1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- ThreadSafetyTIL.h ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a simple Typed Intermediate Language, or TIL, that is used
// by the thread safety analysis (See ThreadSafety.cpp). The TIL is intended
// to be largely independent of clang, in the hope that the analysis can be
// reused for other non-C++ languages. All dependencies on clang/llvm should
// go in ThreadSafetyUtil.h.
//
// Thread safety analysis works by comparing mutex expressions, e.g.
//
// class A { Mutex mu; int dat GUARDED_BY(this->mu); }
// class B { A a; }
//
// void foo(B* b) {
// (*b).a.mu.lock(); // locks (*b).a.mu
// b->a.dat = 0; // substitute &b->a for 'this';
// // requires lock on (&b->a)->mu
// (b->a.mu).unlock(); // unlocks (b->a.mu)
// }
//
// As illustrated by the above example, clang Exprs are not well-suited to
// represent mutex expressions directly, since there is no easy way to compare
// Exprs for equivalence. The thread safety analysis thus lowers clang Exprs
// into a simple intermediate language (IL). The IL supports:
//
// (1) comparisons for semantic equality of expressions
// (2) SSA renaming of variables
// (3) wildcards and pattern matching over expressions
// (4) hash-based expression lookup
//
// The TIL is currently very experimental, is intended only for use within
// the thread safety analysis, and is subject to change without notice.
// After the API stabilizes and matures, it may be appropriate to make this
// more generally available to other analyses.
//
// UNDER CONSTRUCTION. USE AT YOUR OWN RISK.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
#define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
#include "clang/AST/Decl.h"
#include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <optional>
#include <string>
#include <utility>
namespace clang {
class CallExpr;
class Expr;
class Stmt;
namespace threadSafety {
namespace til {
class BasicBlock;
/// Enum for the different distinct classes of SExpr
enum TIL_Opcode : unsigned char {
#define TIL_OPCODE_DEF(X) COP_##X,
#include "ThreadSafetyOps.def"
#undef TIL_OPCODE_DEF
};
/// Opcode for unary arithmetic operations.
enum TIL_UnaryOpcode : unsigned char {
UOP_Minus, // -
UOP_BitNot, // ~
UOP_LogicNot // !
};
/// Opcode for binary arithmetic operations.
enum TIL_BinaryOpcode : unsigned char {
BOP_Add, // +
BOP_Sub, // -
BOP_Mul, // *
BOP_Div, // /
BOP_Rem, // %
BOP_Shl, // <<
BOP_Shr, // >>
BOP_BitAnd, // &
BOP_BitXor, // ^
BOP_BitOr, // |
BOP_Eq, // ==
BOP_Neq, // !=
BOP_Lt, // <
BOP_Leq, // <=
BOP_Cmp, // <=>
BOP_LogicAnd, // && (no short-circuit)
BOP_LogicOr // || (no short-circuit)
};
/// Opcode for cast operations.
enum TIL_CastOpcode : unsigned char {
CAST_none = 0,
// Extend precision of numeric type
CAST_extendNum,
// Truncate precision of numeric type
CAST_truncNum,
// Convert to floating point type
CAST_toFloat,
// Convert to integer type
CAST_toInt,
// Convert smart pointer to pointer (C++ only)
CAST_objToPtr
};
const TIL_Opcode COP_Min = COP_Future;
const TIL_Opcode COP_Max = COP_Branch;
const TIL_UnaryOpcode UOP_Min = UOP_Minus;
const TIL_UnaryOpcode UOP_Max = UOP_LogicNot;
const TIL_BinaryOpcode BOP_Min = BOP_Add;
const TIL_BinaryOpcode BOP_Max = BOP_LogicOr;
const TIL_CastOpcode CAST_Min = CAST_none;
const TIL_CastOpcode CAST_Max = CAST_toInt;
/// Return the name of a unary opcode.
StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
/// Return the name of a binary opcode.
StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
/// ValueTypes are data types that can actually be held in registers.
/// All variables and expressions must have a value type.
/// Pointer types are further subdivided into the various heap-allocated
/// types, such as functions, records, etc.
/// Structured types that are passed by value (e.g. complex numbers)
/// require special handling; they use BT_ValueRef, and size ST_0.
struct ValueType {
enum BaseType : unsigned char {
BT_Void = 0,
BT_Bool,
BT_Int,
BT_Float,
BT_String, // String literals
BT_Pointer,
BT_ValueRef
};
enum SizeType : unsigned char {
ST_0 = 0,
ST_1,
ST_8,
ST_16,
ST_32,
ST_64,
ST_128
};
ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS)
: Base(B), Size(Sz), Signed(S), VectSize(VS) {}
inline static SizeType getSizeType(unsigned nbytes);
template <class T>
inline static ValueType getValueType();
BaseType Base;
SizeType Size;
bool Signed;
// 0 for scalar, otherwise num elements in vector
unsigned char VectSize;
};
inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) {
switch (nbytes) {
case 1: return ST_8;
case 2: return ST_16;
case 4: return ST_32;
case 8: return ST_64;
case 16: return ST_128;
default: return ST_0;
}
}
template<>
inline ValueType ValueType::getValueType<void>() {
return ValueType(BT_Void, ST_0, false, 0);
}
template<>
inline ValueType ValueType::getValueType<bool>() {
return ValueType(BT_Bool, ST_1, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int8_t>() {
return ValueType(BT_Int, ST_8, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint8_t>() {
return ValueType(BT_Int, ST_8, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int16_t>() {
return ValueType(BT_Int, ST_16, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint16_t>() {
return ValueType(BT_Int, ST_16, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int32_t>() {
return ValueType(BT_Int, ST_32, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint32_t>() {
return ValueType(BT_Int, ST_32, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int64_t>() {
return ValueType(BT_Int, ST_64, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint64_t>() {
return ValueType(BT_Int, ST_64, false, 0);
}
template<>
inline ValueType ValueType::getValueType<float>() {
return ValueType(BT_Float, ST_32, true, 0);
}
template<>
inline ValueType ValueType::getValueType<double>() {
return ValueType(BT_Float, ST_64, true, 0);
}
template<>
inline ValueType ValueType::getValueType<long double>() {
return ValueType(BT_Float, ST_128, true, 0);
}
template<>
inline ValueType ValueType::getValueType<StringRef>() {
return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0);
}
template<>
inline ValueType ValueType::getValueType<void*>() {
return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0);
}
/// Base class for AST nodes in the typed intermediate language.
