aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16/lib/AST/Interp/ByteCodeEmitter.cpp
blob: 4633d1e0823b6728dd3e0635f4a3e431ee8d43a7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//===--- ByteCodeEmitter.cpp - Instruction emitter for the VM ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ByteCodeEmitter.h"
#include "Context.h"
#include "Opcode.h"
#include "Program.h"
#include "clang/AST/DeclCXX.h"
#include <type_traits>

using namespace clang;
using namespace clang::interp;

using APSInt = llvm::APSInt;
using Error = llvm::Error;

Expected<Function *>
ByteCodeEmitter::compileFunc(const FunctionDecl *FuncDecl) {
  // Function is not defined at all or not yet. We will
  // create a Function instance but not compile the body. That
  // will (maybe) happen later.
  bool HasBody = FuncDecl->hasBody(FuncDecl);

  // Create a handle over the emitted code.
  Function *Func = P.getFunction(FuncDecl);
  if (!Func) {
    // Set up argument indices.
    unsigned ParamOffset = 0;
    SmallVector<PrimType, 8> ParamTypes;
    llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors;

    // If the return is not a primitive, a pointer to the storage where the
    // value is initialized in is passed as the first argument. See 'RVO'
    // elsewhere in the code.
    QualType Ty = FuncDecl->getReturnType();
    bool HasRVO = false;
    if (!Ty->isVoidType() && !Ctx.classify(Ty)) {
      HasRVO = true;
      ParamTypes.push_back(PT_Ptr);
      ParamOffset += align(primSize(PT_Ptr));
    }

    // If the function decl is a member decl, the next parameter is
    // the 'this' pointer. This parameter is pop()ed from the
    // InterpStack when calling the function.
    bool HasThisPointer = false;
    if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl);
        MD && MD->isInstance()) {
      HasThisPointer = true;
      ParamTypes.push_back(PT_Ptr);
      ParamOffset += align(primSize(PT_Ptr));
    }

    // Assign descriptors to all parameters.
    // Composite objects are lowered to pointers.
    for (const ParmVarDecl *PD : FuncDecl->parameters()) {
      PrimType Ty = Ctx.classify(PD->getType()).value_or(PT_Ptr);
      Descriptor *Desc = P.createDescriptor(PD, Ty);
      ParamDescriptors.insert({ParamOffset, {Ty, Desc}});
      Params.insert({PD, ParamOffset});
      ParamOffset += align(primSize(Ty));
      ParamTypes.push_back(Ty);
    }

    Func =
        P.createFunction(FuncDecl, ParamOffset, std::move(ParamTypes),
                         std::move(ParamDescriptors), HasThisPointer, HasRVO);
  }

  assert(Func);
  if (!HasBody)
    return Func;

  // Compile the function body.
  if (!FuncDecl->isConstexpr() || !visitFunc(FuncDecl)) {
    // Return a dummy function if compilation failed.
    if (BailLocation)
      return llvm::make_error<ByteCodeGenError>(*BailLocation);
    else {
      Func->setIsFullyCompiled(true);
      return Func;
    }
  } else {
    // Create scopes from descriptors.
    llvm::SmallVector<Scope, 2> Scopes;
    for (auto &DS : Descriptors) {
      Scopes.emplace_back(std::move(DS));
    }

    // Set the function's code.
    Func->setCode(NextLocalOffset, std::move(Code), std::move(SrcMap),
                  std::move(Scopes));
    Func->setIsFullyCompiled(true);
    return Func;
  }
}

Scope::Local ByteCodeEmitter::createLocal(Descriptor *D) {
  NextLocalOffset += sizeof(Block);
  unsigned Location = NextLocalOffset;
  NextLocalOffset += align(D->getAllocSize());
  return {Location, D};
}

void ByteCodeEmitter::emitLabel(LabelTy Label) {
  const size_t Target = Code.size();
  LabelOffsets.insert({Label, Target});
  auto It = LabelRelocs.find(Label);
  if (It != LabelRelocs.end()) {
    for (unsigned Reloc : It->second) {
      using namespace llvm::support;

      /// Rewrite the operand of all jumps to this label.
      void *Location = Code.data() + Reloc - align(sizeof(int32_t));
      assert(aligned(Location));
      const int32_t Offset = Target - static_cast<int64_t>(Reloc);
      endian::write<int32_t, endianness::native, 1>(Location, Offset);
    }
    LabelRelocs.erase(It);
  }
}

int32_t ByteCodeEmitter::getOffset(LabelTy Label) {
  // Compute the PC offset which the jump is relative to.
  const int64_t Position =
      Code.size() + align(sizeof(Opcode)) + align(sizeof(int32_t));
  assert(aligned(Position));

  // If target is known, compute jump offset.
  auto It = LabelOffsets.find(Label);
  if (It != LabelOffsets.end()) {
    return It->second - Position;
  }

  // Otherwise, record relocation and return dummy offset.
  LabelRelocs[Label].push_back(Position);
  return 0ull;
}

bool ByteCodeEmitter::bail(const SourceLocation &Loc) {
  if (!BailLocation)
    BailLocation = Loc;
  return false;
}

/// Helper to write bytecode and bail out if 32-bit offsets become invalid.
/// Pointers will be automatically marshalled as 32-bit IDs.
template <typename T>
static void emit(Program &P, std::vector<char> &Code, const T &Val,
                 bool &Success) {
  size_t Size;

  if constexpr (std::is_pointer_v<T>)
    Size = sizeof(uint32_t);
  else
    Size = sizeof(T);

  if (Code.size() + Size > std::numeric_limits<unsigned>::max()) {
    Success = false;
    return;
  }

  // Access must be aligned!
  size_t ValPos = align(Code.size());
  Size = align(Size);
  assert(aligned(ValPos + Size));
  Code.resize(ValPos + Size);

  if constexpr (!std::is_pointer_v<T>) {
    new (Code.data() + ValPos) T(Val);
  } else {
    uint32_t ID = P.getOrCreateNativePointer(Val);
    new (Code.data() + ValPos) uint32_t(ID);
  }
}

template <typename... Tys>
bool ByteCodeEmitter::emitOp(Opcode Op, const Tys &... Args, const SourceInfo &SI) {
  bool Success = true;

  /// The opcode is followed by arguments. The source info is
  /// attached to the address after the opcode.
  emit(P, Code, Op, Success);
  if (SI)
    SrcMap.emplace_back(Code.size(), SI);

  /// The initializer list forces the expression to be evaluated
  /// for each argument in the variadic template, in order.
  (void)std::initializer_list<int>{(emit(P, Code, Args, Success), 0)...};

  return Success;
}

bool ByteCodeEmitter::jumpTrue(const LabelTy &Label) {
  return emitJt(getOffset(Label), SourceInfo{});
}

bool ByteCodeEmitter::jumpFalse(const LabelTy &Label) {
  return emitJf(getOffset(Label), SourceInfo{});
}

bool ByteCodeEmitter::jump(const LabelTy &Label) {
  return emitJmp(getOffset(Label), SourceInfo{});
}

bool ByteCodeEmitter::fallthrough(const LabelTy &Label) {
  emitLabel(Label);
  return true;
}

//===----------------------------------------------------------------------===//
// Opcode emitters
//===----------------------------------------------------------------------===//

#define GET_LINK_IMPL
#include "Opcodes.inc"
#undef GET_LINK_IMPL