1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Expr interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPR_H
#define LLVM_CLANG_AST_EXPR_H
#include "clang/AST/APValue.h"
#include "clang/AST/ASTVector.h"
#include "clang/AST/ComputeDependence.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclAccessPair.h"
#include "clang/AST/DependenceFlags.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SyncScope.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TrailingObjects.h"
#include <optional>
namespace clang {
class APValue;
class ASTContext;
class BlockDecl;
class CXXBaseSpecifier;
class CXXMemberCallExpr;
class CXXOperatorCallExpr;
class CastExpr;
class Decl;
class IdentifierInfo;
class MaterializeTemporaryExpr;
class NamedDecl;
class ObjCPropertyRefExpr;
class OpaqueValueExpr;
class ParmVarDecl;
class StringLiteral;
class TargetInfo;
class ValueDecl;
/// A simple array of base specifiers.
typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
/// An adjustment to be made to the temporary created when emitting a
/// reference binding, which accesses a particular subobject of that temporary.
struct SubobjectAdjustment {
enum {
DerivedToBaseAdjustment,
FieldAdjustment,
MemberPointerAdjustment
} Kind;
struct DTB {
const CastExpr *BasePath;
const CXXRecordDecl *DerivedClass;
};
struct P {
const MemberPointerType *MPT;
Expr *RHS;
};
union {
struct DTB DerivedToBase;
FieldDecl *Field;
struct P Ptr;
};
SubobjectAdjustment(const CastExpr *BasePath,
const CXXRecordDecl *DerivedClass)
: Kind(DerivedToBaseAdjustment) {
DerivedToBase.BasePath = BasePath;
DerivedToBase.DerivedClass = DerivedClass;
}
SubobjectAdjustment(FieldDecl *Field)
: Kind(FieldAdjustment) {
this->Field = Field;
}
SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
: Kind(MemberPointerAdjustment) {
this->Ptr.MPT = MPT;
this->Ptr.RHS = RHS;
}
};
/// This represents one expression. Note that Expr's are subclasses of Stmt.
/// This allows an expression to be transparently used any place a Stmt is
/// required.
class Expr : public ValueStmt {
QualType TR;
public:
Expr() = delete;
Expr(const Expr&) = delete;
Expr(Expr &&) = delete;
Expr &operator=(const Expr&) = delete;
Expr &operator=(Expr&&) = delete;
protected:
Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK)
: ValueStmt(SC) {
ExprBits.Dependent = 0;
ExprBits.ValueKind = VK;
ExprBits.ObjectKind = OK;
assert(ExprBits.ObjectKind == OK && "truncated kind");
setType(T);
}
/// Construct an empty expression.
explicit Expr(StmtClass SC, EmptyShell) : ValueStmt(SC) { }
/// Each concrete expr subclass is expected to compute its dependence and call
/// this in the constructor.
void setDependence(ExprDependence Deps) {
ExprBits.Dependent = static_cast<unsigned>(Deps);
}
friend class ASTImporter; // Sets dependence dircetly.
friend class ASTStmtReader; // Sets dependence dircetly.
public:
QualType getType() const { return TR; }
void setType(QualType t) {
// In C++, the type of an expression is always adjusted so that it
// will not have reference type (C++ [expr]p6). Use
// QualType::getNonReferenceType() to retrieve the non-reference
// type. Additionally, inspect Expr::isLvalue to determine whether
// an expression that is adjusted in this manner should be
// considered an lvalue.
assert((t.isNull() || !t->isReferenceType()) &&
"Expressions can't have reference type");
TR = t;
}
ExprDependence getDependence() const {
return static_cast<ExprDependence>(ExprBits.Dependent);
}
/// Determines whether the value of this expression depends on
/// - a template parameter (C++ [temp.dep.constexpr])
/// - or an error, whose resolution is unknown
///
/// For example, the array bound of "Chars" in the following example is
/// value-dependent.
/// @code
/// template<int Size, char (&Chars)[Size]> struct meta_string;
/// @endcode
bool isValueDependent() const {
return static_cast<bool>(getDependence() & ExprDependence::Value);
}
/// Determines whether the type of this expression depends on
/// - a template paramter (C++ [temp.dep.expr], which means that its type
/// could change from one template instantiation to the next)
/// - or an error
///
/// For example, the expressions "x" and "x + y" are type-dependent in
/// the following code, but "y" is not type-dependent:
/// @code
/// template<typename T>
/// void add(T x, int y) {
/// x + y;
/// }
/// @endcode
bool isTypeDependent() const {
return static_cast<bool>(getDependence() & ExprDependence::Type);
}
/// Whether this expression is instantiation-dependent, meaning that
/// it depends in some way on
/// - a template parameter (even if neither its type nor (constant) value
/// can change due to the template instantiation)
/// - or an error
///
/// In the following example, the expression \c sizeof(sizeof(T() + T())) is
/// instantiation-dependent (since it involves a template parameter \c T), but
/// is neither type- nor value-dependent, since the type of the inner
/// \c sizeof is known (\c std::size_t) and therefore the size of the outer
/// \c sizeof is known.
///
/// \code
/// template<typename T>
/// void f(T x, T y) {
/// sizeof(sizeof(T() + T());
/// }
/// \endcode
///
/// \code
/// void func(int) {
/// func(); // the expression is instantiation-dependent, because it depends
/// // on an error.
/// }
/// \endcode
bool isInstantiationDependent() const {
return static_cast<bool>(getDependence() & ExprDependence::Instantiation);
}
/// Whether this expression contains an unexpanded parameter
/// pack (for C++11 variadic templates).
///
/// Given the following function template:
///
/// \code
/// template<typename F, typename ...Types>
/// void forward(const F &f, Types &&...args) {
/// f(static_cast<Types&&>(args)...);
/// }
/// \endcode
///
/// The expressions \c args and \c static_cast<Types&&>(args) both
/// contain parameter packs.
bool containsUnexpandedParameterPack() const {
return static_cast<bool>(getDependence() & ExprDependence::UnexpandedPack);
}
/// Whether this expression contains subexpressions which had errors, e.g. a
/// TypoExpr.
bool containsErrors() const {
return static_cast<bool>(getDependence() & ExprDependence::Error);
}
/// getExprLoc - Return the preferred location for the arrow when diagnosing
/// a problem with a generic expression.
SourceLocation getExprLoc() const LLVM_READONLY;
/// Determine whether an lvalue-to-rvalue conversion should implicitly be
/// applied to this expression if it appears as a discarded-value expression
/// in C++11 onwards. This applies to certain forms of volatile glvalues.
bool isReadIfDiscardedInCPlusPlus11() const;
/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused. If so, fill in expr, location,
/// and ranges with expr to warn on and source locations/ranges appropriate
/// for a warning.
bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
SourceRange &R1, SourceRange &R2,
ASTContext &Ctx) const;
/// isLValue - True if this expression is an "l-value" according to
/// the rules of the current language. C and C++ give somewhat
/// different rules for this concept, but in general, the result of
/// an l-value expression identifies a specific object whereas the
/// result of an r-value expression is a value detached from any
/// specific storage.
///
/// C++11 divides the concept of "r-value" into pure r-values
/// ("pr-values") and so-called expiring values ("x-values"), which
/// identify specific objects that can be safely cannibalized for
/// their resources.
bool isLValue() const { return getValueKind() == VK_LValue; }
bool isPRValue() const { return getValueKind() == VK_PRValue; }
bool isXValue() const { return getValueKind() == VK_XValue; }
bool isGLValue() const { return getValueKind() != VK_PRValue; }
enum LValueClassification {
LV_Valid,
LV_NotObjectType,
LV_IncompleteVoidType,
LV_DuplicateVectorComponents,
LV_InvalidExpression,
LV_InvalidMessageExpression,
LV_MemberFunction,
LV_SubObjCPropertySetting,
LV_ClassTemporary,
LV_ArrayTemporary
};
/// Reasons why an expression might not be an l-value.
LValueClassification ClassifyLValue(ASTContext &Ctx) const;
enum isModifiableLvalueResult {
MLV_Valid,
MLV_NotObjectType,
MLV_IncompleteVoidType,
MLV_DuplicateVectorComponents,
MLV_InvalidExpression,
MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
MLV_IncompleteType,
MLV_ConstQualified,
MLV_ConstQualifiedField,
MLV_ConstAddrSpace,
MLV_ArrayType,
MLV_NoSetterProperty,
MLV_MemberFunction,
MLV_SubObjCPropertySetting,
MLV_InvalidMessageExpression,
MLV_ClassTemporary,
MLV_ArrayTemporary
};
/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
/// does not have an incomplete type, does not have a const-qualified type,
/// and if it is a structure or union, does not have any member (including,
/// recursively, any member or element of all contained aggregates or unions)
/// with a const-qualified type.
///
/// \param Loc [in,out] - A source location which *may* be filled
/// in with the location of the expression making this a
/// non-modifiable lvalue, if specified.
isModifiableLvalueResult
isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
/// The return type of classify(). Represents the C++11 expression
/// taxonomy.
class Classification {
public:
/// The various classification results. Most of these mean prvalue.
enum Kinds {
CL_LValue,
CL_XValue,
CL_Function, // Functions cannot be lvalues in C.
CL_Void, // Void cannot be an lvalue in C.
CL_AddressableVoid, // Void expression whose address can be taken in C.
CL_DuplicateVectorComponents, // A vector shuffle with dupes.
CL_MemberFunction, // An expression referring to a member function
CL_SubObjCPropertySetting,
CL_ClassTemporary, // A temporary of class type, or subobject thereof.
CL_ArrayTemporary, // A temporary of array type.
CL_ObjCMessageRValue, // ObjC message is an rvalue
CL_PRValue // A prvalue for any other reason, of any other type
};
/// The results of modification testing.
enum ModifiableType {
CM_Untested, // testModifiable was false.