class SExpr {
public:
SExpr() = delete;
TIL_Opcode opcode() const { return Opcode; }
// Subclasses of SExpr must define the following:
//
// This(const This& E, ...) {
// copy constructor: construct copy of E, with some additional arguments.
// }
//
// template <class V>
// typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// traverse all subexpressions, following the traversal/rewriter interface.
// }
//
// template <class C> typename C::CType compare(CType* E, C& Cmp) {
// compare all subexpressions, following the comparator interface
// }
void *operator new(size_t S, MemRegionRef &R) {
return ::operator new(S, R);
}
/// SExpr objects must be created in an arena.
void *operator new(size_t) = delete;
/// SExpr objects cannot be deleted.
// This declaration is public to workaround a gcc bug that breaks building
// with REQUIRES_EH=1.
void operator delete(void *) = delete;
/// Returns the instruction ID for this expression.
/// All basic block instructions have a unique ID (i.e. virtual register).
unsigned id() const { return SExprID; }
/// Returns the block, if this is an instruction in a basic block,
/// otherwise returns null.
BasicBlock *block() const { return Block; }
/// Set the basic block and instruction ID for this expression.
void setID(BasicBlock *B, unsigned id) { Block = B; SExprID = id; }
protected:
SExpr(TIL_Opcode Op) : Opcode(Op) {}
SExpr(const SExpr &E) : Opcode(E.Opcode), Flags(E.Flags) {}
const TIL_Opcode Opcode;
unsigned char Reserved = 0;
unsigned short Flags = 0;
unsigned SExprID = 0;
BasicBlock *Block = nullptr;
};
// Contains various helper functions for SExprs.
namespace ThreadSafetyTIL {
inline bool isTrivial(const SExpr *E) {
TIL_Opcode Op = E->opcode();
return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr;
}
} // namespace ThreadSafetyTIL
// Nodes which declare variables
/// A named variable, e.g. "x".
///
/// There are two distinct places in which a Variable can appear in the AST.
/// A variable declaration introduces a new variable, and can occur in 3 places:
/// Let-expressions: (Let (x = t) u)
/// Functions: (Function (x : t) u)
/// Self-applicable functions (SFunction (x) t)
///
/// If a variable occurs in any other location, it is a reference to an existing
/// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
/// allocate a separate AST node for variable references; a reference is just a
/// pointer to the original declaration.
class Variable : public SExpr {
public:
enum VariableKind {
/// Let-variable
VK_Let,
/// Function parameter
VK_Fun,
/// SFunction (self) parameter
VK_SFun
};
Variable(StringRef s, SExpr *D = nullptr)
: SExpr(COP_Variable), Name(s), Definition(D) {
Flags = VK_Let;
}
Variable(SExpr *D, const ValueDecl *Cvd = nullptr)
: SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
Definition(D), Cvdecl(Cvd) {
Flags = VK_Let;
}
Variable(const Variable &Vd, SExpr *D) // rewrite constructor
: SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl) {
Flags = Vd.kind();
}
static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
/// Return the kind of variable (let, function param, or self)
VariableKind kind() const { return static_cast<VariableKind>(Flags); }
/// Return the name of the variable, if any.
StringRef name() const { return Name; }
/// Return the clang declaration for this variable, if any.
const ValueDecl *clangDecl() const { return Cvdecl; }
/// Return the definition of the variable.
/// For let-vars, this is the setting expression.
/// For function and self parameters, it is the type of the variable.
SExpr *definition() { return Definition; }
const SExpr *definition() const { return Definition; }
void setName(StringRef S) { Name = S; }
void setKind(VariableKind K) { Flags = K; }
void setDefinition(SExpr *E) { Definition = E; }
void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// This routine is only called for variable references.
return Vs.reduceVariableRef(this);
}
template <class C>
typename C::CType compare(const Variable* E, C& Cmp) const {
return Cmp.compareVariableRefs(this, E);
}
private:
friend class BasicBlock;
friend class Function;
friend class Let;
friend class SFunction;
// The name of the variable.
StringRef Name;
// The TIL type or definition.
SExpr *Definition;
// The clang declaration for this variable.
const ValueDecl *Cvdecl = nullptr;
};
/// Placeholder for an expression that has not yet been created.
/// Used to implement lazy copy and rewriting strategies.
class Future : public SExpr {
public:
enum FutureStatus {
FS_pending,
FS_evaluating,
FS_done
};
Future() : SExpr(COP_Future) {}
virtual ~Future() = delete;
static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
// A lazy rewriting strategy should subclass Future and override this method.
virtual SExpr *compute() { return nullptr; }
// Return the result of this future if it exists, otherwise return null.
