional<PrimType> T = classify(Init)) {
if (!this->visit(Init))
return false;
if (!this->emitInitField(*T, FieldToInit->Offset, Initializer))
return false;
if (!this->emitPopPtr(Initializer))
return false;
} else {
// Non-primitive case. Get a pointer to the field-to-initialize
// on the stack and recurse into visitInitializer().
if (!this->emitGetPtrField(FieldToInit->Offset, Init))
return false;
if (!this->visitInitializer(Init))
return false;
if (!this->emitPopPtr(Initializer))
return false;
}
++InitIndex;
}
return true;
} else if (const CallExpr *CE = dyn_cast<CallExpr>(Initializer)) {
// RVO functions expect a pointer to initialize on the stack.
// Dup our existing pointer so it has its own copy to use.
if (!this->emitDupPtr(Initializer))
return false;
return this->VisitCallExpr(CE);
} else if (const auto *DIE = dyn_cast<CXXDefaultInitExpr>(Initializer)) {
return this->visitInitializer(DIE->getExpr());
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitInitializer(const Expr *Initializer) {
QualType InitializerType = Initializer->getType();
if (InitializerType->isArrayType())
return visitArrayInitializer(Initializer);
if (InitializerType->isRecordType())
return visitRecordInitializer(Initializer);
// Otherwise, visit the expression like normal.
return this->visit(Initializer);
}
template <class Emitter>
const RecordType *ByteCodeExprGen<Emitter>::getRecordTy(QualType Ty) {
if (const PointerType *PT = dyn_cast<PointerType>(Ty))
return PT->getPointeeType()->getAs<RecordType>();
else
return Ty->getAs<RecordType>();
}
template <class Emitter>
Record *ByteCodeExprGen<Emitter>::getRecord(QualType Ty) {
if (auto *RecordTy = getRecordTy(Ty)) {
return getRecord(RecordTy->getDecl());
}
return nullptr;
}
template <class Emitter>
Record *ByteCodeExprGen<Emitter>::getRecord(const RecordDecl *RD) {
return P.getOrCreateRecord(RD);
}
template <class Emitter>
const Function *ByteCodeExprGen<Emitter>::getFunction(const FunctionDecl *FD) {
assert(FD);
const Function *Func = P.getFunction(FD);
bool IsBeingCompiled = Func && !Func->isFullyCompiled();
bool WasNotDefined = Func && !Func->hasBody();
if (IsBeingCompiled)
return Func;
if (!Func || WasNotDefined) {
if (auto R = ByteCodeStmtGen<ByteCodeEmitter>(Ctx, P).compileFunc(FD))
Func = *R;
else {
llvm::consumeError(R.takeError());
return nullptr;
}
}
return Func;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitExpr(const Expr *Exp) {
ExprScope<Emitter> RootScope(this);
if (!visit(Exp))
return false;
if (std::optional<PrimType> T = classify(Exp))
return this->emitRet(*T, Exp);
else
return this->emitRetValue(Exp);
}
/// Toplevel visitDecl().
/// We get here from evaluateAsInitializer().
/// We need to evaluate the initializer and return its value.
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitDecl(const VarDecl *VD) {
std::optional<PrimType> VarT = classify(VD->getType());
// Create and initialize the variable.
if (!this->visitVarDecl(VD))
return false;
// Get a pointer to the variable
if (shouldBeGloballyIndexed(VD)) {
auto GlobalIndex = P.getGlobal(VD);
assert(GlobalIndex); // visitVarDecl() didn't return false.
if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
return false;
} else {
auto Local = Locals.find(VD);
assert(Local != Locals.end()); // Same here.
if (!this->emitGetPtrLocal(Local->second.Offset, VD))
return false;
}
// Return the value
if (VarT) {
if (!this->emitLoadPop(*VarT, VD))
return false;
return this->emitRet(*VarT, VD);
}
return this->emitRetValue(VD);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::visitVarDecl(const VarDecl *VD) {
const Expr *Init = VD->getInit();
std::optional<PrimType> VarT = classify(VD->getType());
if (shouldBeGloballyIndexed(VD)) {
std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(VD, Init);
if (!GlobalIndex)
return this->bail(VD);
assert(Init);
{
DeclScope<Emitter> LocalScope(this, VD);
if (VarT) {
if (!this->visit(Init))
return false;
return this->emitInitGlobal(*VarT, *GlobalIndex, VD);
}
return this->visitGlobalInitializer(Init, *GlobalIndex);
}
} else {
VariableScope<Emitter> LocalScope(this);
if (VarT) {
unsigned Offset = this->allocateLocalPrimitive(
VD, *VarT, VD->getType().isConstQualified());
if (Init) {
// Compile the initializer in its own scope.
ExprScope<Emitter> Scope(this);
if (!this->visit(Init))
return false;
return this->emitSetLocal(*VarT, Offset, VD);
}
} else {
if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
if (Init)
return this->visitLocalInitializer(Init, *Offset);
}
}
return true;
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCallExpr(const CallExpr *E) {
assert(!E->getBuiltinCallee() && "Builtin functions aren't supported yet");
const Decl *Callee = E->getCalleeDecl();
if (const auto *FuncDecl = dyn_cast_or_null<FunctionDecl>(Callee)) {
const Function *Func = getFunction(FuncDecl);
if (!Func)
return false;
// If the function is being compiled right now, this is a recursive call.