CM_Modifiable,
CM_RValue, // Not modifiable because it's an rvalue
CM_Function, // Not modifiable because it's a function; C++ only
CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
CM_ConstQualified,
CM_ConstQualifiedField,
CM_ConstAddrSpace,
CM_ArrayType,
CM_IncompleteType
};
private:
friend class Expr;
unsigned short Kind;
unsigned short Modifiable;
explicit Classification(Kinds k, ModifiableType m)
: Kind(k), Modifiable(m)
{}
public:
Classification() {}
Kinds getKind() const { return static_cast<Kinds>(Kind); }
ModifiableType getModifiable() const {
assert(Modifiable != CM_Untested && "Did not test for modifiability.");
return static_cast<ModifiableType>(Modifiable);
}
bool isLValue() const { return Kind == CL_LValue; }
bool isXValue() const { return Kind == CL_XValue; }
bool isGLValue() const { return Kind <= CL_XValue; }
bool isPRValue() const { return Kind >= CL_Function; }
bool isRValue() const { return Kind >= CL_XValue; }
bool isModifiable() const { return getModifiable() == CM_Modifiable; }
/// Create a simple, modifiably lvalue
static Classification makeSimpleLValue() {
return Classification(CL_LValue, CM_Modifiable);
}
};
/// Classify - Classify this expression according to the C++11
/// expression taxonomy.
///
/// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
/// old lvalue vs rvalue. This function determines the type of expression this
/// is. There are three expression types:
/// - lvalues are classical lvalues as in C++03.
/// - prvalues are equivalent to rvalues in C++03.
/// - xvalues are expressions yielding unnamed rvalue references, e.g. a
/// function returning an rvalue reference.
/// lvalues and xvalues are collectively referred to as glvalues, while
/// prvalues and xvalues together form rvalues.
Classification Classify(ASTContext &Ctx) const {
return ClassifyImpl(Ctx, nullptr);
}
/// ClassifyModifiable - Classify this expression according to the
/// C++11 expression taxonomy, and see if it is valid on the left side
/// of an assignment.
///
/// This function extends classify in that it also tests whether the
/// expression is modifiable (C99 6.3.2.1p1).
/// \param Loc A source location that might be filled with a relevant location
/// if the expression is not modifiable.
Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
return ClassifyImpl(Ctx, &Loc);
}
/// Returns the set of floating point options that apply to this expression.
/// Only meaningful for operations on floating point values.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const;
/// getValueKindForType - Given a formal return or parameter type,
/// give its value kind.
static ExprValueKind getValueKindForType(QualType T) {
if (const ReferenceType *RT = T->getAs<ReferenceType>())
return (isa<LValueReferenceType>(RT)
? VK_LValue
: (RT->getPointeeType()->isFunctionType()
? VK_LValue : VK_XValue));
return VK_PRValue;
}
/// getValueKind - The value kind that this expression produces.
ExprValueKind getValueKind() const {
return static_cast<ExprValueKind>(ExprBits.ValueKind);
}
/// getObjectKind - The object kind that this expression produces.
/// Object kinds are meaningful only for expressions that yield an
/// l-value or x-value.
ExprObjectKind getObjectKind() const {
return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
}
bool isOrdinaryOrBitFieldObject() const {
ExprObjectKind OK = getObjectKind();
return (OK == OK_Ordinary || OK == OK_BitField);
}
/// setValueKind - Set the value kind produced by this expression.
void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
/// setObjectKind - Set the object kind produced by this expression.
void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
private:
Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
public:
/// Returns true if this expression is a gl-value that
/// potentially refers to a bit-field.
///
/// In C++, whether a gl-value refers to a bitfield is essentially
/// an aspect of the value-kind type system.
bool refersToBitField() const { return getObjectKind() == OK_BitField; }
/// If this expression refers to a bit-field, retrieve the
/// declaration of that bit-field.
///
/// Note that this returns a non-null pointer in subtly different
/// places than refersToBitField returns true. In particular, this can
/// return a non-null pointer even for r-values loaded from
/// bit-fields, but it will return null for a conditional bit-field.
FieldDecl *getSourceBitField();
const FieldDecl *getSourceBitField() const {
return const_cast<Expr*>(this)->getSourceBitField();
}
Decl *getReferencedDeclOfCallee();
const Decl *getReferencedDeclOfCallee() const {
return const_cast<Expr*>(this)->getReferencedDeclOfCallee();
}
/// If this expression is an l-value for an Objective C
/// property, find the underlying property reference expression.
const ObjCPropertyRefExpr *getObjCProperty() const;
/// Check if this expression is the ObjC 'self' implicit parameter.
bool isObjCSelfExpr() const;
/// Returns whether this expression refers to a vector element.
bool refersToVectorElement() const;
/// Returns whether this expression refers to a matrix element.
bool refersToMatrixElement() const {
return getObjectKind() == OK_MatrixComponent;
}
/// Returns whether this expression refers to a global register
/// variable.
bool refersToGlobalRegisterVar() const;
/// Returns whether this expression has a placeholder type.
bool hasPlaceholderType() const {
return getType()->isPlaceholderType();
}
/// Returns whether this expression has a specific placeholder type.
bool hasPlaceholderType(BuiltinType::Kind K) const {
assert(BuiltinType::isPlaceholderTypeKind(K));
if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
return BT->getKind() == K;
return false;
}
/// isKnownToHaveBooleanValue - Return true if this is an integer expression
/// that is known to return 0 or 1. This happens for _Bool/bool expressions
/// but also int expressions which are produced by things like comparisons in
/// C.
///
/// \param Semantic If true, only return true for expressions that are known
/// to be semantically boolean, which might not be true even for expressions
/// that are known to evaluate to 0/1. For instance, reading an unsigned
/// bit-field with width '1' will evaluate to 0/1, but doesn't necessarily
/// semantically correspond to a bool.
bool isKnownToHaveBooleanValue(bool Semantic = true) const;
/// Check whether this array fits the idiom of a flexible array member,
/// depending on the value of -fstrict-flex-array.
/// When IgnoreTemplateOrMacroSubstitution is set, it doesn't consider sizes
/// resulting from the substitution of a macro or a template as special sizes.
bool isFlexibleArrayMemberLike(
ASTContext &Context,
LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
bool IgnoreTemplateOrMacroSubstitution = false) const;
/// isIntegerConstantExpr - Return the value if this expression is a valid
/// integer constant expression. If not a valid i-c-e, return std::nullopt
/// and fill in Loc (if specified) with the location of the invalid
/// expression.
///
/// Note: This does not perform the implicit conversions required by C++11
/// [expr.const]p5.
std::optional<llvm::APSInt>
getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc = nullptr,
bool isEvaluated = true) const;
bool isIntegerConstantExpr(const ASTContext &Ctx,
SourceLocation *Loc = nullptr) const;
/// isCXX98IntegralConstantExpr - Return true if this expression is an
/// integral constant expression in C++98. Can only be used in C++.
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
/// isCXX11ConstantExpr - Return true if this expression is a constant
/// expression in C++11. Can only be used in C++.
///
/// Note: This does not perform the implicit conversions required by C++11
/// [expr.const]p5.
bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
SourceLocation *Loc = nullptr) const;
/// isPotentialConstantExpr - Return true if this function's definition
/// might be usable in a constant expression in C++11, if it were marked
/// constexpr. Return false if the function can never produce a constant
/// expression, along with diagnostics describing why not.
static bool isPotentialConstantExpr(const FunctionDecl *FD,
SmallVectorImpl<
PartialDiagnosticAt> &Diags);
/// isPotentialConstantExprUnevaluted - Return true if this expression might
/// be usable in a constant expression in C++11 in an unevaluated context, if
/// it were in function FD marked constexpr. Return false if the function can
/// never produce a constant expression, along with diagnostics describing
/// why not.
static bool isPotentialConstantExprUnevaluated(Expr *E,
const FunctionDecl *FD,
SmallVectorImpl<
PartialDiagnosticAt> &Diags);
/// isConstantInitializer - Returns true if this expression can be emitted to
/// IR as a constant, and thus can be used as a constant initializer in C.
/// If this expression is not constant and Culprit is non-null,
/// it is used to store the address of first non constant expr.
bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
const Expr **Culprit = nullptr) const;
/// If this expression is an unambiguous reference to a single declaration,
/// in the style of __builtin_function_start, return that declaration. Note
/// that this may return a non-static member function or field in C++ if this
/// expression is a member pointer constant.
const ValueDecl *getAsBuiltinConstantDeclRef(const ASTContext &Context) const;
/// EvalStatus is a struct with detailed info about an evaluation in progress.
struct EvalStatus {
/// Whether the evaluated expression has side effects.
/// For example, (f() && 0) can be folded, but it still has side effects.
bool HasSideEffects;
/// Whether the evaluation hit undefined behavior.
/// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
/// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
bool HasUndefinedBehavior;
/// Diag - If this is non-null, it will be filled in with a stack of notes
/// indicating why evaluation failed (or why it failed to produce a constant
/// expression).
/// If the expression is unfoldable, the notes will indicate why it's not
/// foldable. If the expression is foldable, but not a constant expression,
/// the notes will describes why it isn't a constant expression. If the
/// expression *is* a constant expression, no notes will be produced.
SmallVectorImpl<PartialDiagnosticAt> *Diag;
EvalStatus()
: HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
// hasSideEffects - Return true if the evaluated expression has
// side effects.
bool hasSideEffects() const {
return HasSideEffects;
}
};
/// EvalResult is a struct with detailed info about an evaluated expression.
struct EvalResult : EvalStatus {
/// Val - This is the value the expression can be folded to.
APValue Val;
// isGlobalLValue - Return true if the evaluated lvalue expression
// is global.
bool isGlobalLValue() const;
};
/// EvaluateAsRValue - Return true if this is a constant which we can fold to
/// an rvalue using any crazy technique (that has nothing to do with language
/// standards) that we want to, even if the expression has side-effects. If
/// this function returns true, it returns the folded constant in Result. If
/// the expression is a glvalue, an lvalue-to-rvalue conversion will be
/// applied.
bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
bool InConstantContext = false) const;
/// EvaluateAsBooleanCondition - Return true if this is a constant
/// which we can fold and convert to a boolean condition using
/// any crazy technique that we want to, even if the expression has
/// side-effects.
bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
bool InConstantContext = false) const;
enum SideEffectsKind {
SE_NoSideEffects, ///< Strictly evaluate the expression.
SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
///< arbitrary unmodeled side effects.