SExpr *maybeGetResult() const { return Result; }
// Return the result of this future; forcing it if necessary.
SExpr *result() {
switch (Status) {
case FS_pending:
return force();
case FS_evaluating:
return nullptr; // infinite loop; illegal recursion.
case FS_done:
return Result;
}
}
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
assert(Result && "Cannot traverse Future that has not been forced.");
return Vs.traverse(Result, Ctx);
}
template <class C>
typename C::CType compare(const Future* E, C& Cmp) const {
if (!Result || !E->Result)
return Cmp.comparePointers(this, E);
return Cmp.compare(Result, E->Result);
}
private:
SExpr* force();
FutureStatus Status = FS_pending;
SExpr *Result = nullptr;
};
/// Placeholder for expressions that cannot be represented in the TIL.
class Undefined : public SExpr {
public:
Undefined(const Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {}
Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceUndefined(*this);
}
template <class C>
typename C::CType compare(const Undefined* E, C& Cmp) const {
return Cmp.trueResult();
}
private:
const Stmt *Cstmt;
};
/// Placeholder for a wildcard that matches any other expression.
class Wildcard : public SExpr {
public:
Wildcard() : SExpr(COP_Wildcard) {}
Wildcard(const Wildcard &) = default;
static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceWildcard(*this);
}
template <class C>
typename C::CType compare(const Wildcard* E, C& Cmp) const {
return Cmp.trueResult();
}
};
template <class T> class LiteralT;
// Base class for literal values.
class Literal : public SExpr {
public:
Literal(const Expr *C)
: SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C) {}
Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT) {}
Literal(const Literal &) = default;
static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; }
// The clang expression for this literal.
const Expr *clangExpr() const { return Cexpr; }
ValueType valueType() const { return ValType; }
template<class T> const LiteralT<T>& as() const {
return *static_cast<const LiteralT<T>*>(this);
}
template<class T> LiteralT<T>& as() {
return *static_cast<LiteralT<T>*>(this);
}
template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx);
template <class C>
typename C::CType compare(const Literal* E, C& Cmp) const {
// TODO: defer actual comparison to LiteralT
return Cmp.trueResult();
}
private:
const ValueType ValType;
const Expr *Cexpr = nullptr;
};
// Derived class for literal values, which stores the actual value.
template<class T>
class LiteralT : public Literal {
public:
LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) {}
LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) {}
T value() const { return Val;}
T& value() { return Val; }
private:
T Val;
};
template <class V>
typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) {
if (Cexpr)
return Vs.reduceLiteral(*this);
switch (ValType.Base) {
case ValueType::BT_Void:
break;
case ValueType::BT_Bool:
return Vs.reduceLiteralT(as<bool>());
case ValueType::BT_Int: {
switch (ValType.Size) {
case ValueType::ST_8:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int8_t>());
else
return Vs.reduceLiteralT(as<uint8_t>());
case ValueType::ST_16:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int16_t>());
else
return Vs.reduceLiteralT(as<uint16_t>());
case ValueType::ST_32:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int32_t>());
else
return Vs.reduceLiteralT(as<uint32_t>());
case ValueType::ST_64:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int64_t>());
else
return Vs.reduceLiteralT(as<uint64_t>());
default:
break;
}
}
case ValueType::BT_Float: {
switch (ValType.Size) {
case ValueType::ST_32:
return Vs.reduceLiteralT(as<float>());
case ValueType::ST_64:
return Vs.reduceLiteralT(as<double>());
default:
break;
}
}
case ValueType::BT_String:
return Vs.reduceLiteralT(as<StringRef>());
case ValueType::BT_Pointer:
return Vs.reduceLiteralT(as<void*>());
case ValueType::BT_ValueRef:
break;
}
return Vs.reduceLiteral(*this);
}
/// A Literal pointer to an object allocated in memory.
/// At compile time, pointer literals are represented by symbolic names.
class LiteralPtr : public SExpr {
public:
LiteralPtr(const ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {}
LiteralPtr(const LiteralPtr &) = default;
static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
// The clang declaration for the value that this pointer points to.
const ValueDecl *clangDecl() const { return Cvdecl; }
void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceLiteralPtr(*this);
}
template <class C>
typename C::CType compare(const LiteralPtr* E, C& Cmp) const {
if (!Cvdecl || !E->Cvdecl)
return Cmp.comparePointers(this, E);
return Cmp.comparePointers(Cvdecl, E->Cvdecl);
}
private:
const ValueDecl *Cvdecl;
};
/// A function -- a.k.a. lambda abstraction.
/// Functions with multiple arguments are created by currying,
/// e.g. (Function (x: Int) (Function (y: Int) (Code { return x + y })))
class Function : public SExpr {
public:
Function(Variable *Vd, SExpr *Bd)
: SExpr(COP_Function), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Fun);
}
Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor
: SExpr(F), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Fun);
}
static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
SExpr *body() { return Body; }
const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// This is a variable declaration, so traverse the definition.
auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx));
// Tell the rewriter to enter the scope of the function.
Variable *Nvd = Vs.enterScope(*VarDecl, E0);
auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
Vs.exitScope(*VarDecl);
return Vs.reduceFunction(*this, Nvd, E1);
}
template <class C>
typename C::CType compare(const Function* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
if (Cmp.notTrue(Ct))
return Ct;
Cmp.enterScope(variableDecl(), E->variableDecl());
Ct = Cmp.compare(body(), E->body());
Cmp.leaveScope();
return Ct;
}
private:
Variable *VarDecl;
SExpr* Body;
};
/// A self-applicable function.
