1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===--- StmtCXX.h - Classes for representing C++ statements ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the C++ statement AST node classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_STMTCXX_H
#define LLVM_CLANG_AST_STMTCXX_H
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Stmt.h"
#include "llvm/Support/Compiler.h"
namespace clang {
class VarDecl;
/// CXXCatchStmt - This represents a C++ catch block.
///
class CXXCatchStmt : public Stmt {
SourceLocation CatchLoc;
/// The exception-declaration of the type.
VarDecl *ExceptionDecl;
/// The handler block.
Stmt *HandlerBlock;
public:
CXXCatchStmt(SourceLocation catchLoc, VarDecl *exDecl, Stmt *handlerBlock)
: Stmt(CXXCatchStmtClass), CatchLoc(catchLoc), ExceptionDecl(exDecl),
HandlerBlock(handlerBlock) {}
CXXCatchStmt(EmptyShell Empty)
: Stmt(CXXCatchStmtClass), ExceptionDecl(nullptr), HandlerBlock(nullptr) {}
SourceLocation getBeginLoc() const LLVM_READONLY { return CatchLoc; }
SourceLocation getEndLoc() const LLVM_READONLY {
return HandlerBlock->getEndLoc();
}
SourceLocation getCatchLoc() const { return CatchLoc; }
VarDecl *getExceptionDecl() const { return ExceptionDecl; }
QualType getCaughtType() const;
Stmt *getHandlerBlock() const { return HandlerBlock; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXCatchStmtClass;
}
child_range children() { return child_range(&HandlerBlock, &HandlerBlock+1); }
const_child_range children() const {
return const_child_range(&HandlerBlock, &HandlerBlock + 1);
}
friend class ASTStmtReader;
};
/// CXXTryStmt - A C++ try block, including all handlers.
///
class CXXTryStmt final : public Stmt,
private llvm::TrailingObjects<CXXTryStmt, Stmt *> {
friend TrailingObjects;
friend class ASTStmtReader;
SourceLocation TryLoc;
unsigned NumHandlers;
size_t numTrailingObjects(OverloadToken<Stmt *>) const { return NumHandlers; }
CXXTryStmt(SourceLocation tryLoc, Stmt *tryBlock, ArrayRef<Stmt*> handlers);
CXXTryStmt(EmptyShell Empty, unsigned numHandlers)
: Stmt(CXXTryStmtClass), NumHandlers(numHandlers) { }
Stmt *const *getStmts() const { return getTrailingObjects<Stmt *>(); }
Stmt **getStmts() { return getTrailingObjects<Stmt *>(); }
public:
static CXXTryStmt *Create(const ASTContext &C, SourceLocation tryLoc,
Stmt *tryBlock, ArrayRef<Stmt*> handlers);
static CXXTryStmt *Create(const ASTContext &C, EmptyShell Empty,
unsigned numHandlers);
SourceLocation getBeginLoc() const LLVM_READONLY { return getTryLoc(); }
SourceLocation getTryLoc() const { return TryLoc; }
SourceLocation getEndLoc() const {
return getStmts()[NumHandlers]->getEndLoc();
}
CompoundStmt *getTryBlock() {
return cast<CompoundStmt>(getStmts()[0]);
}
const CompoundStmt *getTryBlock() const {
return cast<CompoundStmt>(getStmts()[0]);
}
unsigned getNumHandlers() const { return NumHandlers; }
CXXCatchStmt *getHandler(unsigned i) {
return cast<CXXCatchStmt>(getStmts()[i + 1]);
}
const CXXCatchStmt *getHandler(unsigned i) const {
return cast<CXXCatchStmt>(getStmts()[i + 1]);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXTryStmtClass;
}
child_range children() {
return child_range(getStmts(), getStmts() + getNumHandlers() + 1);
}
const_child_range children() const {
return const_child_range(getStmts(), getStmts() + getNumHandlers() + 1);
}
};
/// CXXForRangeStmt - This represents C++0x [stmt.ranged]'s ranged for
/// statement, represented as 'for (range-declarator : range-expression)'
/// or 'for (init-statement range-declarator : range-expression)'.
///
/// This is stored in a partially-desugared form to allow full semantic
/// analysis of the constituent components. The original syntactic components
/// can be extracted using getLoopVariable and getRangeInit.
class CXXForRangeStmt : public Stmt {
SourceLocation ForLoc;
enum { INIT, RANGE, BEGINSTMT, ENDSTMT, COND, INC, LOOPVAR, BODY, END };
// SubExprs[RANGE] is an expression or declstmt.