SE_AllowSideEffects ///< Allow any unmodeled side effect.
};
/// EvaluateAsInt - Return true if this is a constant which we can fold and
/// convert to an integer, using any crazy technique that we want to.
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects,
bool InConstantContext = false) const;
/// EvaluateAsFloat - Return true if this is a constant which we can fold and
/// convert to a floating point value, using any crazy technique that we
/// want to.
bool EvaluateAsFloat(llvm::APFloat &Result, const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects,
bool InConstantContext = false) const;
/// EvaluateAsFloat - Return true if this is a constant which we can fold and
/// convert to a fixed point value.
bool EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects,
bool InConstantContext = false) const;
/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
/// constant folded without side-effects, but discard the result.
bool isEvaluatable(const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
/// HasSideEffects - This routine returns true for all those expressions
/// which have any effect other than producing a value. Example is a function
/// call, volatile variable read, or throwing an exception. If
/// IncludePossibleEffects is false, this call treats certain expressions with
/// potential side effects (such as function call-like expressions,
/// instantiation-dependent expressions, or invocations from a macro) as not
/// having side effects.
bool HasSideEffects(const ASTContext &Ctx,
bool IncludePossibleEffects = true) const;
/// Determine whether this expression involves a call to any function
/// that is not trivial.
bool hasNonTrivialCall(const ASTContext &Ctx) const;
/// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
/// integer. This must be called on an expression that constant folds to an
/// integer.
llvm::APSInt EvaluateKnownConstInt(
const ASTContext &Ctx,
SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
llvm::APSInt EvaluateKnownConstIntCheckOverflow(
const ASTContext &Ctx,
SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
void EvaluateForOverflow(const ASTContext &Ctx) const;
/// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
/// lvalue with link time known address, with no side-effects.
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
bool InConstantContext = false) const;
/// EvaluateAsInitializer - Evaluate an expression as if it were the
/// initializer of the given declaration. Returns true if the initializer
/// can be folded to a constant, and produces any relevant notes. In C++11,
/// notes will be produced if the expression is not a constant expression.
bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
const VarDecl *VD,
SmallVectorImpl<PartialDiagnosticAt> &Notes,
bool IsConstantInitializer) const;
/// EvaluateWithSubstitution - Evaluate an expression as if from the context
/// of a call to the given function with the given arguments, inside an
/// unevaluated context. Returns true if the expression could be folded to a
/// constant.
bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
const FunctionDecl *Callee,
ArrayRef<const Expr*> Args,
const Expr *This = nullptr) const;
enum class ConstantExprKind {
/// An integer constant expression (an array bound, enumerator, case value,
/// bit-field width, or similar) or similar.
Normal,
/// A non-class template argument. Such a value is only used for mangling,
/// not for code generation, so can refer to dllimported functions.
NonClassTemplateArgument,
/// A class template argument. Such a value is used for code generation.
ClassTemplateArgument,
/// An immediate invocation. The destruction of the end result of this
/// evaluation is not part of the evaluation, but all other temporaries
/// are destroyed.
ImmediateInvocation,
};
/// Evaluate an expression that is required to be a constant expression. Does
/// not check the syntactic constraints for C and C++98 constant expressions.
bool EvaluateAsConstantExpr(
EvalResult &Result, const ASTContext &Ctx,
ConstantExprKind Kind = ConstantExprKind::Normal) const;
/// If the current Expr is a pointer, this will try to statically
/// determine the number of bytes available where the pointer is pointing.
/// Returns true if all of the above holds and we were able to figure out the
/// size, false otherwise.
///
/// \param Type - How to evaluate the size of the Expr, as defined by the
/// "type" parameter of __builtin_object_size
bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
unsigned Type) const;
/// If the current Expr is a pointer, this will try to statically
/// determine the strlen of the string pointed to.
/// Returns true if all of the above holds and we were able to figure out the
/// strlen, false otherwise.
bool tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const;
/// Enumeration used to describe the kind of Null pointer constant
/// returned from \c isNullPointerConstant().
enum NullPointerConstantKind {
/// Expression is not a Null pointer constant.
NPCK_NotNull = 0,
/// Expression is a Null pointer constant built from a zero integer
/// expression that is not a simple, possibly parenthesized, zero literal.
/// C++ Core Issue 903 will classify these expressions as "not pointers"
/// once it is adopted.
/// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
NPCK_ZeroExpression,
/// Expression is a Null pointer constant built from a literal zero.
NPCK_ZeroLiteral,
/// Expression is a C++11 nullptr.
NPCK_CXX11_nullptr,
/// Expression is a GNU-style __null constant.
NPCK_GNUNull
};
/// Enumeration used to describe how \c isNullPointerConstant()
/// should cope with value-dependent expressions.
enum NullPointerConstantValueDependence {
/// Specifies that the expression should never be value-dependent.
NPC_NeverValueDependent = 0,
/// Specifies that a value-dependent expression of integral or
/// dependent type should be considered a null pointer constant.
NPC_ValueDependentIsNull,
/// Specifies that a value-dependent expression should be considered
/// to never be a null pointer constant.
NPC_ValueDependentIsNotNull
};
/// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
/// a Null pointer constant. The return value can further distinguish the
/// kind of NULL pointer constant that was detected.
NullPointerConstantKind isNullPointerConstant(
ASTContext &Ctx,
NullPointerConstantValueDependence NPC) const;
/// isOBJCGCCandidate - Return true if this expression may be used in a read/
/// write barrier.
bool isOBJCGCCandidate(ASTContext &Ctx) const;
/// Returns true if this expression is a bound member function.
bool isBoundMemberFunction(ASTContext &Ctx) const;
/// Given an expression of bound-member type, find the type
/// of the member. Returns null if this is an *overloaded* bound
/// member expression.
static QualType findBoundMemberType(const Expr *expr);
/// Skip past any invisble AST nodes which might surround this
/// statement, such as ExprWithCleanups or ImplicitCastExpr nodes,
/// but also injected CXXMemberExpr and CXXConstructExpr which represent
/// implicit conversions.
Expr *IgnoreUnlessSpelledInSource();
const Expr *IgnoreUnlessSpelledInSource() const {
return const_cast<Expr *>(this)->IgnoreUnlessSpelledInSource();
}
/// Skip past any implicit casts which might surround this expression until
/// reaching a fixed point. Skips:
/// * ImplicitCastExpr
/// * FullExpr
Expr *IgnoreImpCasts() LLVM_READONLY;
const Expr *IgnoreImpCasts() const {
return const_cast<Expr *>(this)->IgnoreImpCasts();
}
/// Skip past any casts which might surround this expression until reaching
/// a fixed point. Skips:
/// * CastExpr
/// * FullExpr
/// * MaterializeTemporaryExpr
/// * SubstNonTypeTemplateParmExpr
Expr *IgnoreCasts() LLVM_READONLY;
const Expr *IgnoreCasts() const {
return const_cast<Expr *>(this)->IgnoreCasts();
}
/// Skip past any implicit AST nodes which might surround this expression
/// until reaching a fixed point. Skips:
/// * What IgnoreImpCasts() skips
/// * MaterializeTemporaryExpr
/// * CXXBindTemporaryExpr
Expr *IgnoreImplicit() LLVM_READONLY;
const Expr *IgnoreImplicit() const {
return const_cast<Expr *>(this)->IgnoreImplicit();
}
/// Skip past any implicit AST nodes which might surround this expression
/// until reaching a fixed point. Same as IgnoreImplicit, except that it
/// also skips over implicit calls to constructors and conversion functions.
///
/// FIXME: Should IgnoreImplicit do this?
Expr *IgnoreImplicitAsWritten() LLVM_READONLY;
const Expr *IgnoreImplicitAsWritten() const {
return const_cast<Expr *>(this)->IgnoreImplicitAsWritten();
}
/// Skip past any parentheses which might surround this expression until
/// reaching a fixed point. Skips:
/// * ParenExpr
/// * UnaryOperator if `UO_Extension`
/// * GenericSelectionExpr if `!isResultDependent()`
/// * ChooseExpr if `!isConditionDependent()`
/// * ConstantExpr
Expr *IgnoreParens() LLVM_READONLY;
const Expr *IgnoreParens() const {
return const_cast<Expr *>(this)->IgnoreParens();
}
/// Skip past any parentheses and implicit casts which might surround this
/// expression until reaching a fixed point.
/// FIXME: IgnoreParenImpCasts really ought to be equivalent to
/// IgnoreParens() + IgnoreImpCasts() until reaching a fixed point. However
/// this is currently not the case. Instead IgnoreParenImpCasts() skips:
/// * What IgnoreParens() skips
/// * What IgnoreImpCasts() skips
/// * MaterializeTemporaryExpr
/// * SubstNonTypeTemplateParmExpr
Expr *IgnoreParenImpCasts() LLVM_READONLY;
const Expr *IgnoreParenImpCasts() const {
return const_cast<Expr *>(this)->IgnoreParenImpCasts();
}
/// Skip past any parentheses and casts which might surround this expression
/// until reaching a fixed point. Skips:
/// * What IgnoreParens() skips
/// * What IgnoreCasts() skips
Expr *IgnoreParenCasts() LLVM_READONLY;
const Expr *IgnoreParenCasts() const {
return const_cast<Expr *>(this)->IgnoreParenCasts();
}
/// Skip conversion operators. If this Expr is a call to a conversion
/// operator, return the argument.
Expr *IgnoreConversionOperatorSingleStep() LLVM_READONLY;
const Expr *IgnoreConversionOperatorSingleStep() const {
return const_cast<Expr *>(this)->IgnoreConversionOperatorSingleStep();
}
/// Skip past any parentheses and lvalue casts which might surround this
/// expression until reaching a fixed point. Skips:
/// * What IgnoreParens() skips
/// * What IgnoreCasts() skips, except that only lvalue-to-rvalue
/// casts are skipped
/// FIXME: This is intended purely as a temporary workaround for code
/// that hasn't yet been rewritten to do the right thing about those
/// casts, and may disappear along with the last internal use.
Expr *IgnoreParenLValueCasts() LLVM_READONLY;
const Expr *IgnoreParenLValueCasts() const {
return const_cast<Expr *>(this)->IgnoreParenLValueCasts();
}
/// Skip past any parenthese and casts which do not change the value
/// (including ptr->int casts of the same size) until reaching a fixed point.