/// A self-applicable function can be applied to itself. It's useful for
/// implementing objects and late binding.
class SFunction : public SExpr {
public:
SFunction(Variable *Vd, SExpr *B)
: SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
assert(Vd->Definition == nullptr);
Vd->setKind(Variable::VK_SFun);
Vd->Definition = this;
}
SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
: SExpr(F), VarDecl(Vd), Body(B) {
assert(Vd->Definition == nullptr);
Vd->setKind(Variable::VK_SFun);
Vd->Definition = this;
}
static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
SExpr *body() { return Body; }
const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// A self-variable points to the SFunction itself.
// A rewrite must introduce the variable with a null definition, and update
// it after 'this' has been rewritten.
Variable *Nvd = Vs.enterScope(*VarDecl, nullptr);
auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
Vs.exitScope(*VarDecl);
// A rewrite operation will call SFun constructor to set Vvd->Definition.
return Vs.reduceSFunction(*this, Nvd, E1);
}
template <class C>
typename C::CType compare(const SFunction* E, C& Cmp) const {
Cmp.enterScope(variableDecl(), E->variableDecl());
typename C::CType Ct = Cmp.compare(body(), E->body());
Cmp.leaveScope();
return Ct;
}
private:
Variable *VarDecl;
SExpr* Body;
};
/// A block of code -- e.g. the body of a function.
class Code : public SExpr {
public:
Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {}
Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
: SExpr(C), ReturnType(T), Body(B) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
SExpr *returnType() { return ReturnType; }
const SExpr *returnType() const { return ReturnType; }
SExpr *body() { return Body; }
const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx));
auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
return Vs.reduceCode(*this, Nt, Nb);
}
template <class C>
typename C::CType compare(const Code* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(body(), E->body());
}
private:
SExpr* ReturnType;
SExpr* Body;
};
/// A typed, writable location in memory
class Field : public SExpr {
public:
Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {}
Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
: SExpr(C), Range(R), Body(B) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
SExpr *range() { return Range; }
const SExpr *range() const { return Range; }
SExpr *body() { return Body; }
const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx));
auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
return Vs.reduceField(*this, Nr, Nb);
}
template <class C>
typename C::CType compare(const Field* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(range(), E->range());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(body(), E->body());
}
private:
SExpr* Range;
SExpr* Body;
};
/// Apply an argument to a function.
/// Note that this does not actually call the function. Functions are curried,
/// so this returns a closure in which the first parameter has been applied.
/// Once all parameters have been applied, Call can be used to invoke the
/// function.
class Apply : public SExpr {
public:
Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {}
Apply(const Apply &A, SExpr *F, SExpr *Ar) // rewrite constructor
: SExpr(A), Fun(F), Arg(Ar) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
SExpr *fun() { return Fun; }
const SExpr *fun() const { return Fun; }
SExpr *arg() { return Arg; }
const SExpr *arg() const { return Arg; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx));
auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx));
return Vs.reduceApply(*this, Nf, Na);
}
template <class C>
typename C::CType compare(const Apply* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(fun(), E->fun());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(arg(), E->arg());
}
private:
SExpr* Fun;
SExpr* Arg;
};
/// Apply a self-argument to a self-applicable function.
class SApply : public SExpr {
public:
SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {}
SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
: SExpr(A), Sfun(Sf), Arg(Ar) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
SExpr *sfun() { return Sfun; }
const SExpr *sfun() const { return Sfun; }
SExpr *arg() { return Arg ? Arg : Sfun; }
const SExpr *arg() const { return Arg ? Arg : Sfun; }
bool isDelegation() const { return Arg != nullptr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
typename V::R_SExpr Na = Arg ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
: nullptr;
return Vs.reduceSApply(*this, Nf, Na);
}
template <class C>
typename C::CType compare(const SApply* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
return Ct;
return Cmp.compare(arg(), E->arg());
}
private:
SExpr* Sfun;
SExpr* Arg;
};
/// Project a named slot from a C++ struct or class.
class Project : public SExpr {
public:
Project(SExpr *R, const ValueDecl *Cvd)
: SExpr(COP_Project), Rec(R), Cvdecl(Cvd) {
assert(Cvd && "ValueDecl must not be null");
}
static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
SExpr *record() { return Rec; }
const SExpr *record() const { return Rec; }
const ValueDecl *clangDecl() const { return Cvdecl; }
bool isArrow() const { return (Flags & 0x01) != 0; }
void setArrow(bool b) {
if (b) Flags |= 0x01;
else Flags &= 0xFFFE;
}
StringRef slotName() const {
if (Cvdecl->getDeclName().isIdentifier())
return Cvdecl->getName();
if (!SlotName) {
SlotName = "";
llvm::raw_string_ostream OS(*SlotName);
Cvdecl->printName(OS);
}
return *SlotName;
}
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx));
return Vs.reduceProject(*this, Nr);
}
template <class C>
typename C::CType compare(const Project* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(record(), E->record());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.comparePointers(Cvdecl, E->Cvdecl);
}
private:
SExpr* Rec;
mutable std::optional<std::string> SlotName;
const ValueDecl *Cvdecl;
};
/// Call a function (after all arguments have been applied).
class Call : public SExpr {
public:
Call(SExpr *T, const CallExpr *Ce = nullptr)
: SExpr(COP_Call), Target(T), Cexpr(Ce) {}
Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
SExpr *target() { return Target; }
const SExpr *target() const { return Target; }
const CallExpr *clangCallExpr() const { return Cexpr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx));
return Vs.reduceCall(*this, Nt);
}
template <class C>
typename C::CType compare(const Call* E, C& Cmp) const {
return Cmp.compare(target(), E->target());
}
private:
SExpr* Target;
const CallExpr *Cexpr;
};
/// Allocate memory for a new value on the heap or stack.