// SubExprs[COND] and SubExprs[INC] are expressions.
Stmt *SubExprs[END];
SourceLocation CoawaitLoc;
SourceLocation ColonLoc;
SourceLocation RParenLoc;
friend class ASTStmtReader;
public:
CXXForRangeStmt(Stmt *InitStmt, DeclStmt *Range, DeclStmt *Begin,
DeclStmt *End, Expr *Cond, Expr *Inc, DeclStmt *LoopVar,
Stmt *Body, SourceLocation FL, SourceLocation CAL,
SourceLocation CL, SourceLocation RPL);
CXXForRangeStmt(EmptyShell Empty) : Stmt(CXXForRangeStmtClass, Empty) { }
Stmt *getInit() { return SubExprs[INIT]; }
VarDecl *getLoopVariable();
Expr *getRangeInit();
const Stmt *getInit() const { return SubExprs[INIT]; }
const VarDecl *getLoopVariable() const;
const Expr *getRangeInit() const;
DeclStmt *getRangeStmt() { return cast<DeclStmt>(SubExprs[RANGE]); }
DeclStmt *getBeginStmt() {
return cast_or_null<DeclStmt>(SubExprs[BEGINSTMT]);
}
DeclStmt *getEndStmt() { return cast_or_null<DeclStmt>(SubExprs[ENDSTMT]); }
Expr *getCond() { return cast_or_null<Expr>(SubExprs[COND]); }
Expr *getInc() { return cast_or_null<Expr>(SubExprs[INC]); }
DeclStmt *getLoopVarStmt() { return cast<DeclStmt>(SubExprs[LOOPVAR]); }
Stmt *getBody() { return SubExprs[BODY]; }
const DeclStmt *getRangeStmt() const {
return cast<DeclStmt>(SubExprs[RANGE]);
}
const DeclStmt *getBeginStmt() const {
return cast_or_null<DeclStmt>(SubExprs[BEGINSTMT]);
}
const DeclStmt *getEndStmt() const {
return cast_or_null<DeclStmt>(SubExprs[ENDSTMT]);
}
const Expr *getCond() const {
return cast_or_null<Expr>(SubExprs[COND]);
}
const Expr *getInc() const {
return cast_or_null<Expr>(SubExprs[INC]);
}
const DeclStmt *getLoopVarStmt() const {
return cast<DeclStmt>(SubExprs[LOOPVAR]);
}
const Stmt *getBody() const { return SubExprs[BODY]; }
void setInit(Stmt *S) { SubExprs[INIT] = S; }
void setRangeInit(Expr *E) { SubExprs[RANGE] = reinterpret_cast<Stmt*>(E); }
void setRangeStmt(Stmt *S) { SubExprs[RANGE] = S; }
void setBeginStmt(Stmt *S) { SubExprs[BEGINSTMT] = S; }
void setEndStmt(Stmt *S) { SubExprs[ENDSTMT] = S; }
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
void setLoopVarStmt(Stmt *S) { SubExprs[LOOPVAR] = S; }
void setBody(Stmt *S) { SubExprs[BODY] = S; }
SourceLocation getForLoc() const { return ForLoc; }
SourceLocation getCoawaitLoc() const { return CoawaitLoc; }
SourceLocation getColonLoc() const { return ColonLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return ForLoc; }
SourceLocation getEndLoc() const LLVM_READONLY {
return SubExprs[BODY]->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXForRangeStmtClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[END]);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[END]);
}
};
/// Representation of a Microsoft __if_exists or __if_not_exists
/// statement with a dependent name.
///
/// The __if_exists statement can be used to include a sequence of statements
/// in the program only when a particular dependent name does not exist. For
/// example:
///
/// \code
/// template<typename T>
/// void call_foo(T &t) {
/// __if_exists (T::foo) {
/// t.foo(); // okay: only called when T::foo exists.
/// }
/// }
/// \endcode
///
/// Similarly, the __if_not_exists statement can be used to include the
/// statements when a particular name does not exist.