/// Skips:
/// * What IgnoreParens() skips
/// * CastExpr which do not change the value
/// * SubstNonTypeTemplateParmExpr
Expr *IgnoreParenNoopCasts(const ASTContext &Ctx) LLVM_READONLY;
const Expr *IgnoreParenNoopCasts(const ASTContext &Ctx) const {
return const_cast<Expr *>(this)->IgnoreParenNoopCasts(Ctx);
}
/// Skip past any parentheses and derived-to-base casts until reaching a
/// fixed point. Skips:
/// * What IgnoreParens() skips
/// * CastExpr which represent a derived-to-base cast (CK_DerivedToBase,
/// CK_UncheckedDerivedToBase and CK_NoOp)
Expr *IgnoreParenBaseCasts() LLVM_READONLY;
const Expr *IgnoreParenBaseCasts() const {
return const_cast<Expr *>(this)->IgnoreParenBaseCasts();
}
/// Determine whether this expression is a default function argument.
///
/// Default arguments are implicitly generated in the abstract syntax tree
/// by semantic analysis for function calls, object constructions, etc. in
/// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
/// this routine also looks through any implicit casts to determine whether
/// the expression is a default argument.
bool isDefaultArgument() const;
/// Determine whether the result of this expression is a
/// temporary object of the given class type.
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
/// Whether this expression is an implicit reference to 'this' in C++.
bool isImplicitCXXThis() const;
static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
/// For an expression of class type or pointer to class type,
/// return the most derived class decl the expression is known to refer to.
///
/// If this expression is a cast, this method looks through it to find the
/// most derived decl that can be inferred from the expression.
/// This is valid because derived-to-base conversions have undefined
/// behavior if the object isn't dynamically of the derived type.
const CXXRecordDecl *getBestDynamicClassType() const;
/// Get the inner expression that determines the best dynamic class.
/// If this is a prvalue, we guarantee that it is of the most-derived type
/// for the object itself.
const Expr *getBestDynamicClassTypeExpr() const;
/// Walk outwards from an expression we want to bind a reference to and
/// find the expression whose lifetime needs to be extended. Record
/// the LHSs of comma expressions and adjustments needed along the path.
const Expr *skipRValueSubobjectAdjustments(
SmallVectorImpl<const Expr *> &CommaLHS,
SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
const Expr *skipRValueSubobjectAdjustments() const {
SmallVector<const Expr *, 8> CommaLHSs;
SmallVector<SubobjectAdjustment, 8> Adjustments;
return skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
}
/// Checks that the two Expr's will refer to the same value as a comparison
/// operand. The caller must ensure that the values referenced by the Expr's
/// are not modified between E1 and E2 or the result my be invalid.
static bool isSameComparisonOperand(const Expr* E1, const Expr* E2);
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstExprConstant &&
T->getStmtClass() <= lastExprConstant;
}
};
// PointerLikeTypeTraits is specialized so it can be used with a forward-decl of
// Expr. Verify that we got it right.
static_assert(llvm::PointerLikeTypeTraits<Expr *>::NumLowBitsAvailable <=
llvm::detail::ConstantLog2<alignof(Expr)>::value,
"PointerLikeTypeTraits<Expr*> assumes too much alignment.");
using ConstantExprKind = Expr::ConstantExprKind;
//===----------------------------------------------------------------------===//
// Wrapper Expressions.
//===----------------------------------------------------------------------===//
/// FullExpr - Represents a "full-expression" node.
class FullExpr : public Expr {
protected:
Stmt *SubExpr;
FullExpr(StmtClass SC, Expr *subexpr)
: Expr(SC, subexpr->getType(), subexpr->getValueKind(),
subexpr->getObjectKind()),
SubExpr(subexpr) {
setDependence(computeDependence(this));
}
FullExpr(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty) {}
public:
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
/// As with any mutator of the AST, be very careful when modifying an
/// existing AST to preserve its invariants.
void setSubExpr(Expr *E) { SubExpr = E; }
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstFullExprConstant &&
T->getStmtClass() <= lastFullExprConstant;
}
};
/// ConstantExpr - An expression that occurs in a constant context and
/// optionally the result of evaluating the expression.
class ConstantExpr final
: public FullExpr,
private llvm::TrailingObjects<ConstantExpr, APValue, uint64_t> {
static_assert(std::is_same<uint64_t, llvm::APInt::WordType>::value,
"ConstantExpr assumes that llvm::APInt::WordType is uint64_t "
"for tail-allocated storage");
friend TrailingObjects;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
/// Describes the kind of result that can be tail-allocated.
enum ResultStorageKind { RSK_None, RSK_Int64, RSK_APValue };
private:
size_t numTrailingObjects(OverloadToken<APValue>) const {
return ConstantExprBits.ResultKind == ConstantExpr::RSK_APValue;
}
size_t numTrailingObjects(OverloadToken<uint64_t>) const {
return ConstantExprBits.ResultKind == ConstantExpr::RSK_Int64;
}
uint64_t &Int64Result() {
assert(ConstantExprBits.ResultKind == ConstantExpr::RSK_Int64 &&
"invalid accessor");
return *getTrailingObjects<uint64_t>();
}
const uint64_t &Int64Result() const {
return const_cast<ConstantExpr *>(this)->Int64Result();
}
APValue &APValueResult() {
assert(ConstantExprBits.ResultKind == ConstantExpr::RSK_APValue &&
"invalid accessor");
return *getTrailingObjects<APValue>();
}
APValue &APValueResult() const {
return const_cast<ConstantExpr *>(this)->APValueResult();
}
ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
bool IsImmediateInvocation);
ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind);
public:
static ConstantExpr *Create(const ASTContext &Context, Expr *E,
const APValue &Result);
static ConstantExpr *Create(const ASTContext &Context, Expr *E,
ResultStorageKind Storage = RSK_None,
bool IsImmediateInvocation = false);
static ConstantExpr *CreateEmpty(const ASTContext &Context,
ResultStorageKind StorageKind);
static ResultStorageKind getStorageKind(const APValue &Value);
static ResultStorageKind getStorageKind(const Type *T,
const ASTContext &Context);
SourceLocation getBeginLoc() const LLVM_READONLY {
return SubExpr->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return SubExpr->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConstantExprClass;
}
void SetResult(APValue Value, const ASTContext &Context) {
MoveIntoResult(Value, Context);
}
void MoveIntoResult(APValue &Value, const ASTContext &Context);
APValue::ValueKind getResultAPValueKind() const {
return static_cast<APValue::ValueKind>(ConstantExprBits.APValueKind);
}
ResultStorageKind getResultStorageKind() const {
return static_cast<ResultStorageKind>(ConstantExprBits.ResultKind);
}
bool isImmediateInvocation() const {
return ConstantExprBits.IsImmediateInvocation;
}
bool hasAPValueResult() const {
return ConstantExprBits.APValueKind != APValue::None;
}
APValue getAPValueResult() const;
APValue &getResultAsAPValue() const { return APValueResult(); }
llvm::APSInt getResultAsAPSInt() const;
// Iterators
child_range children() { return child_range(&SubExpr, &SubExpr+1); }
const_child_range children() const {
return const_child_range(&SubExpr, &SubExpr + 1);
}
};
//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//
/// OpaqueValueExpr - An expression referring to an opaque object of a
/// fixed type and value class. These don't correspond to concrete
/// syntax; instead they're used to express operations (usually copy
/// operations) on values whose source is generally obvious from
/// context.
class OpaqueValueExpr : public Expr {
friend class ASTStmtReader;
Expr *SourceExpr;
public:
OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
ExprObjectKind OK = OK_Ordinary, Expr *SourceExpr = nullptr)
: Expr(OpaqueValueExprClass, T, VK, OK), SourceExpr(SourceExpr) {
setIsUnique(false);
OpaqueValueExprBits.Loc = Loc;
setDependence(computeDependence(this));
}
/// Given an expression which invokes a copy constructor --- i.e. a
/// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
/// find the OpaqueValueExpr that's the source of the construction.
static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
explicit OpaqueValueExpr(EmptyShell Empty)
: Expr(OpaqueValueExprClass, Empty) {}
/// Retrieve the location of this expression.
SourceLocation getLocation() const { return OpaqueValueExprBits.Loc; }
SourceLocation getBeginLoc() const LLVM_READONLY {
return SourceExpr ? SourceExpr->getBeginLoc() : getLocation();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return SourceExpr ? SourceExpr->getEndLoc() : getLocation();
}
SourceLocation getExprLoc() const LLVM_READONLY {
return SourceExpr ? SourceExpr->getExprLoc() : getLocation();
}
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
/// The source expression of an opaque value expression is the
/// expression which originally generated the value. This is
/// provided as a convenience for analyses that don't wish to
/// precisely model the execution behavior of the program.
///
/// The source expression is typically set when building the
/// expression which binds the opaque value expression in the first
/// place.
Expr *getSourceExpr() const { return SourceExpr; }
void setIsUnique(bool V) {
assert((!V || SourceExpr) &&
"unique OVEs are expected to have source expressions");
OpaqueValueExprBits.IsUnique = V;
}
bool isUnique() const { return OpaqueValueExprBits.IsUnique; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == OpaqueValueExprClass;
}
};
/// A reference to a declared variable, function, enum, etc.
/// [C99 6.5.1p2]
///
/// This encodes all the information about how a declaration is referenced
/// within an expression.
///
/// There are several optional constructs attached to DeclRefExprs only when
/// they apply in order to conserve memory. These are laid out past the end of
/// the object, and flags in the DeclRefExprBitfield track whether they exist:
///
/// DeclRefExprBits.HasQualifier:
/// Specifies when this declaration reference expression has a C++
/// nested-name-specifier.
/// DeclRefExprBits.HasFoundDecl:
/// Specifies when this declaration reference expression has a record of
/// a NamedDecl (different from the referenced ValueDecl) which was found
/// during name lookup and/or overload resolution.
/// DeclRefExprBits.HasTemplateKWAndArgsInfo:
/// Specifies when this declaration reference expression has an explicit
/// C++ template keyword and/or template argument list.
