1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- Ownership.h - Parser ownership helpers -------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains classes for managing ownership of Stmt and Expr nodes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_OWNERSHIP_H
#define LLVM_CLANG_SEMA_OWNERSHIP_H
#include "clang/AST/Expr.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/type_traits.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
//===----------------------------------------------------------------------===//
// OpaquePtr
//===----------------------------------------------------------------------===//
namespace clang {
class CXXBaseSpecifier;
class CXXCtorInitializer;
class Decl;
class Expr;
class ParsedTemplateArgument;
class QualType;
class Stmt;
class TemplateName;
class TemplateParameterList;
/// Wrapper for void* pointer.
/// \tparam PtrTy Either a pointer type like 'T*' or a type that behaves like
/// a pointer.
///
/// This is a very simple POD type that wraps a pointer that the Parser
/// doesn't know about but that Sema or another client does. The PtrTy
/// template argument is used to make sure that "Decl" pointers are not
/// compatible with "Type" pointers for example.
template <class PtrTy>
class OpaquePtr {
void *Ptr = nullptr;
explicit OpaquePtr(void *Ptr) : Ptr(Ptr) {}
using Traits = llvm::PointerLikeTypeTraits<PtrTy>;
public:
OpaquePtr(std::nullptr_t = nullptr) {}
static OpaquePtr make(PtrTy P) { OpaquePtr OP; OP.set(P); return OP; }
/// Returns plain pointer to the entity pointed by this wrapper.
/// \tparam PointeeT Type of pointed entity.
///
/// It is identical to getPtrAs<PointeeT*>.
template <typename PointeeT> PointeeT* getPtrTo() const {
return get();
}
/// Returns pointer converted to the specified type.
/// \tparam PtrT Result pointer type. There must be implicit conversion
/// from PtrTy to PtrT.
///
/// In contrast to getPtrTo, this method allows the return type to be
/// a smart pointer.
template <typename PtrT> PtrT getPtrAs() const {
return get();
}
PtrTy get() const {
return Traits::getFromVoidPointer(Ptr);
}
void set(PtrTy P) {
Ptr = Traits::getAsVoidPointer(P);
}
explicit operator bool() const { return Ptr != nullptr; }
void *getAsOpaquePtr() const { return Ptr; }
static OpaquePtr getFromOpaquePtr(void *P) { return OpaquePtr(P); }
};
/// UnionOpaquePtr - A version of OpaquePtr suitable for membership
/// in a union.
template <class T> struct UnionOpaquePtr {
void *Ptr;
static UnionOpaquePtr make(OpaquePtr<T> P) {
UnionOpaquePtr OP = { P.getAsOpaquePtr() };
return OP;
}
OpaquePtr<T> get() const { return OpaquePtr<T>::getFromOpaquePtr(Ptr); }
operator OpaquePtr<T>() const { return get(); }
UnionOpaquePtr &operator=(OpaquePtr<T> P) {
Ptr = P.getAsOpaquePtr();
return *this;
}
};
} // namespace clang
namespace llvm {
template <class T>
struct PointerLikeTypeTraits<clang::OpaquePtr<T>> {
static constexpr int NumLowBitsAvailable = 0;
static inline void *getAsVoidPointer(clang::OpaquePtr<T> P) {
// FIXME: Doesn't work? return P.getAs< void >();
return P.getAsOpaquePtr();
}
static inline clang::OpaquePtr<T> getFromVoidPointer(void *P) {
return clang::OpaquePtr<T>::getFromOpaquePtr(P);
}
};
} // namespace llvm
namespace clang {
// Basic
class StreamingDiagnostic;
// Determines whether the low bit of the result pointer for the
// given UID is always zero. If so, ActionResult will use that bit
// for it's "invalid" flag.
template <class Ptr> struct IsResultPtrLowBitFree {
static const bool value = false;
};
/// ActionResult - This structure is used while parsing/acting on
/// expressions, stmts, etc. It encapsulates both the object returned by
/// the action, plus a sense of whether or not it is valid.
/// When CompressInvalid is true, the "invalid" flag will be
/// stored in the low bit of the Val pointer.
template<class PtrTy,
bool CompressInvalid = IsResultPtrLowBitFree<PtrTy>::value>
class ActionResult {
PtrTy Val;
bool Invalid;
public:
ActionResult(bool Invalid = false) : Val(PtrTy()), Invalid(Invalid) {}
ActionResult(PtrTy val) : Val(val), Invalid(false) {}
ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {}
// These two overloads prevent void* -> bool conversions.