// In that case, the function can't be valid yet, even though it will be
// later.
// If the function is already fully compiled but not constexpr, it was
// found to be faulty earlier on, so bail out.
if (Func->isFullyCompiled() && !Func->isConstexpr())
return false;
QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
std::optional<PrimType> T = classify(ReturnType);
if (Func->hasRVO() && DiscardResult) {
// If we need to discard the return value but the function returns its
// value via an RVO pointer, we need to create one such pointer just
// for this call.
if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
}
// Put arguments on the stack.
for (const auto *Arg : E->arguments()) {
if (!this->visit(Arg))
return false;
}
// In any case call the function. The return value will end up on the stack and
// if the function has RVO, we already have the pointer on the stack to write
// the result into.
if (!this->emitCall(Func, E))
return false;
if (DiscardResult && !ReturnType->isVoidType() && T)
return this->emitPop(*T, E);
return true;
} else {
assert(false && "We don't support non-FunctionDecl callees right now.");
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXMemberCallExpr(
const CXXMemberCallExpr *E) {
// Get a This pointer on the stack.
if (!this->visit(E->getImplicitObjectArgument()))
return false;
return VisitCallExpr(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXDefaultInitExpr(
const CXXDefaultInitExpr *E) {
return this->visit(E->getExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXDefaultArgExpr(
const CXXDefaultArgExpr *E) {
return this->visit(E->getExpr());
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXBoolLiteralExpr(
const CXXBoolLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitConstBool(E->getValue(), E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXNullPtrLiteralExpr(
const CXXNullPtrLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitNullPtr(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
if (DiscardResult)
return true;
return this->emitThis(E);
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
const Expr *SubExpr = E->getSubExpr();
std::optional<PrimType> T = classify(SubExpr->getType());
// TODO: Support pointers for inc/dec operators.
switch (E->getOpcode()) {
case UO_PostInc: { // x++
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
}
case UO_PostDec: { // x--
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
}
case UO_PreInc: { // ++x
if (!this->visit(SubExpr))
return false;
// Post-inc and pre-inc are the same if the value is to be discarded.
if (DiscardResult)
return this->emitIncPop(*T, E);
this->emitLoad(*T, E);
this->emitConst(1, E);
this->emitAdd(*T, E);
return this->emitStore(*T, E);
}
case UO_PreDec: { // --x
if (!this->visit(SubExpr))
return false;
// Post-dec and pre-dec are the same if the value is to be discarded.
if (DiscardResult)
return this->emitDecPop(*T, E);
this->emitLoad(*T, E);
this->emitConst(1, E);
this->emitSub(*T, E);
return this->emitStore(*T, E);
}
case UO_LNot: // !x
if (!this->visit(SubExpr))
return false;
// The Inv doesn't change anything, so skip it if we don't need the result.
return DiscardResult ? this->emitPop(*T, E) : this->emitInvBool(E);
case UO_Minus: // -x
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
case UO_Plus: // +x
if (!this->visit(SubExpr)) // noop
return false;
return DiscardResult ? this->emitPop(*T, E) : true;
case UO_AddrOf: // &x
// We should already have a pointer when we get here.
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : true;
case UO_Deref: // *x
return dereference(
SubExpr, DerefKind::Read,
[](PrimType) {
llvm_unreachable("Dereferencing requires a pointer");
return false;
},
[this, E](PrimType T) {
return DiscardResult ? this->emitPop(T, E) : true;
});
case UO_Not: // ~x
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
case UO_Real: // __real x
case UO_Imag: // __imag x
case UO_Extension:
case UO_Coawait:
assert(false && "Unhandled opcode");
}
return false;
}
template <class Emitter>
bool ByteCodeExprGen<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
const auto *Decl = E->getDecl();
// References are implemented via pointers, so when we see a DeclRefExpr
// pointing to a reference, we need to get its value directly (i.e. the
// pointer to the actual value) instead of a pointer to the pointer to the
// value.
bool IsReference = Decl->getType()->isReferenceType();
if (auto It = Locals.find(Decl); It != Locals.end()) {
const unsigned Offset = It->second.Offset;
if (IsReference)
return this->emitGetLocal(PT_Ptr, Offset, E);
return this->emitGetPtrLocal(Offset, E);
} else if (auto GlobalIndex = P.getGlobal(Decl)) {
if (IsReference)
return this->emitGetGlobal(PT_Ptr, *GlobalIndex, E);
return this->emitGetPtrGlobal(*GlobalIndex, E);
} else if (const auto *PVD = dyn_cast<ParmVarDecl>(Decl)) {
if (auto It = this->Params.find(PVD); It != this->Params.end()) {
if (IsReference)
return this->emitGetParam(PT_Ptr, It->second, E);
return this->emitGetPtrParam(It->second, E);
}
} else if (const auto *ECD = dyn_cast<EnumConstantDecl>(Decl)) {
return this->emitConst(ECD->getInitVal(), E);
}
return false;
}
template <class Emitter>
void ByteCodeExprGen<Emitter>::emitCleanup() {
for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
C->emitDestruction();
}
namespace clang {
namespace interp {
template class ByteCodeExprGen<ByteCodeEmitter>;
template class ByteCodeExprGen<EvalEmitter>;
} // namespace interp
} // namespace clang
|