///
/// Note that this statement only captures __if_exists and __if_not_exists
/// statements whose name is dependent. All non-dependent cases are handled
/// directly in the parser, so that they don't introduce a new scope. Clang
/// introduces scopes in the dependent case to keep names inside the compound
/// statement from leaking out into the surround statements, which would
/// compromise the template instantiation model. This behavior differs from
/// Visual C++ (which never introduces a scope), but is a fairly reasonable
/// approximation of the VC++ behavior.
class MSDependentExistsStmt : public Stmt {
SourceLocation KeywordLoc;
bool IsIfExists;
NestedNameSpecifierLoc QualifierLoc;
DeclarationNameInfo NameInfo;
Stmt *SubStmt;
friend class ASTReader;
friend class ASTStmtReader;
public:
MSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists,
NestedNameSpecifierLoc QualifierLoc,
DeclarationNameInfo NameInfo,
CompoundStmt *SubStmt)
: Stmt(MSDependentExistsStmtClass),
KeywordLoc(KeywordLoc), IsIfExists(IsIfExists),
QualifierLoc(QualifierLoc), NameInfo(NameInfo),
SubStmt(reinterpret_cast<Stmt *>(SubStmt)) { }
/// Retrieve the location of the __if_exists or __if_not_exists
/// keyword.
SourceLocation getKeywordLoc() const { return KeywordLoc; }
/// Determine whether this is an __if_exists statement.
bool isIfExists() const { return IsIfExists; }
/// Determine whether this is an __if_exists statement.
bool isIfNotExists() const { return !IsIfExists; }
/// Retrieve the nested-name-specifier that qualifies this name, if
/// any.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the name of the entity we're testing for, along with
/// location information
DeclarationNameInfo getNameInfo() const { return NameInfo; }
/// Retrieve the compound statement that will be included in the
/// program only if the existence of the symbol matches the initial keyword.
CompoundStmt *getSubStmt() const {
return reinterpret_cast<CompoundStmt *>(SubStmt);
}
SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; }
SourceLocation getEndLoc() const LLVM_READONLY {
return SubStmt->getEndLoc();
}
child_range children() {
return child_range(&SubStmt, &SubStmt+1);
}
const_child_range children() const {
return const_child_range(&SubStmt, &SubStmt + 1);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == MSDependentExistsStmtClass;
}
};
/// Represents the body of a coroutine. This wraps the normal function
/// body and holds the additional semantic context required to set up and tear
/// down the coroutine frame.
class CoroutineBodyStmt final
: public Stmt,
private llvm::TrailingObjects<CoroutineBodyStmt, Stmt *> {
enum SubStmt {
Body, ///< The body of the coroutine.
Promise, ///< The promise statement.
InitSuspend, ///< The initial suspend statement, run before the body.
FinalSuspend, ///< The final suspend statement, run after the body.
OnException, ///< Handler for exceptions thrown in the body.
OnFallthrough, ///< Handler for control flow falling off the body.
Allocate, ///< Coroutine frame memory allocation.
Deallocate, ///< Coroutine frame memory deallocation.
ReturnValue, ///< Return value for thunk function: p.get_return_object().
ReturnStmt, ///< Return statement for the thunk function.
ReturnStmtOnAllocFailure, ///< Return statement if allocation failed.
FirstParamMove ///< First offset for move construction of parameter copies.
};
unsigned NumParams;
friend class ASTStmtReader;
friend class ASTReader;
friend TrailingObjects;
Stmt **getStoredStmts() { return getTrailingObjects<Stmt *>(); }
Stmt *const *getStoredStmts() const { return getTrailingObjects<Stmt *>(); }
public:
struct CtorArgs {
Stmt *Body = nullptr;
Stmt *Promise = nullptr;
Expr *InitialSuspend = nullptr;
Expr *FinalSuspend = nullptr;
Stmt *OnException = nullptr;
Stmt *OnFallthrough = nullptr;
Expr *Allocate = nullptr;
Expr *Deallocate = nullptr;
Expr *ReturnValue = nullptr;
Stmt *ReturnStmt = nullptr;
Stmt *ReturnStmtOnAllocFailure = nullptr;
ArrayRef<Stmt *> ParamMoves;
};
private:
CoroutineBodyStmt(CtorArgs const& Args);
public:
static CoroutineBodyStmt *Create(const ASTContext &C, CtorArgs const &Args);
static CoroutineBodyStmt *Create(const ASTContext &C, EmptyShell,
unsigned NumParams);
bool hasDependentPromiseType() const {
return getPromiseDecl()->getType()->isDependentType();
}
/// Retrieve the body of the coroutine as written. This will be either
/// a CompoundStmt or a TryStmt.
