1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- ThreadSafetyUtil.h ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines some basic utility classes for use by ThreadSafetyTIL.h
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H
#define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H
#include "clang/AST/Decl.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Allocator.h"
#include <cassert>
#include <cstddef>
#include <cstring>
#include <iterator>
#include <ostream>
#include <string>
#include <vector>
namespace clang {
class Expr;
namespace threadSafety {
namespace til {
// Simple wrapper class to abstract away from the details of memory management.
// SExprs are allocated in pools, and deallocated all at once.
class MemRegionRef {
private:
union AlignmentType {
double d;
void *p;
long double dd;
long long ii;
};
public:
MemRegionRef() = default;
MemRegionRef(llvm::BumpPtrAllocator *A) : Allocator(A) {}
void *allocate(size_t Sz) {
return Allocator->Allocate(Sz, alignof(AlignmentType));
}
template <typename T> T *allocateT() { return Allocator->Allocate<T>(); }
template <typename T> T *allocateT(size_t NumElems) {
return Allocator->Allocate<T>(NumElems);
}
private:
llvm::BumpPtrAllocator *Allocator = nullptr;
};
} // namespace til
} // namespace threadSafety
} // namespace clang
inline void *operator new(size_t Sz,
clang::threadSafety::til::MemRegionRef &R) {
return R.allocate(Sz);
}
namespace clang {
namespace threadSafety {
std::string getSourceLiteralString(const Expr *CE);
namespace til {
// A simple fixed size array class that does not manage its own memory,
// suitable for use with bump pointer allocation.
template <class T> class SimpleArray {
public:
SimpleArray() = default;
SimpleArray(T *Dat, size_t Cp, size_t Sz = 0)
: Data(Dat), Size(Sz), Capacity(Cp) {}
SimpleArray(MemRegionRef A, size_t Cp)
: Data(Cp == 0 ? nullptr : A.allocateT<T>(Cp)), Capacity(Cp) {}
SimpleArray(const SimpleArray<T> &A) = delete;
SimpleArray(SimpleArray<T> &&A)
: Data(A.Data), Size(A.Size), Capacity(A.Capacity) {
A.Data = nullptr;
A.Size = 0;
A.Capacity = 0;
}
SimpleArray &operator=(SimpleArray &&RHS) {
if (this != &RHS) {
Data = RHS.Data;
Size = RHS.Size;
Capacity = RHS.Capacity;
RHS.Data = nullptr;
RHS.Size = RHS.Capacity = 0;
}
return *this;
}
// Reserve space for at least Ncp items, reallocating if necessary.
void reserve(size_t Ncp, MemRegionRef A) {
if (Ncp <= Capacity)
return;
T *Odata = Data;
Data = A.allocateT<T>(Ncp);
Capacity = Ncp;
memcpy(Data, Odata, sizeof(T) * Size);
}
// Reserve space for at least N more items.
void reserveCheck(size_t N, MemRegionRef A) {
if (Capacity == 0)
reserve(u_max(InitialCapacity, N), A);
else if (Size + N < Capacity)
reserve(u_max(Size + N, Capacity * 2), A);
}
using iterator = T *;
using const_iterator = const T *;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
size_t size() const { return Size; }
size_t capacity() const { return Capacity; }
T &operator[](unsigned i) {
assert(i < Size && "Array index out of bounds.");
return Data[i];
}
const T &operator[](unsigned i) const {
assert(i < Size && "Array index out of bounds.");
return Data[i];
}
T &back() {
assert(Size && "No elements in the array.");
return Data[Size - 1];
}
const T &back() const {
assert(Size && "No elements in the array.");
return Data[Size - 1];
}
iterator begin() { return Data; }
iterator end() { return Data + Size; }
const_iterator begin() const { return Data; }
const_iterator end() const { return Data + Size; }
const_iterator cbegin() const { return Data; }
const_iterator cend() const { return Data + Size; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
void push_back(const T &Elem) {
assert(Size < Capacity);
Data[Size++] = Elem;
}
// drop last n elements from array
void drop(unsigned n = 0) {
assert(Size > n);
Size -= n;
}
void setValues(unsigned Sz, const T& C) {
assert(Sz <= Capacity);
Size = Sz;
for (unsigned i = 0; i < Sz; ++i) {
Data[i] = C;
}
}
template <class Iter> unsigned append(Iter I, Iter E) {
size_t Osz = Size;
size_t J = Osz;
for (; J < Capacity && I != E; ++J, ++I)
Data[J] = *I;
Size = J;
return J - Osz;
}
llvm::iterator_range<reverse_iterator> reverse() {
return llvm::reverse(*this);
}
llvm::iterator_range<const_reverse_iterator> reverse() const {
return llvm::reverse(*this);
}
private:
// std::max is annoying here, because it requires a reference,
// thus forcing InitialCapacity to be initialized outside the .h file.