class Alloc : public SExpr {
public:
enum AllocKind {
AK_Stack,
AK_Heap
};
Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; }
Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); }
static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
AllocKind kind() const { return static_cast<AllocKind>(Flags); }
SExpr *dataType() { return Dtype; }
const SExpr *dataType() const { return Dtype; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx));
return Vs.reduceAlloc(*this, Nd);
}
template <class C>
typename C::CType compare(const Alloc* E, C& Cmp) const {
typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(dataType(), E->dataType());
}
private:
SExpr* Dtype;
};
/// Load a value from memory.
class Load : public SExpr {
public:
Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
SExpr *pointer() { return Ptr; }
const SExpr *pointer() const { return Ptr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx));
return Vs.reduceLoad(*this, Np);
}
template <class C>
typename C::CType compare(const Load* E, C& Cmp) const {
return Cmp.compare(pointer(), E->pointer());
}
private:
SExpr* Ptr;
};
/// Store a value to memory.
/// The destination is a pointer to a field, the source is the value to store.
class Store : public SExpr {
public:
Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
SExpr *destination() { return Dest; } // Address to store to
const SExpr *destination() const { return Dest; }
SExpr *source() { return Source; } // Value to store
const SExpr *source() const { return Source; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Np = Vs.traverse(Dest, Vs.subExprCtx(Ctx));
auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx));
return Vs.reduceStore(*this, Np, Nv);
}
template <class C>
typename C::CType compare(const Store* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(destination(), E->destination());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(source(), E->source());
}
private:
SExpr* Dest;
SExpr* Source;
};
/// If p is a reference to an array, then p[i] is a reference to the i'th
/// element of the array.
class ArrayIndex : public SExpr {
public:
ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {}
ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
: SExpr(E), Array(A), Index(N) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
SExpr *array() { return Array; }
const SExpr *array() const { return Array; }
SExpr *index() { return Index; }
const SExpr *index() const { return Index; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
return Vs.reduceArrayIndex(*this, Na, Ni);
}
template <class C>
typename C::CType compare(const ArrayIndex* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(array(), E->array());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(index(), E->index());
}
private:
SExpr* Array;
SExpr* Index;
};
/// Pointer arithmetic, restricted to arrays only.
/// If p is a reference to an array, then p + n, where n is an integer, is
/// a reference to a subarray.
class ArrayAdd : public SExpr {
public:
ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {}
ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
: SExpr(E), Array(A), Index(N) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
SExpr *array() { return Array; }
const SExpr *array() const { return Array; }
SExpr *index() { return Index; }
const SExpr *index() const { return Index; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
return Vs.reduceArrayAdd(*this, Na, Ni);
}
template <class C>
typename C::CType compare(const ArrayAdd* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(array(), E->array());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(index(), E->index());
}
private:
SExpr* Array;
SExpr* Index;
};
/// Simple arithmetic unary operations, e.g. negate and not.
/// These operations have no side-effects.
class UnaryOp : public SExpr {
public:
UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) {
Flags = Op;
}
UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; }
static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
TIL_UnaryOpcode unaryOpcode() const {
return static_cast<TIL_UnaryOpcode>(Flags);
}
SExpr *expr() { return Expr0; }
const SExpr *expr() const { return Expr0; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
return Vs.reduceUnaryOp(*this, Ne);
}
template <class C>
typename C::CType compare(const UnaryOp* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(expr(), E->expr());
}
private:
SExpr* Expr0;
};
/// Simple arithmetic binary operations, e.g. +, -, etc.
/// These operations have no side effects.
class BinaryOp : public SExpr {
public:
BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1)
: SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) {
Flags = Op;
}
BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1)
: SExpr(B), Expr0(E0), Expr1(E1) {
Flags = B.Flags;
}
static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
TIL_BinaryOpcode binaryOpcode() const {
return static_cast<TIL_BinaryOpcode>(Flags);
}
SExpr *expr0() { return Expr0; }
const SExpr *expr0() const { return Expr0; }
SExpr *expr1() { return Expr1; }
const SExpr *expr1() const { return Expr1; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx));
return Vs.reduceBinaryOp(*this, Ne0, Ne1);
}
template <class C>
typename C::CType compare(const BinaryOp* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
if (Cmp.notTrue(Ct))
return Ct;
Ct = Cmp.compare(expr0(), E->expr0());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(expr1(), E->expr1());
}
private:
SExpr* Expr0;
SExpr* Expr1;
};
/// Cast expressions.
/// Cast expressions are essentially unary operations, but we treat them
/// as a distinct AST node because they only change the type of the result.
class Cast : public SExpr {
public:
Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; }
Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; }
static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
TIL_CastOpcode castOpcode() const {
return static_cast<TIL_CastOpcode>(Flags);
}
SExpr *expr() { return Expr0; }
const SExpr *expr() const { return Expr0; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
return Vs.reduceCast(*this, Ne);
}
template <class C>
typename C::CType compare(const Cast* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compareIntegers(castOpcode(), E->castOpcode());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(expr(), E->expr());
}
private:
SExpr* Expr0;
};
class SCFG;
/// Phi Node, for code in SSA form.
/// Each Phi node has an array of possible values that it can take,
/// depending on where control flow comes from.
class Phi : public SExpr {
public:
using ValArray = SimpleArray<SExpr *>;
// In minimal SSA form, all Phi nodes are MultiVal.