/// DeclRefExprBits.RefersToEnclosingVariableOrCapture
/// Specifies when this declaration reference expression (validly)
/// refers to an enclosed local or a captured variable.
class DeclRefExpr final
: public Expr,
private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
NamedDecl *, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc> {
friend class ASTStmtReader;
friend class ASTStmtWriter;
friend TrailingObjects;
/// The declaration that we are referencing.
ValueDecl *D;
/// Provides source/type location info for the declaration name
/// embedded in D.
DeclarationNameLoc DNLoc;
size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
return hasQualifier();
}
size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
return hasFoundDecl();
}
size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
return hasTemplateKWAndArgsInfo();
}
/// Test whether there is a distinct FoundDecl attached to the end of
/// this DRE.
bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
DeclRefExpr(const ASTContext &Ctx, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnlosingVariableOrCapture,
const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs, QualType T,
ExprValueKind VK, NonOdrUseReason NOUR);
/// Construct an empty declaration reference expression.
explicit DeclRefExpr(EmptyShell Empty) : Expr(DeclRefExprClass, Empty) {}
public:
DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture, QualType T,
ExprValueKind VK, SourceLocation L,
const DeclarationNameLoc &LocInfo = DeclarationNameLoc(),
NonOdrUseReason NOUR = NOUR_None);
static DeclRefExpr *
Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr,
NonOdrUseReason NOUR = NOUR_None);
static DeclRefExpr *
Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture,
const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr,
NonOdrUseReason NOUR = NOUR_None);
/// Construct an empty declaration reference expression.
static DeclRefExpr *CreateEmpty(const ASTContext &Context, bool HasQualifier,
bool HasFoundDecl,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
ValueDecl *getDecl() { return D; }
const ValueDecl *getDecl() const { return D; }
void setDecl(ValueDecl *NewD);
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDecl()->getDeclName(), getLocation(), DNLoc);
}
SourceLocation getLocation() const { return DeclRefExprBits.Loc; }
void setLocation(SourceLocation L) { DeclRefExprBits.Loc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
/// Determine whether this declaration reference was preceded by a
/// C++ nested-name-specifier, e.g., \c N::foo.
bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
/// If the name was qualified, retrieves the nested-name-specifier
/// that precedes the name, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const {
if (!hasQualifier())
return NestedNameSpecifierLoc();
return *getTrailingObjects<NestedNameSpecifierLoc>();
}
/// If the name was qualified, retrieves the nested-name-specifier
/// that precedes the name. Otherwise, returns NULL.
NestedNameSpecifier *getQualifier() const {
return getQualifierLoc().getNestedNameSpecifier();
}
/// Get the NamedDecl through which this reference occurred.
///
/// This Decl may be different from the ValueDecl actually referred to in the
/// presence of using declarations, etc. It always returns non-NULL, and may
/// simple return the ValueDecl when appropriate.
NamedDecl *getFoundDecl() {
return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
}
/// Get the NamedDecl through which this reference occurred.
/// See non-const variant.
const NamedDecl *getFoundDecl() const {
return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
}
bool hasTemplateKWAndArgsInfo() const {
return DeclRefExprBits.HasTemplateKWAndArgsInfo;
}
/// Retrieve the location of the template keyword preceding
/// this name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
}
/// Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the name, if any.
SourceLocation getLAngleLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
}
/// Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the name, if any.
SourceLocation getRAngleLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
}
/// Determines whether the name in this declaration reference
/// was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether this declaration reference was followed by an
/// explicit template argument list.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
if (hasExplicitTemplateArgs())
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
getTrailingObjects<TemplateArgumentLoc>(), List);
}
/// Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return nullptr;
return getTrailingObjects<TemplateArgumentLoc>();
}
/// Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return 0;
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
}
ArrayRef<TemplateArgumentLoc> template_arguments() const {
return {getTemplateArgs(), getNumTemplateArgs()};
}
/// Returns true if this expression refers to a function that
/// was resolved from an overloaded set having size greater than 1.
bool hadMultipleCandidates() const {
return DeclRefExprBits.HadMultipleCandidates;
}
/// Sets the flag telling whether this expression refers to
/// a function that was resolved from an overloaded set having size
/// greater than 1.
void setHadMultipleCandidates(bool V = true) {
DeclRefExprBits.HadMultipleCandidates = V;
}
/// Is this expression a non-odr-use reference, and if so, why?
NonOdrUseReason isNonOdrUse() const {
return static_cast<NonOdrUseReason>(DeclRefExprBits.NonOdrUseReason);
}
/// Does this DeclRefExpr refer to an enclosing local or a captured
/// variable?
bool refersToEnclosingVariableOrCapture() const {
return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == DeclRefExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// Used by IntegerLiteral/FloatingLiteral to store the numeric without
/// leaking memory.
///
/// For large floats/integers, APFloat/APInt will allocate memory from the heap
/// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator
/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
/// the APFloat/APInt values will never get freed. APNumericStorage uses
/// ASTContext's allocator for memory allocation.
class APNumericStorage {
union {
uint64_t VAL; ///< Used to store the <= 64 bits integer value.
uint64_t *pVal; ///< Used to store the >64 bits integer value.
};
unsigned BitWidth;
bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
APNumericStorage(const APNumericStorage &) = delete;
void operator=(const APNumericStorage &) = delete;
protected:
APNumericStorage() : VAL(0), BitWidth(0) { }
llvm::APInt getIntValue() const {
unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
if (NumWords > 1)
return llvm::APInt(BitWidth, NumWords, pVal);
else
return llvm::APInt(BitWidth, VAL);
}
void setIntValue(const ASTContext &C, const llvm::APInt &Val);
};
class APIntStorage : private APNumericStorage {
public:
llvm::APInt getValue() const { return getIntValue(); }
void setValue(const ASTContext &C, const llvm::APInt &Val) {
setIntValue(C, Val);
}
};
class APFloatStorage : private APNumericStorage {
public:
llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
return llvm::APFloat(Semantics, getIntValue());
}
void setValue(const ASTContext &C, const llvm::APFloat &Val) {
setIntValue(C, Val.bitcastToAPInt());
}
};
class IntegerLiteral : public Expr, public APIntStorage {
SourceLocation Loc;
/// Construct an empty integer literal.
explicit IntegerLiteral(EmptyShell Empty)
: Expr(IntegerLiteralClass, Empty) { }
public:
// type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
// or UnsignedLongLongTy
IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
SourceLocation l);
/// Returns a new integer literal with value 'V' and type 'type'.
/// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
/// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
/// \param V - the value that the returned integer literal contains.
static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l);
/// Returns a new empty integer literal.
static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
/// Retrieve the location of the literal.
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation Location) { Loc = Location; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == IntegerLiteralClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class FixedPointLiteral : public Expr, public APIntStorage {
SourceLocation Loc;
unsigned Scale;
/// \brief Construct an empty fixed-point literal.
explicit FixedPointLiteral(EmptyShell Empty)
: Expr(FixedPointLiteralClass, Empty) {}
public:
FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
SourceLocation l, unsigned Scale);
// Store the int as is without any bit shifting.
static FixedPointLiteral *CreateFromRawInt(const ASTContext &C,
const llvm::APInt &V,
QualType type, SourceLocation l,
unsigned Scale);
/// Returns an empty fixed-point literal.
static FixedPointLiteral *Create(const ASTContext &C, EmptyShell Empty);
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
/// \brief Retrieve the location of the literal.
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation Location) { Loc = Location; }
unsigned getScale() const { return Scale; }
void setScale(unsigned S) { Scale = S; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == FixedPointLiteralClass;
}
std::string getValueAsString(unsigned Radix) const;
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class CharacterLiteral : public Expr {
public:
enum CharacterKind {
Ascii,
Wide,
UTF8,
UTF16,
UTF32
};
private:
unsigned Value;
SourceLocation Loc;
public:
// type should be IntTy
CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
SourceLocation l)
: Expr(CharacterLiteralClass, type, VK_PRValue, OK_Ordinary),
Value(value), Loc(l) {
CharacterLiteralBits.Kind = kind;
setDependence(ExprDependence::None);
}
/// Construct an empty character literal.
CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
SourceLocation getLocation() const { return Loc; }
CharacterKind getKind() const {
return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
}
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
unsigned getValue() const { return Value; }
void setLocation(SourceLocation Location) { Loc = Location; }
void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
void setValue(unsigned Val) { Value = Val; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CharacterLiteralClass;
}
static void print(unsigned val, CharacterKind Kind, raw_ostream &OS);
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class FloatingLiteral : public Expr, private APFloatStorage {
SourceLocation Loc;
FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
QualType Type, SourceLocation L);
/// Construct an empty floating-point literal.
explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
public:
static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
bool isexact, QualType Type, SourceLocation L);
static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
llvm::APFloat getValue() const {
return APFloatStorage::getValue(getSemantics());
}
void setValue(const ASTContext &C, const llvm::APFloat &Val) {
assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
APFloatStorage::setValue(C, Val);
}
/// Get a raw enumeration value representing the floating-point semantics of
/// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
llvm::APFloatBase::Semantics getRawSemantics() const {
return static_cast<llvm::APFloatBase::Semantics>(
FloatingLiteralBits.Semantics);
}
/// Set the raw enumeration value representing the floating-point semantics of
/// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
void setRawSemantics(llvm::APFloatBase::Semantics Sem) {
FloatingLiteralBits.Semantics = Sem;
}
/// Return the APFloat semantics this literal uses.
const llvm::fltSemantics &getSemantics() const {
return llvm::APFloatBase::EnumToSemantics(
static_cast<llvm::APFloatBase::Semantics>(
FloatingLiteralBits.Semantics));
}
/// Set the APFloat semantics this literal uses.
void setSemantics(const llvm::fltSemantics &Sem) {
FloatingLiteralBits.Semantics = llvm::APFloatBase::SemanticsToEnum(Sem);
}
bool isExact() const { return FloatingLiteralBits.IsExact; }
void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double. Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double getValueAsApproximateDouble() const;
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == FloatingLiteralClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// ImaginaryLiteral - We support imaginary integer and floating point literals,
/// like "1.0i". We represent these as a wrapper around FloatingLiteral and
/// IntegerLiteral classes. Instances of this class always have a Complex type
/// whose element type matches the subexpression.
