1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===-- SemaConcept.h - Semantic Analysis for Constraints and Concepts ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
// This file provides semantic analysis for C++ constraints and concepts.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_SEMACONCEPT_H
#define LLVM_CLANG_SEMA_SEMACONCEPT_H
#include "clang/AST/ASTConcept.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallVector.h"
#include <optional>
#include <string>
#include <utility>
namespace clang {
class Sema;
struct AtomicConstraint {
const Expr *ConstraintExpr;
std::optional<ArrayRef<TemplateArgumentLoc>> ParameterMapping;
AtomicConstraint(Sema &S, const Expr *ConstraintExpr) :
ConstraintExpr(ConstraintExpr) { };
bool hasMatchingParameterMapping(ASTContext &C,
const AtomicConstraint &Other) const {
if (!ParameterMapping != !Other.ParameterMapping)
return false;
if (!ParameterMapping)
return true;
if (ParameterMapping->size() != Other.ParameterMapping->size())
return false;
for (unsigned I = 0, S = ParameterMapping->size(); I < S; ++I) {
llvm::FoldingSetNodeID IDA, IDB;
C.getCanonicalTemplateArgument((*ParameterMapping)[I].getArgument())
.Profile(IDA, C);
C.getCanonicalTemplateArgument((*Other.ParameterMapping)[I].getArgument())
.Profile(IDB, C);
if (IDA != IDB)
return false;
}
return true;
}
bool subsumes(ASTContext &C, const AtomicConstraint &Other) const {
// C++ [temp.constr.order] p2
// - an atomic constraint A subsumes another atomic constraint B
// if and only if the A and B are identical [...]
//
// C++ [temp.constr.atomic] p2
// Two atomic constraints are identical if they are formed from the
// same expression and the targets of the parameter mappings are
// equivalent according to the rules for expressions [...]
// We do not actually substitute the parameter mappings into the
// constraint expressions, therefore the constraint expressions are
// the originals, and comparing them will suffice.
if (ConstraintExpr != Other.ConstraintExpr)
return false;
// Check that the parameter lists are identical
return hasMatchingParameterMapping(C, Other);
}
};
/// \brief A normalized constraint, as defined in C++ [temp.constr.normal], is
/// either an atomic constraint, a conjunction of normalized constraints or a
/// disjunction of normalized constraints.
struct NormalizedConstraint {
friend class Sema;
enum CompoundConstraintKind { CCK_Conjunction, CCK_Disjunction };
using CompoundConstraint = llvm::PointerIntPair<
std::pair<NormalizedConstraint, NormalizedConstraint> *, 1,
CompoundConstraintKind>;
llvm::PointerUnion<AtomicConstraint *, CompoundConstraint> Constraint;
NormalizedConstraint(AtomicConstraint *C): Constraint{C} { };
NormalizedConstraint(ASTContext &C, NormalizedConstraint LHS,
NormalizedConstraint RHS, CompoundConstraintKind Kind)
: Constraint{CompoundConstraint{
new (C) std::pair<NormalizedConstraint, NormalizedConstraint>{
std::move(LHS), std::move(RHS)}, Kind}} { };
NormalizedConstraint(ASTContext &C, const NormalizedConstraint &Other) {
if (Other.isAtomic()) {
Constraint = new (C) AtomicConstraint(*Other.getAtomicConstraint());
} else {
Constraint = CompoundConstraint(
new (C) std::pair<NormalizedConstraint, NormalizedConstraint>{
NormalizedConstraint(C, Other.getLHS()),
NormalizedConstraint(C, Other.getRHS())},
Other.getCompoundKind());
}
}
NormalizedConstraint(NormalizedConstraint &&Other):
Constraint(Other.Constraint) {
Other.Constraint = nullptr;
}
NormalizedConstraint &operator=(const NormalizedConstraint &Other) = delete;
NormalizedConstraint &operator=(NormalizedConstraint &&Other) {
if (&Other != this) {
NormalizedConstraint Temp(std::move(Other));
std::swap(Constraint, Temp.Constraint);
}
return *this;
}
CompoundConstraintKind getCompoundKind() const {
assert(!isAtomic() && "getCompoundKind called on atomic constraint.");
return Constraint.get<CompoundConstraint>().getInt();
}
bool isAtomic() const { return Constraint.is<AtomicConstraint *>(); }
NormalizedConstraint &getLHS() const {
assert(!isAtomic() && "getLHS called on atomic constraint.");
return Constraint.get<CompoundConstraint>().getPointer()->first;
}
NormalizedConstraint &getRHS() const {
assert(!isAtomic() && "getRHS called on atomic constraint.");
return Constraint.get<CompoundConstraint>().getPointer()->second;
}
AtomicConstraint *getAtomicConstraint() const {
assert(isAtomic() &&
"getAtomicConstraint called on non-atomic constraint.");
return Constraint.get<AtomicConstraint *>();
}
private:
static std::optional<NormalizedConstraint>
fromConstraintExprs(Sema &S, NamedDecl *D, ArrayRef<const Expr *> E);
static std::optional<NormalizedConstraint>
fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E);
};
} // clang
#endif // LLVM_CLANG_SEMA_SEMACONCEPT_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|