size_t u_max(size_t i, size_t j) { return (i < j) ? j : i; }
static const size_t InitialCapacity = 4;
T *Data = nullptr;
size_t Size = 0;
size_t Capacity = 0;
};
} // namespace til
// A copy on write vector.
// The vector can be in one of three states:
// * invalid -- no operations are permitted.
// * read-only -- read operations are permitted.
// * writable -- read and write operations are permitted.
// The init(), destroy(), and makeWritable() methods will change state.
template<typename T>
class CopyOnWriteVector {
class VectorData {
public:
unsigned NumRefs = 1;
std::vector<T> Vect;
VectorData() = default;
VectorData(const VectorData &VD) : Vect(VD.Vect) {}
};
public:
CopyOnWriteVector() = default;
CopyOnWriteVector(CopyOnWriteVector &&V) : Data(V.Data) { V.Data = nullptr; }
CopyOnWriteVector &operator=(CopyOnWriteVector &&V) {
destroy();
Data = V.Data;
V.Data = nullptr;
return *this;
}
// No copy constructor or copy assignment. Use clone() with move assignment.
CopyOnWriteVector(const CopyOnWriteVector &) = delete;
CopyOnWriteVector &operator=(const CopyOnWriteVector &) = delete;
~CopyOnWriteVector() { destroy(); }
// Returns true if this holds a valid vector.
bool valid() const { return Data; }
// Returns true if this vector is writable.
bool writable() const { return Data && Data->NumRefs == 1; }
// If this vector is not valid, initialize it to a valid vector.
void init() {
if (!Data) {
Data = new VectorData();
}
}
// Destroy this vector; thus making it invalid.
void destroy() {
if (!Data)
return;
if (Data->NumRefs <= 1)
delete Data;
else
--Data->NumRefs;
Data = nullptr;
}
// Make this vector writable, creating a copy if needed.
void makeWritable() {
if (!Data) {
Data = new VectorData();
return;
}
if (Data->NumRefs == 1)
return; // already writeable.
--Data->NumRefs;
Data = new VectorData(*Data);
}
// Create a lazy copy of this vector.
CopyOnWriteVector clone() { return CopyOnWriteVector(Data); }
using const_iterator = typename std::vector<T>::const_iterator;
const std::vector<T> &elements() const { return Data->Vect; }
const_iterator begin() const { return elements().cbegin(); }
const_iterator end() const { return elements().cend(); }
const T& operator[](unsigned i) const { return elements()[i]; }
unsigned size() const { return Data ? elements().size() : 0; }
// Return true if V and this vector refer to the same data.
bool sameAs(const CopyOnWriteVector &V) const { return Data == V.Data; }
// Clear vector. The vector must be writable.
void clear() {
assert(writable() && "Vector is not writable!");
Data->Vect.clear();
}
// Push a new element onto the end. The vector must be writable.
void push_back(const T &Elem) {
assert(writable() && "Vector is not writable!");
Data->Vect.push_back(Elem);
}
// Gets a mutable reference to the element at index(i).
// The vector must be writable.
T& elem(unsigned i) {
assert(writable() && "Vector is not writable!");
return Data->Vect[i];
}
// Drops elements from the back until the vector has size i.
void downsize(unsigned i) {
assert(writable() && "Vector is not writable!");
Data->Vect.erase(Data->Vect.begin() + i, Data->Vect.end());
}
private:
CopyOnWriteVector(VectorData *D) : Data(D) {
if (!Data)
return;
++Data->NumRefs;
}
VectorData *Data = nullptr;
};
inline std::ostream& operator<<(std::ostream& ss, const StringRef str) {
return ss.write(str.data(), str.size());
}
} // namespace threadSafety
} // namespace clang
#endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|