///
class ImaginaryLiteral : public Expr {
Stmt *Val;
public:
ImaginaryLiteral(Expr *val, QualType Ty)
: Expr(ImaginaryLiteralClass, Ty, VK_PRValue, OK_Ordinary), Val(val) {
setDependence(ExprDependence::None);
}
/// Build an empty imaginary literal.
explicit ImaginaryLiteral(EmptyShell Empty)
: Expr(ImaginaryLiteralClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
SourceLocation getBeginLoc() const LLVM_READONLY {
return Val->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY { return Val->getEndLoc(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImaginaryLiteralClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
};
/// StringLiteral - This represents a string literal expression, e.g. "foo"
/// or L"bar" (wide strings). The actual string data can be obtained with
/// getBytes() and is NOT null-terminated. The length of the string data is
/// determined by calling getByteLength().
///
/// The C type for a string is always a ConstantArrayType. In C++, the char
/// type is const qualified, in C it is not.
///
/// Note that strings in C can be formed by concatenation of multiple string
/// literal pptokens in translation phase #6. This keeps track of the locations
/// of each of these pieces.
///
/// Strings in C can also be truncated and extended by assigning into arrays,
/// e.g. with constructs like:
/// char X[2] = "foobar";
/// In this case, getByteLength() will return 6, but the string literal will
/// have type "char[2]".
class StringLiteral final
: public Expr,
private llvm::TrailingObjects<StringLiteral, unsigned, SourceLocation,
char> {
friend class ASTStmtReader;
friend TrailingObjects;
/// StringLiteral is followed by several trailing objects. They are in order:
///
/// * A single unsigned storing the length in characters of this string. The
/// length in bytes is this length times the width of a single character.
/// Always present and stored as a trailing objects because storing it in
/// StringLiteral would increase the size of StringLiteral by sizeof(void *)
/// due to alignment requirements. If you add some data to StringLiteral,
/// consider moving it inside StringLiteral.
///
/// * An array of getNumConcatenated() SourceLocation, one for each of the
/// token this string is made of.
///
/// * An array of getByteLength() char used to store the string data.
public:
enum StringKind { Ordinary, Wide, UTF8, UTF16, UTF32 };
private:
unsigned numTrailingObjects(OverloadToken<unsigned>) const { return 1; }
unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
return getNumConcatenated();
}
unsigned numTrailingObjects(OverloadToken<char>) const {
return getByteLength();
}
char *getStrDataAsChar() { return getTrailingObjects<char>(); }
const char *getStrDataAsChar() const { return getTrailingObjects<char>(); }
const uint16_t *getStrDataAsUInt16() const {
return reinterpret_cast<const uint16_t *>(getTrailingObjects<char>());
}
const uint32_t *getStrDataAsUInt32() const {
return reinterpret_cast<const uint32_t *>(getTrailingObjects<char>());
}
/// Build a string literal.
StringLiteral(const ASTContext &Ctx, StringRef Str, StringKind Kind,
bool Pascal, QualType Ty, const SourceLocation *Loc,
unsigned NumConcatenated);
/// Build an empty string literal.
StringLiteral(EmptyShell Empty, unsigned NumConcatenated, unsigned Length,
unsigned CharByteWidth);
/// Map a target and string kind to the appropriate character width.
static unsigned mapCharByteWidth(TargetInfo const &Target, StringKind SK);
/// Set one of the string literal token.
void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
assert(TokNum < getNumConcatenated() && "Invalid tok number");
getTrailingObjects<SourceLocation>()[TokNum] = L;
}
public:
/// This is the "fully general" constructor that allows representation of
/// strings formed from multiple concatenated tokens.
static StringLiteral *Create(const ASTContext &Ctx, StringRef Str,
StringKind Kind, bool Pascal, QualType Ty,
const SourceLocation *Loc,
unsigned NumConcatenated);
/// Simple constructor for string literals made from one token.
static StringLiteral *Create(const ASTContext &Ctx, StringRef Str,
StringKind Kind, bool Pascal, QualType Ty,
SourceLocation Loc) {
return Create(Ctx, Str, Kind, Pascal, Ty, &Loc, 1);
}
/// Construct an empty string literal.
static StringLiteral *CreateEmpty(const ASTContext &Ctx,
unsigned NumConcatenated, unsigned Length,
unsigned CharByteWidth);
StringRef getString() const {
assert(getCharByteWidth() == 1 &&
"This function is used in places that assume strings use char");
return StringRef(getStrDataAsChar(), getByteLength());
}
/// Allow access to clients that need the byte representation, such as
/// ASTWriterStmt::VisitStringLiteral().
StringRef getBytes() const {
// FIXME: StringRef may not be the right type to use as a result for this.
return StringRef(getStrDataAsChar(), getByteLength());
}
void outputString(raw_ostream &OS) const;
uint32_t getCodeUnit(size_t i) const {
assert(i < getLength() && "out of bounds access");
switch (getCharByteWidth()) {
case 1:
return static_cast<unsigned char>(getStrDataAsChar()[i]);
case 2:
return getStrDataAsUInt16()[i];
case 4:
return getStrDataAsUInt32()[i];
}
llvm_unreachable("Unsupported character width!");
}
unsigned getByteLength() const { return getCharByteWidth() * getLength(); }
unsigned getLength() const { return *getTrailingObjects<unsigned>(); }
unsigned getCharByteWidth() const { return StringLiteralBits.CharByteWidth; }
StringKind getKind() const {
return static_cast<StringKind>(StringLiteralBits.Kind);
}
bool isOrdinary() const { return getKind() == Ordinary; }
bool isWide() const { return getKind() == Wide; }
bool isUTF8() const { return getKind() == UTF8; }
bool isUTF16() const { return getKind() == UTF16; }
bool isUTF32() const { return getKind() == UTF32; }
bool isPascal() const { return StringLiteralBits.IsPascal; }
bool containsNonAscii() const {
for (auto c : getString())
if (!isASCII(c))
return true;
return false;
}
bool containsNonAsciiOrNull() const {
for (auto c : getString())
if (!isASCII(c) || !c)
return true;
return false;
}
/// getNumConcatenated - Get the number of string literal tokens that were
/// concatenated in translation phase #6 to form this string literal.
unsigned getNumConcatenated() const {
return StringLiteralBits.NumConcatenated;
}
/// Get one of the string literal token.
SourceLocation getStrTokenLoc(unsigned TokNum) const {
assert(TokNum < getNumConcatenated() && "Invalid tok number");
return getTrailingObjects<SourceLocation>()[TokNum];
}
/// getLocationOfByte - Return a source location that points to the specified
/// byte of this string literal.
///
/// Strings are amazingly complex. They can be formed from multiple tokens
/// and can have escape sequences in them in addition to the usual trigraph
/// and escaped newline business. This routine handles this complexity.
///
SourceLocation
getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
const LangOptions &Features, const TargetInfo &Target,
unsigned *StartToken = nullptr,
unsigned *StartTokenByteOffset = nullptr) const;
typedef const SourceLocation *tokloc_iterator;
tokloc_iterator tokloc_begin() const {
return getTrailingObjects<SourceLocation>();
}
tokloc_iterator tokloc_end() const {
return getTrailingObjects<SourceLocation>() + getNumConcatenated();
}
SourceLocation getBeginLoc() const LLVM_READONLY { return *tokloc_begin(); }
SourceLocation getEndLoc() const LLVM_READONLY { return *(tokloc_end() - 1); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == StringLiteralClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// [C99 6.4.2.2] - A predefined identifier such as __func__.
class PredefinedExpr final
: public Expr,
private llvm::TrailingObjects<PredefinedExpr, Stmt *> {
friend class ASTStmtReader;
friend TrailingObjects;
// PredefinedExpr is optionally followed by a single trailing
// "Stmt *" for the predefined identifier. It is present if and only if
// hasFunctionName() is true and is always a "StringLiteral *".
public:
enum IdentKind {
Func,
Function,
LFunction, // Same as Function, but as wide string.
FuncDName,
FuncSig,
LFuncSig, // Same as FuncSig, but as wide string
PrettyFunction,
/// The same as PrettyFunction, except that the
/// 'virtual' keyword is omitted for virtual member functions.
PrettyFunctionNoVirtual
};
private:
PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
StringLiteral *SL);
explicit PredefinedExpr(EmptyShell Empty, bool HasFunctionName);
/// True if this PredefinedExpr has storage for a function name.
bool hasFunctionName() const { return PredefinedExprBits.HasFunctionName; }
void setFunctionName(StringLiteral *SL) {
assert(hasFunctionName() &&
"This PredefinedExpr has no storage for a function name!");
*getTrailingObjects<Stmt *>() = SL;
}
public:
/// Create a PredefinedExpr.
static PredefinedExpr *Create(const ASTContext &Ctx, SourceLocation L,
QualType FNTy, IdentKind IK, StringLiteral *SL);
/// Create an empty PredefinedExpr.
static PredefinedExpr *CreateEmpty(const ASTContext &Ctx,
bool HasFunctionName);
IdentKind getIdentKind() const {
return static_cast<IdentKind>(PredefinedExprBits.Kind);
}
SourceLocation getLocation() const { return PredefinedExprBits.Loc; }
void setLocation(SourceLocation L) { PredefinedExprBits.Loc = L; }
StringLiteral *getFunctionName() {
return hasFunctionName()
? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
: nullptr;
}
const StringLiteral *getFunctionName() const {
return hasFunctionName()
? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
: nullptr;
}
static StringRef getIdentKindName(IdentKind IK);
StringRef getIdentKindName() const {
return getIdentKindName(getIdentKind());
}
static std::string ComputeName(IdentKind IK, const Decl *CurrentDecl);
SourceLocation getBeginLoc() const { return getLocation(); }
SourceLocation getEndLoc() const { return getLocation(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == PredefinedExprClass;
}
// Iterators
child_range children() {
return child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() + hasFunctionName());
}
const_child_range children() const {
return const_child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() + hasFunctionName());
}
};
// This represents a use of the __builtin_sycl_unique_stable_name, which takes a
// type-id, and at CodeGen time emits a unique string representation of the
// type in a way that permits us to properly encode information about the SYCL
// kernels.