// During conversion to SSA, incomplete Phi nodes may be introduced, which
// are later determined to be SingleVal, and are thus redundant.
enum Status {
PH_MultiVal = 0, // Phi node has multiple distinct values. (Normal)
PH_SingleVal, // Phi node has one distinct value, and can be eliminated
PH_Incomplete // Phi node is incomplete
};
Phi() : SExpr(COP_Phi) {}
Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {}
Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
const ValArray &values() const { return Values; }
ValArray &values() { return Values; }
Status status() const { return static_cast<Status>(Flags); }
void setStatus(Status s) { Flags = s; }
/// Return the clang declaration of the variable for this Phi node, if any.
const ValueDecl *clangDecl() const { return Cvdecl; }
/// Set the clang variable associated with this Phi node.
void setClangDecl(const ValueDecl *Cvd) { Cvdecl = Cvd; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
typename V::template Container<typename V::R_SExpr>
Nvs(Vs, Values.size());
for (const auto *Val : Values)
Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) );
return Vs.reducePhi(*this, Nvs);
}
template <class C>
typename C::CType compare(const Phi *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
ValArray Values;
const ValueDecl* Cvdecl = nullptr;
};
/// Base class for basic block terminators: Branch, Goto, and Return.
class Terminator : public SExpr {
protected:
Terminator(TIL_Opcode Op) : SExpr(Op) {}
Terminator(const SExpr &E) : SExpr(E) {}
public:
static bool classof(const SExpr *E) {
return E->opcode() >= COP_Goto && E->opcode() <= COP_Return;
}
/// Return the list of basic blocks that this terminator can branch to.
ArrayRef<BasicBlock *> successors();
ArrayRef<BasicBlock *> successors() const {
return const_cast<Terminator*>(this)->successors();
}
};
/// Jump to another basic block.
/// A goto instruction is essentially a tail-recursive call into another
/// block. In addition to the block pointer, it specifies an index into the
/// phi nodes of that block. The index can be used to retrieve the "arguments"
/// of the call.
class Goto : public Terminator {
public:
Goto(BasicBlock *B, unsigned I)
: Terminator(COP_Goto), TargetBlock(B), Index(I) {}
Goto(const Goto &G, BasicBlock *B, unsigned I)
: Terminator(COP_Goto), TargetBlock(B), Index(I) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
const BasicBlock *targetBlock() const { return TargetBlock; }
BasicBlock *targetBlock() { return TargetBlock; }
/// Returns the index into the
unsigned index() const { return Index; }
/// Return the list of basic blocks that this terminator can branch to.
ArrayRef<BasicBlock *> successors() { return TargetBlock; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
return Vs.reduceGoto(*this, Ntb);
}
template <class C>
typename C::CType compare(const Goto *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
BasicBlock *TargetBlock;
unsigned Index;
};
/// A conditional branch to two other blocks.
/// Note that unlike Goto, Branch does not have an index. The target blocks
/// must be child-blocks, and cannot have Phi nodes.
class Branch : public Terminator {
public:
Branch(SExpr *C, BasicBlock *T, BasicBlock *E)
: Terminator(COP_Branch), Condition(C) {
Branches[0] = T;
Branches[1] = E;
}
Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E)
: Terminator(Br), Condition(C) {
Branches[0] = T;
Branches[1] = E;
}
static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
const SExpr *condition() const { return Condition; }
SExpr *condition() { return Condition; }
const BasicBlock *thenBlock() const { return Branches[0]; }
BasicBlock *thenBlock() { return Branches[0]; }
const BasicBlock *elseBlock() const { return Branches[1]; }
BasicBlock *elseBlock() { return Branches[1]; }
/// Return the list of basic blocks that this terminator can branch to.
ArrayRef<BasicBlock *> successors() { return llvm::ArrayRef(Branches); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
BasicBlock *Ntb = Vs.reduceBasicBlockRef(Branches[0]);
BasicBlock *Nte = Vs.reduceBasicBlockRef(Branches[1]);
return Vs.reduceBranch(*this, Nc, Ntb, Nte);
}
template <class C>
typename C::CType compare(const Branch *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
SExpr *Condition;
BasicBlock *Branches[2];
};
/// Return from the enclosing function, passing the return value to the caller.
/// Only the exit block should end with a return statement.
class Return : public Terminator {
public:
Return(SExpr* Rval) : Terminator(COP_Return), Retval(Rval) {}
Return(const Return &R, SExpr* Rval) : Terminator(R), Retval(Rval) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Return; }
/// Return an empty list.
ArrayRef<BasicBlock *> successors() { return std::nullopt; }
SExpr *returnValue() { return Retval; }
const SExpr *returnValue() const { return Retval; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Ne = Vs.traverse(Retval, Vs.subExprCtx(Ctx));
return Vs.reduceReturn(*this, Ne);
}
template <class C>
typename C::CType compare(const Return *E, C &Cmp) const {
return Cmp.compare(Retval, E->Retval);
}
private:
SExpr* Retval;
};
inline ArrayRef<BasicBlock*> Terminator::successors() {
switch (opcode()) {
case COP_Goto: return cast<Goto>(this)->successors();
case COP_Branch: return cast<Branch>(this)->successors();
case COP_Return: return cast<Return>(this)->successors();
default:
return std::nullopt;
}
}
/// A basic block is part of an SCFG. It can be treated as a function in
/// continuation passing style. A block consists of a sequence of phi nodes,
/// which are "arguments" to the function, followed by a sequence of
/// instructions. It ends with a Terminator, which is a Branch or Goto to
/// another basic block in the same SCFG.
class BasicBlock : public SExpr {
public:
using InstrArray = SimpleArray<SExpr *>;
using BlockArray = SimpleArray<BasicBlock *>;
// TopologyNodes are used to overlay tree structures on top of the CFG,
// such as dominator and postdominator trees. Each block is assigned an
// ID in the tree according to a depth-first search. Tree traversals are
// always up, towards the parents.
struct TopologyNode {
int NodeID = 0;
// Includes this node, so must be > 1.
int SizeOfSubTree = 0;
// Pointer to parent.