Stmt *getBody() const {
return getStoredStmts()[SubStmt::Body];
}
Stmt *getPromiseDeclStmt() const {
return getStoredStmts()[SubStmt::Promise];
}
VarDecl *getPromiseDecl() const {
return cast<VarDecl>(cast<DeclStmt>(getPromiseDeclStmt())->getSingleDecl());
}
Stmt *getInitSuspendStmt() const {
return getStoredStmts()[SubStmt::InitSuspend];
}
Stmt *getFinalSuspendStmt() const {
return getStoredStmts()[SubStmt::FinalSuspend];
}
Stmt *getExceptionHandler() const {
return getStoredStmts()[SubStmt::OnException];
}
Stmt *getFallthroughHandler() const {
return getStoredStmts()[SubStmt::OnFallthrough];
}
Expr *getAllocate() const {
return cast_or_null<Expr>(getStoredStmts()[SubStmt::Allocate]);
}
Expr *getDeallocate() const {
return cast_or_null<Expr>(getStoredStmts()[SubStmt::Deallocate]);
}
Expr *getReturnValueInit() const {
return cast<Expr>(getStoredStmts()[SubStmt::ReturnValue]);
}
Expr *getReturnValue() const {
assert(getReturnStmt());
auto *RS = cast<clang::ReturnStmt>(getReturnStmt());
return RS->getRetValue();
}
Stmt *getReturnStmt() const { return getStoredStmts()[SubStmt::ReturnStmt]; }
Stmt *getReturnStmtOnAllocFailure() const {
return getStoredStmts()[SubStmt::ReturnStmtOnAllocFailure];
}
ArrayRef<Stmt const *> getParamMoves() const {
return {getStoredStmts() + SubStmt::FirstParamMove, NumParams};
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getBody() ? getBody()->getBeginLoc()
: getPromiseDecl()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getBody() ? getBody()->getEndLoc() : getPromiseDecl()->getEndLoc();
}
child_range children() {
return child_range(getStoredStmts(),
getStoredStmts() + SubStmt::FirstParamMove + NumParams);
}
const_child_range children() const {
return const_child_range(getStoredStmts(), getStoredStmts() +
SubStmt::FirstParamMove +
NumParams);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CoroutineBodyStmtClass;
}
};
/// Represents a 'co_return' statement in the C++ Coroutines TS.
///
/// This statament models the initialization of the coroutine promise
/// (encapsulating the eventual notional return value) from an expression
/// (or braced-init-list), followed by termination of the coroutine.
///
/// This initialization is modeled by the evaluation of the operand
/// followed by a call to one of:
/// <promise>.return_value(<operand>)
/// <promise>.return_void()
/// which we name the "promise call".
class CoreturnStmt : public Stmt {
SourceLocation CoreturnLoc;
enum SubStmt { Operand, PromiseCall, Count };
Stmt *SubStmts[SubStmt::Count];
bool IsImplicit : 1;
friend class ASTStmtReader;
public:
CoreturnStmt(SourceLocation CoreturnLoc, Stmt *Operand, Stmt *PromiseCall,
bool IsImplicit = false)
: Stmt(CoreturnStmtClass), CoreturnLoc(CoreturnLoc),
IsImplicit(IsImplicit) {
SubStmts[SubStmt::Operand] = Operand;
SubStmts[SubStmt::PromiseCall] = PromiseCall;
}
CoreturnStmt(EmptyShell) : CoreturnStmt({}, {}, {}) {}
SourceLocation getKeywordLoc() const { return CoreturnLoc; }
/// Retrieve the operand of the 'co_return' statement. Will be nullptr
/// if none was specified.
Expr *getOperand() const { return static_cast<Expr*>(SubStmts[Operand]); }
/// Retrieve the promise call that results from this 'co_return'
/// statement. Will be nullptr if either the coroutine has not yet been
/// finalized or the coroutine has no eventual return type.
Expr *getPromiseCall() const {
return static_cast<Expr*>(SubStmts[PromiseCall]);
}
bool isImplicit() const { return IsImplicit; }
void setIsImplicit(bool value = true) { IsImplicit = value; }
SourceLocation getBeginLoc() const LLVM_READONLY { return CoreturnLoc; }
SourceLocation getEndLoc() const LLVM_READONLY {
return getOperand() ? getOperand()->getEndLoc() : getBeginLoc();
}
child_range children() {
return child_range(SubStmts, SubStmts + SubStmt::Count);
}
const_child_range children() const {
return const_child_range(SubStmts, SubStmts + SubStmt::Count);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CoreturnStmtClass;
}
};
} // end namespace clang
#endif
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|