class SYCLUniqueStableNameExpr final : public Expr {
friend class ASTStmtReader;
SourceLocation OpLoc, LParen, RParen;
TypeSourceInfo *TypeInfo;
SYCLUniqueStableNameExpr(EmptyShell Empty, QualType ResultTy);
SYCLUniqueStableNameExpr(SourceLocation OpLoc, SourceLocation LParen,
SourceLocation RParen, QualType ResultTy,
TypeSourceInfo *TSI);
void setTypeSourceInfo(TypeSourceInfo *Ty) { TypeInfo = Ty; }
void setLocation(SourceLocation L) { OpLoc = L; }
void setLParenLocation(SourceLocation L) { LParen = L; }
void setRParenLocation(SourceLocation L) { RParen = L; }
public:
TypeSourceInfo *getTypeSourceInfo() { return TypeInfo; }
const TypeSourceInfo *getTypeSourceInfo() const { return TypeInfo; }
static SYCLUniqueStableNameExpr *
Create(const ASTContext &Ctx, SourceLocation OpLoc, SourceLocation LParen,
SourceLocation RParen, TypeSourceInfo *TSI);
static SYCLUniqueStableNameExpr *CreateEmpty(const ASTContext &Ctx);
SourceLocation getBeginLoc() const { return getLocation(); }
SourceLocation getEndLoc() const { return RParen; }
SourceLocation getLocation() const { return OpLoc; }
SourceLocation getLParenLocation() const { return LParen; }
SourceLocation getRParenLocation() const { return RParen; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == SYCLUniqueStableNameExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
// Convenience function to generate the name of the currently stored type.
std::string ComputeName(ASTContext &Context) const;
// Get the generated name of the type. Note that this only works after all
// kernels have been instantiated.
static std::string ComputeName(ASTContext &Context, QualType Ty);
};
/// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
/// AST node is only formed if full location information is requested.
class ParenExpr : public Expr {
SourceLocation L, R;
Stmt *Val;
public:
ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
: Expr(ParenExprClass, val->getType(), val->getValueKind(),
val->getObjectKind()),
L(l), R(r), Val(val) {
setDependence(computeDependence(this));
}
/// Construct an empty parenthesized expression.
explicit ParenExpr(EmptyShell Empty)
: Expr(ParenExprClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
SourceLocation getBeginLoc() const LLVM_READONLY { return L; }
SourceLocation getEndLoc() const LLVM_READONLY { return R; }
/// Get the location of the left parentheses '('.
SourceLocation getLParen() const { return L; }
void setLParen(SourceLocation Loc) { L = Loc; }
/// Get the location of the right parentheses ')'.
SourceLocation getRParen() const { return R; }
void setRParen(SourceLocation Loc) { R = Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ParenExprClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
};
/// UnaryOperator - This represents the unary-expression's (except sizeof and
/// alignof), the postinc/postdec operators from postfix-expression, and various
/// extensions.
///
/// Notes on various nodes:
///
/// Real/Imag - These return the real/imag part of a complex operand. If
/// applied to a non-complex value, the former returns its operand and the
/// later returns zero in the type of the operand.
///
class UnaryOperator final
: public Expr,
private llvm::TrailingObjects<UnaryOperator, FPOptionsOverride> {
Stmt *Val;
size_t numTrailingObjects(OverloadToken<FPOptionsOverride>) const {
return UnaryOperatorBits.HasFPFeatures ? 1 : 0;
}
FPOptionsOverride &getTrailingFPFeatures() {
assert(UnaryOperatorBits.HasFPFeatures);
return *getTrailingObjects<FPOptionsOverride>();
}
const FPOptionsOverride &getTrailingFPFeatures() const {
assert(UnaryOperatorBits.HasFPFeatures);
return *getTrailingObjects<FPOptionsOverride>();
}
public:
typedef UnaryOperatorKind Opcode;
protected:
UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, QualType type,
ExprValueKind VK, ExprObjectKind OK, SourceLocation l,
bool CanOverflow, FPOptionsOverride FPFeatures);
/// Build an empty unary operator.
explicit UnaryOperator(bool HasFPFeatures, EmptyShell Empty)
: Expr(UnaryOperatorClass, Empty) {
UnaryOperatorBits.Opc = UO_AddrOf;
UnaryOperatorBits.HasFPFeatures = HasFPFeatures;
}
public:
static UnaryOperator *CreateEmpty(const ASTContext &C, bool hasFPFeatures);
static UnaryOperator *Create(const ASTContext &C, Expr *input, Opcode opc,
QualType type, ExprValueKind VK,
ExprObjectKind OK, SourceLocation l,
bool CanOverflow, FPOptionsOverride FPFeatures);
Opcode getOpcode() const {
return static_cast<Opcode>(UnaryOperatorBits.Opc);
}
void setOpcode(Opcode Opc) { UnaryOperatorBits.Opc = Opc; }
Expr *getSubExpr() const { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
/// getOperatorLoc - Return the location of the operator.
SourceLocation getOperatorLoc() const { return UnaryOperatorBits.Loc; }
void setOperatorLoc(SourceLocation L) { UnaryOperatorBits.Loc = L; }
/// Returns true if the unary operator can cause an overflow. For instance,
/// signed int i = INT_MAX; i++;
/// signed char c = CHAR_MAX; c++;
/// Due to integer promotions, c++ is promoted to an int before the postfix
/// increment, and the result is an int that cannot overflow. However, i++
/// can overflow.
bool canOverflow() const { return UnaryOperatorBits.CanOverflow; }
void setCanOverflow(bool C) { UnaryOperatorBits.CanOverflow = C; }
// Get the FP contractability status of this operator. Only meaningful for
// operations on floating point types.
bool isFPContractableWithinStatement(const LangOptions &LO) const {
return getFPFeaturesInEffect(LO).allowFPContractWithinStatement();
}
// Get the FENV_ACCESS status of this operator. Only meaningful for
// operations on floating point types.
bool isFEnvAccessOn(const LangOptions &LO) const {
return getFPFeaturesInEffect(LO).getAllowFEnvAccess();
}
/// isPostfix - Return true if this is a postfix operation, like x++.
static bool isPostfix(Opcode Op) {
return Op == UO_PostInc || Op == UO_PostDec;
}
/// isPrefix - Return true if this is a prefix operation, like --x.
static bool isPrefix(Opcode Op) {
return Op == UO_PreInc || Op == UO_PreDec;
}
bool isPrefix() const { return isPrefix(getOpcode()); }
bool isPostfix() const { return isPostfix(getOpcode()); }
static bool isIncrementOp(Opcode Op) {
return Op == UO_PreInc || Op == UO_PostInc;
}
bool isIncrementOp() const {
return isIncrementOp(getOpcode());
}
static bool isDecrementOp(Opcode Op) {
return Op == UO_PreDec || Op == UO_PostDec;
}
bool isDecrementOp() const {
return isDecrementOp(getOpcode());
}
static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
bool isIncrementDecrementOp() const {
return isIncrementDecrementOp(getOpcode());
}
static bool isArithmeticOp(Opcode Op) {
return Op >= UO_Plus && Op <= UO_LNot;
}
bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++"
static StringRef getOpcodeStr(Opcode Op);
/// Retrieve the unary opcode that corresponds to the given
/// overloaded operator.
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
/// Retrieve the overloaded operator kind that corresponds to
/// the given unary opcode.
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
SourceLocation getBeginLoc() const LLVM_READONLY {
return isPostfix() ? Val->getBeginLoc() : getOperatorLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return isPostfix() ? getOperatorLoc() : Val->getEndLoc();
}
SourceLocation getExprLoc() const { return getOperatorLoc(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryOperatorClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
/// Is FPFeatures in Trailing Storage?
bool hasStoredFPFeatures() const { return UnaryOperatorBits.HasFPFeatures; }
/// Get FPFeatures from trailing storage.
FPOptionsOverride getStoredFPFeatures() const {
return getTrailingFPFeatures();
}
protected:
/// Set FPFeatures in trailing storage, used only by Serialization
void setStoredFPFeatures(FPOptionsOverride F) { getTrailingFPFeatures() = F; }
public:
// Get the FP features status of this operator. Only meaningful for
// operations on floating point types.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const {
if (UnaryOperatorBits.HasFPFeatures)
return getStoredFPFeatures().applyOverrides(LO);
return FPOptions::defaultWithoutTrailingStorage(LO);
}
FPOptionsOverride getFPOptionsOverride() const {
if (UnaryOperatorBits.HasFPFeatures)
return getStoredFPFeatures();
return FPOptionsOverride();
}
friend TrailingObjects;
friend class ASTReader;
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Helper class for OffsetOfExpr.
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
class OffsetOfNode {
public:
/// The kind of offsetof node we have.
enum Kind {
/// An index into an array.
Array = 0x00,
/// A field.
Field = 0x01,
/// A field in a dependent type, known only by its name.
Identifier = 0x02,
/// An implicit indirection through a C++ base class, when the
/// field found is in a base class.
Base = 0x03
};
private:
enum { MaskBits = 2, Mask = 0x03 };
/// The source range that covers this part of the designator.
SourceRange Range;
/// The data describing the designator, which comes in three
/// different forms, depending on the lower two bits.
/// - An unsigned index into the array of Expr*'s stored after this node
/// in memory, for [constant-expression] designators.
/// - A FieldDecl*, for references to a known field.
/// - An IdentifierInfo*, for references to a field with a given name
/// when the class type is dependent.
/// - A CXXBaseSpecifier*, for references that look at a field in a
/// base class.
uintptr_t Data;
public:
/// Create an offsetof node that refers to an array element.
OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
SourceLocation RBracketLoc)
: Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}
/// Create an offsetof node that refers to a field.
OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field, SourceLocation NameLoc)
: Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}
/// Create an offsetof node that refers to an identifier.
OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
SourceLocation NameLoc)
: Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}
/// Create an offsetof node that refers into a C++ base class.
explicit OffsetOfNode(const CXXBaseSpecifier *Base)
: Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
/// Determine what kind of offsetof node this is.