BasicBlock *Parent = nullptr;
TopologyNode() = default;
bool isParentOf(const TopologyNode& OtherNode) {
return OtherNode.NodeID > NodeID &&
OtherNode.NodeID < NodeID + SizeOfSubTree;
}
bool isParentOfOrEqual(const TopologyNode& OtherNode) {
return OtherNode.NodeID >= NodeID &&
OtherNode.NodeID < NodeID + SizeOfSubTree;
}
};
explicit BasicBlock(MemRegionRef A)
: SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false) {}
BasicBlock(BasicBlock &B, MemRegionRef A, InstrArray &&As, InstrArray &&Is,
Terminator *T)
: SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false),
Args(std::move(As)), Instrs(std::move(Is)), TermInstr(T) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
/// Returns the block ID. Every block has a unique ID in the CFG.
int blockID() const { return BlockID; }
/// Returns the number of predecessors.
size_t numPredecessors() const { return Predecessors.size(); }
size_t numSuccessors() const { return successors().size(); }
const SCFG* cfg() const { return CFGPtr; }
SCFG* cfg() { return CFGPtr; }
const BasicBlock *parent() const { return DominatorNode.Parent; }
BasicBlock *parent() { return DominatorNode.Parent; }
const InstrArray &arguments() const { return Args; }
InstrArray &arguments() { return Args; }
InstrArray &instructions() { return Instrs; }
const InstrArray &instructions() const { return Instrs; }
/// Returns a list of predecessors.
/// The order of predecessors in the list is important; each phi node has
/// exactly one argument for each precessor, in the same order.
BlockArray &predecessors() { return Predecessors; }
const BlockArray &predecessors() const { return Predecessors; }
ArrayRef<BasicBlock*> successors() { return TermInstr->successors(); }
ArrayRef<BasicBlock*> successors() const { return TermInstr->successors(); }
const Terminator *terminator() const { return TermInstr; }
Terminator *terminator() { return TermInstr; }
void setTerminator(Terminator *E) { TermInstr = E; }
bool Dominates(const BasicBlock &Other) {
return DominatorNode.isParentOfOrEqual(Other.DominatorNode);
}
bool PostDominates(const BasicBlock &Other) {
return PostDominatorNode.isParentOfOrEqual(Other.PostDominatorNode);
}
/// Add a new argument.
void addArgument(Phi *V) {
Args.reserveCheck(1, Arena);
Args.push_back(V);
}
/// Add a new instruction.
void addInstruction(SExpr *V) {
Instrs.reserveCheck(1, Arena);
Instrs.push_back(V);
}
// Add a new predecessor, and return the phi-node index for it.
// Will add an argument to all phi-nodes, initialized to nullptr.
unsigned addPredecessor(BasicBlock *Pred);
// Reserve space for Nargs arguments.
void reserveArguments(unsigned Nargs) { Args.reserve(Nargs, Arena); }
// Reserve space for Nins instructions.
void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); }
// Reserve space for NumPreds predecessors, including space in phi nodes.
void reservePredecessors(unsigned NumPreds);
/// Return the index of BB, or Predecessors.size if BB is not a predecessor.
unsigned findPredecessorIndex(const BasicBlock *BB) const {
auto I = llvm::find(Predecessors, BB);
return std::distance(Predecessors.cbegin(), I);
}
template <class V>
typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
typename V::template Container<SExpr*> Nas(Vs, Args.size());
typename V::template Container<SExpr*> Nis(Vs, Instrs.size());
// Entering the basic block should do any scope initialization.
Vs.enterBasicBlock(*this);
for (const auto *E : Args) {
auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
Nas.push_back(Ne);
}
for (const auto *E : Instrs) {
auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
Nis.push_back(Ne);
}
auto Nt = Vs.traverse(TermInstr, Ctx);
// Exiting the basic block should handle any scope cleanup.
Vs.exitBasicBlock(*this);
return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
}
template <class C>
typename C::CType compare(const BasicBlock *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
friend class SCFG;
// assign unique ids to all instructions
unsigned renumberInstrs(unsigned id);
unsigned topologicalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID);
unsigned topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID);
void computeDominator();
void computePostDominator();
// The arena used to allocate this block.
MemRegionRef Arena;
// The CFG that contains this block.
SCFG *CFGPtr = nullptr;
// Unique ID for this BB in the containing CFG. IDs are in topological order.
unsigned BlockID : 31;
// Bit to determine if a block has been visited during a traversal.
bool Visited : 1;
// Predecessor blocks in the CFG.
BlockArray Predecessors;
// Phi nodes. One argument per predecessor.
InstrArray Args;
// Instructions.
InstrArray Instrs;
// Terminating instruction.
Terminator *TermInstr = nullptr;
// The dominator tree.
TopologyNode DominatorNode;
// The post-dominator tree.