ActionResult(const void *) = delete;
ActionResult(volatile void *) = delete;
bool isInvalid() const { return Invalid; }
bool isUsable() const { return !Invalid && Val; }
bool isUnset() const { return !Invalid && !Val; }
PtrTy get() const { return Val; }
template <typename T> T *getAs() { return static_cast<T*>(get()); }
void set(PtrTy V) { Val = V; }
const ActionResult &operator=(PtrTy RHS) {
Val = RHS;
Invalid = false;
return *this;
}
};
// This ActionResult partial specialization places the "invalid"
// flag into the low bit of the pointer.
template<typename PtrTy>
class ActionResult<PtrTy, true> {
// A pointer whose low bit is 1 if this result is invalid, 0
// otherwise.
uintptr_t PtrWithInvalid;
using PtrTraits = llvm::PointerLikeTypeTraits<PtrTy>;
public:
ActionResult(bool Invalid = false)
: PtrWithInvalid(static_cast<uintptr_t>(Invalid)) {}
ActionResult(PtrTy V) {
void *VP = PtrTraits::getAsVoidPointer(V);
PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
}
ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) {}
// These two overloads prevent void* -> bool conversions.
ActionResult(const void *) = delete;
ActionResult(volatile void *) = delete;
bool isInvalid() const { return PtrWithInvalid & 0x01; }
bool isUsable() const { return PtrWithInvalid > 0x01; }
bool isUnset() const { return PtrWithInvalid == 0; }
PtrTy get() const {
void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01);
return PtrTraits::getFromVoidPointer(VP);
}
template <typename T> T *getAs() { return static_cast<T*>(get()); }
void set(PtrTy V) {
void *VP = PtrTraits::getAsVoidPointer(V);
PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
}
const ActionResult &operator=(PtrTy RHS) {
void *VP = PtrTraits::getAsVoidPointer(RHS);
PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
return *this;
}
// For types where we can fit a flag in with the pointer, provide
// conversions to/from pointer type.
static ActionResult getFromOpaquePointer(void *P) {
ActionResult Result;
Result.PtrWithInvalid = (uintptr_t)P;
return Result;
}
void *getAsOpaquePointer() const { return (void*)PtrWithInvalid; }
};
/// An opaque type for threading parsed type information through the
/// parser.
using ParsedType = OpaquePtr<QualType>;
using UnionParsedType = UnionOpaquePtr<QualType>;
// We can re-use the low bit of expression, statement, base, and
// member-initializer pointers for the "invalid" flag of
// ActionResult.
template<> struct IsResultPtrLowBitFree<Expr*> {
static const bool value = true;
};
template<> struct IsResultPtrLowBitFree<Stmt*> {
static const bool value = true;
};
template<> struct IsResultPtrLowBitFree<CXXBaseSpecifier*> {
static const bool value = true;
};
template<> struct IsResultPtrLowBitFree<CXXCtorInitializer*> {
static const bool value = true;
};
using ExprResult = ActionResult<Expr *>;
using StmtResult = ActionResult<Stmt *>;
using TypeResult = ActionResult<ParsedType>;
using BaseResult = ActionResult<CXXBaseSpecifier *>;
using MemInitResult = ActionResult<CXXCtorInitializer *>;
using DeclResult = ActionResult<Decl *>;
using ParsedTemplateTy = OpaquePtr<TemplateName>;
using UnionParsedTemplateTy = UnionOpaquePtr<TemplateName>;
using MultiExprArg = MutableArrayRef<Expr *>;
using MultiStmtArg = MutableArrayRef<Stmt *>;
using ASTTemplateArgsPtr = MutableArrayRef<ParsedTemplateArgument>;
using MultiTypeArg = MutableArrayRef<ParsedType>;
using MultiTemplateParamsArg = MutableArrayRef<TemplateParameterList *>;
inline ExprResult ExprError() { return ExprResult(true); }
inline StmtResult StmtError() { return StmtResult(true); }
inline TypeResult TypeError() { return TypeResult(true); }
inline ExprResult ExprError(const StreamingDiagnostic &) {
return ExprError();
}
inline StmtResult StmtError(const StreamingDiagnostic &) {
return StmtError();
}
inline ExprResult ExprEmpty() { return ExprResult(false); }
inline StmtResult StmtEmpty() { return StmtResult(false); }
inline Expr *AssertSuccess(ExprResult R) {
assert(!R.isInvalid() && "operation was asserted to never fail!");
return R.get();
}
inline Stmt *AssertSuccess(StmtResult R) {
assert(!R.isInvalid() && "operation was asserted to never fail!");
return R.get();
}
} // namespace clang
#endif // LLVM_CLANG_SEMA_OWNERSHIP_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|