TopologyNode PostDominatorNode;
};
/// An SCFG is a control-flow graph. It consists of a set of basic blocks,
/// each of which terminates in a branch to another basic block. There is one
/// entry point, and one exit point.
class SCFG : public SExpr {
public:
using BlockArray = SimpleArray<BasicBlock *>;
using iterator = BlockArray::iterator;
using const_iterator = BlockArray::const_iterator;
SCFG(MemRegionRef A, unsigned Nblocks)
: SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks) {
Entry = new (A) BasicBlock(A);
Exit = new (A) BasicBlock(A);
auto *V = new (A) Phi();
Exit->addArgument(V);
Exit->setTerminator(new (A) Return(V));
add(Entry);
add(Exit);
}
SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
: SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)) {
// TODO: set entry and exit!
}
static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; }
/// Return true if this CFG is valid.
bool valid() const { return Entry && Exit && Blocks.size() > 0; }
/// Return true if this CFG has been normalized.
/// After normalization, blocks are in topological order, and block and
/// instruction IDs have been assigned.
bool normal() const { return Normal; }
iterator begin() { return Blocks.begin(); }
iterator end() { return Blocks.end(); }
const_iterator begin() const { return cbegin(); }
const_iterator end() const { return cend(); }
const_iterator cbegin() const { return Blocks.cbegin(); }
const_iterator cend() const { return Blocks.cend(); }
const BasicBlock *entry() const { return Entry; }
BasicBlock *entry() { return Entry; }
const BasicBlock *exit() const { return Exit; }
BasicBlock *exit() { return Exit; }
/// Return the number of blocks in the CFG.
/// Block::blockID() will return a number less than numBlocks();
size_t numBlocks() const { return Blocks.size(); }
/// Return the total number of instructions in the CFG.
/// This is useful for building instruction side-tables;
/// A call to SExpr::id() will return a number less than numInstructions().
unsigned numInstructions() { return NumInstructions; }
inline void add(BasicBlock *BB) {
assert(BB->CFGPtr == nullptr);
BB->CFGPtr = this;
Blocks.reserveCheck(1, Arena);
Blocks.push_back(BB);
}
void setEntry(BasicBlock *BB) { Entry = BB; }
void setExit(BasicBlock *BB) { Exit = BB; }
void computeNormalForm();
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
Vs.enterCFG(*this);
typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
for (const auto *B : Blocks) {
Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
}
Vs.exitCFG(*this);
return Vs.reduceSCFG(*this, Bbs);
}
template <class C>
typename C::CType compare(const SCFG *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
// assign unique ids to all instructions
void renumberInstrs();
MemRegionRef Arena;
BlockArray Blocks;
BasicBlock *Entry = nullptr;
BasicBlock *Exit = nullptr;
unsigned NumInstructions = 0;
bool Normal = false;
};
/// An identifier, e.g. 'foo' or 'x'.
/// This is a pseduo-term; it will be lowered to a variable or projection.
class Identifier : public SExpr {
public:
Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) {}
Identifier(const Identifier &) = default;
static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
StringRef name() const { return Name; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceIdentifier(*this);
}
template <class C>
typename C::CType compare(const Identifier* E, C& Cmp) const {
return Cmp.compareStrings(name(), E->name());
}
private:
StringRef Name;
};
/// An if-then-else expression.
/// This is a pseduo-term; it will be lowered to a branch in a CFG.
class IfThenElse : public SExpr {
public:
IfThenElse(SExpr *C, SExpr *T, SExpr *E)
: SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E) {}
IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E)
: SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
SExpr *condition() { return Condition; } // Address to store to
const SExpr *condition() const { return Condition; }
SExpr *thenExpr() { return ThenExpr; } // Value to store
const SExpr *thenExpr() const { return ThenExpr; }
SExpr *elseExpr() { return ElseExpr; } // Value to store
const SExpr *elseExpr() const { return ElseExpr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
auto Nt = Vs.traverse(ThenExpr, Vs.subExprCtx(Ctx));
auto Ne = Vs.traverse(ElseExpr, Vs.subExprCtx(Ctx));
return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
}
template <class C>
typename C::CType compare(const IfThenElse* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(condition(), E->condition());
if (Cmp.notTrue(Ct))
return Ct;
Ct = Cmp.compare(thenExpr(), E->thenExpr());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(elseExpr(), E->elseExpr());
}
private:
SExpr* Condition;
SExpr* ThenExpr;
SExpr* ElseExpr;
};
/// A let-expression, e.g. let x=t; u.
/// This is a pseduo-term; it will be lowered to instructions in a CFG.
class Let : public SExpr {
public:
Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Let);
}
Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Let);
}
static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
SExpr *body() { return Body; }
const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// This is a variable declaration, so traverse the definition.
auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx));
// Tell the rewriter to enter the scope of the let variable.
Variable *Nvd = Vs.enterScope(*VarDecl, E0);
auto E1 = Vs.traverse(Body, Ctx);
Vs.exitScope(*VarDecl);
return Vs.reduceLet(*this, Nvd, E1);
}
template <class C>
typename C::CType compare(const Let* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
if (Cmp.notTrue(Ct))
return Ct;
Cmp.enterScope(variableDecl(), E->variableDecl());
Ct = Cmp.compare(body(), E->body());
Cmp.leaveScope();
return Ct;
}
private:
Variable *VarDecl;
SExpr* Body;
};
const SExpr *getCanonicalVal(const SExpr *E);
SExpr* simplifyToCanonicalVal(SExpr *E);
void simplifyIncompleteArg(til::Phi *Ph);
} // namespace til
} // namespace threadSafety
} // namespace clang
#endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|