Kind getKind() const { return static_cast<Kind>(Data & Mask); }
/// For an array element node, returns the index into the array
/// of expressions.
unsigned getArrayExprIndex() const {
assert(getKind() == Array);
return Data >> 2;
}
/// For a field offsetof node, returns the field.
FieldDecl *getField() const {
assert(getKind() == Field);
return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
}
/// For a field or identifier offsetof node, returns the name of
/// the field.
IdentifierInfo *getFieldName() const;
/// For a base class node, returns the base specifier.
CXXBaseSpecifier *getBase() const {
assert(getKind() == Base);
return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
}
/// Retrieve the source range that covers this offsetof node.
///
/// For an array element node, the source range contains the locations of
/// the square brackets. For a field or identifier node, the source range
/// contains the location of the period (if there is one) and the
/// identifier.
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
};
/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
/// offsetof(record-type, member-designator). For example, given:
/// @code
/// struct S {
/// float f;
/// double d;
/// };
/// struct T {
/// int i;
/// struct S s[10];
/// };
/// @endcode
/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
class OffsetOfExpr final
: public Expr,
private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
SourceLocation OperatorLoc, RParenLoc;
// Base type;
TypeSourceInfo *TSInfo;
// Number of sub-components (i.e. instances of OffsetOfNode).
unsigned NumComps;
// Number of sub-expressions (i.e. array subscript expressions).
unsigned NumExprs;
size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
return NumComps;
}
OffsetOfExpr(const ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
SourceLocation RParenLoc);
explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
: Expr(OffsetOfExprClass, EmptyShell()),
TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
public:
static OffsetOfExpr *Create(const ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps,
ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
static OffsetOfExpr *CreateEmpty(const ASTContext &C,
unsigned NumComps, unsigned NumExprs);
/// getOperatorLoc - Return the location of the operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
/// Return the location of the right parentheses.
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation R) { RParenLoc = R; }
TypeSourceInfo *getTypeSourceInfo() const {
return TSInfo;
}
void setTypeSourceInfo(TypeSourceInfo *tsi) {
TSInfo = tsi;
}
const OffsetOfNode &getComponent(unsigned Idx) const {
assert(Idx < NumComps && "Subscript out of range");
return getTrailingObjects<OffsetOfNode>()[Idx];
}
void setComponent(unsigned Idx, OffsetOfNode ON) {
assert(Idx < NumComps && "Subscript out of range");
getTrailingObjects<OffsetOfNode>()[Idx] = ON;
}
unsigned getNumComponents() const {
return NumComps;
}
Expr* getIndexExpr(unsigned Idx) {
assert(Idx < NumExprs && "Subscript out of range");
return getTrailingObjects<Expr *>()[Idx];
}
const Expr *getIndexExpr(unsigned Idx) const {
assert(Idx < NumExprs && "Subscript out of range");
return getTrailingObjects<Expr *>()[Idx];
}
void setIndexExpr(unsigned Idx, Expr* E) {
assert(Idx < NumComps && "Subscript out of range");
getTrailingObjects<Expr *>()[Idx] = E;
}
unsigned getNumExpressions() const {
return NumExprs;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return OperatorLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == OffsetOfExprClass;
}
// Iterators
child_range children() {
Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
return child_range(begin, begin + NumExprs);
}
const_child_range children() const {
Stmt *const *begin =
reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>());
return const_child_range(begin, begin + NumExprs);
}
friend TrailingObjects;
};
/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
/// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and
/// vec_step (OpenCL 1.1 6.11.12).
class UnaryExprOrTypeTraitExpr : public Expr {
union {
TypeSourceInfo *Ty;
Stmt *Ex;
} Argument;
SourceLocation OpLoc, RParenLoc;
public:
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
QualType resultType, SourceLocation op,
SourceLocation rp)
: Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue,
OK_Ordinary),
OpLoc(op), RParenLoc(rp) {
assert(ExprKind <= UETT_Last && "invalid enum value!");
UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
assert(static_cast<unsigned>(ExprKind) ==
UnaryExprOrTypeTraitExprBits.Kind &&
"UnaryExprOrTypeTraitExprBits.Kind overflow!");
UnaryExprOrTypeTraitExprBits.IsType = true;
Argument.Ty = TInfo;
setDependence(computeDependence(this));
}
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
QualType resultType, SourceLocation op,
SourceLocation rp);
/// Construct an empty sizeof/alignof expression.
explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
: Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
UnaryExprOrTypeTrait getKind() const {
return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
}
void setKind(UnaryExprOrTypeTrait K) {
assert(K <= UETT_Last && "invalid enum value!");
UnaryExprOrTypeTraitExprBits.Kind = K;
assert(static_cast<unsigned>(K) == UnaryExprOrTypeTraitExprBits.Kind &&
"UnaryExprOrTypeTraitExprBits.Kind overflow!");
}
bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
QualType getArgumentType() const {
return getArgumentTypeInfo()->getType();
}
TypeSourceInfo *getArgumentTypeInfo() const {
assert(isArgumentType() && "calling getArgumentType() when arg is expr");
return Argument.Ty;
}
Expr *getArgumentExpr() {
assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
return static_cast<Expr*>(Argument.Ex);
}
const Expr *getArgumentExpr() const {
return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
}
void setArgument(Expr *E) {
Argument.Ex = E;
UnaryExprOrTypeTraitExprBits.IsType = false;
}
void setArgument(TypeSourceInfo *TInfo) {
Argument.Ty = TInfo;
UnaryExprOrTypeTraitExprBits.IsType = true;
}
/// Gets the argument type, or the type of the argument expression, whichever
/// is appropriate.
QualType getTypeOfArgument() const {
return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
}
SourceLocation getOperatorLoc() const { return OpLoc; }
void setOperatorLoc(SourceLocation L) { OpLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return OpLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
}
// Iterators
child_range children();
const_child_range children() const;
};
//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//
/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
class ArraySubscriptExpr : public Expr {
enum { LHS, RHS, END_EXPR };
Stmt *SubExprs[END_EXPR];
bool lhsIsBase() const { return getRHS()->getType()->isIntegerType(); }
public:
ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t, ExprValueKind VK,
ExprObjectKind OK, SourceLocation rbracketloc)
: Expr(ArraySubscriptExprClass, t, VK, OK) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
ArrayOrMatrixSubscriptExprBits.RBracketLoc = rbracketloc;
setDependence(computeDependence(this));
}
/// Create an empty array subscript expression.
explicit ArraySubscriptExpr(EmptyShell Shell)
: Expr(ArraySubscriptExprClass, Shell) { }
/// An array access can be written A[4] or 4[A] (both are equivalent).
/// - getBase() and getIdx() always present the normalized view: A[4].
/// In this case getBase() returns "A" and getIdx() returns "4".
/// - getLHS() and getRHS() present the syntactic view. e.g. for
/// 4[A] getLHS() returns "4".
/// Note: Because vector element access is also written A[4] we must
/// predicate the format conversion in getBase and getIdx only on the
/// the type of the RHS, as it is possible for the LHS to be a vector of
/// integer type
Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
Expr *getBase() { return lhsIsBase() ? getLHS() : getRHS(); }
const Expr *getBase() const { return lhsIsBase() ? getLHS() : getRHS(); }
Expr *getIdx() { return lhsIsBase() ? getRHS() : getLHS(); }
const Expr *getIdx() const { return lhsIsBase() ? getRHS() : getLHS(); }
SourceLocation getBeginLoc() const LLVM_READONLY {
return getLHS()->getBeginLoc();
}
SourceLocation getEndLoc() const { return getRBracketLoc(); }
SourceLocation getRBracketLoc() const {
return ArrayOrMatrixSubscriptExprBits.RBracketLoc;
}
void setRBracketLoc(SourceLocation L) {
ArrayOrMatrixSubscriptExprBits.RBracketLoc = L;
}
SourceLocation getExprLoc() const LLVM_READONLY {
return getBase()->getExprLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ArraySubscriptExprClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
};
/// MatrixSubscriptExpr - Matrix subscript expression for the MatrixType
/// extension.
/// MatrixSubscriptExpr can be either incomplete (only Base and RowIdx are set
/// so far, the type is IncompleteMatrixIdx) or complete (Base, RowIdx and
/// ColumnIdx refer to valid expressions). Incomplete matrix expressions only
/// exist during the initial construction of the AST.
class MatrixSubscriptExpr : public Expr {
enum { BASE, ROW_IDX, COLUMN_IDX, END_EXPR };
Stmt *SubExprs[END_EXPR];
public:
MatrixSubscriptExpr(Expr *Base, Expr *RowIdx, Expr *ColumnIdx, QualType T,
SourceLocation RBracketLoc)
: Expr(MatrixSubscriptExprClass, T, Base->getValueKind(),
OK_MatrixComponent) {
SubExprs[BASE] = Base;
SubExprs[ROW_IDX] = RowIdx;
SubExprs[COLUMN_IDX] = ColumnIdx;
ArrayOrMatrixSubscriptExprBits.RBracketLoc = RBracketLoc;
setDependence(computeDependence(this));
}
/// Create an empty matrix subscript expression.
explicit MatrixSubscriptExpr(EmptyShell Shell)
: Expr(MatrixSubscriptExprClass, Shell) {}
bool isIncomplete() const {
bool IsIncomplete = hasPlaceholderType(BuiltinType::IncompleteMatrixIdx);
assert((SubExprs[COLUMN_IDX] || IsIncomplete) &&
"expressions without column index must be marked as incomplete");
return IsIncomplete;
}
Expr *getBase() { return cast<Expr>(SubExprs[BASE]); }
const Expr *getBase() const { return cast<Expr>(SubExprs[BASE]); }
void setBase(Expr *E) { SubExprs[BASE] = E; }
Expr *getRowIdx() { return cast<Expr>(SubExprs[ROW_IDX]); }
const Expr *getRowIdx() const { return cast<Expr>(SubExprs[ROW_IDX]); }
void setRowIdx(Expr *E) { SubExprs[ROW_IDX] = E; }
Expr *getColumnIdx() { return cast_or_null<Expr>(SubExprs[COLUMN_IDX]); }
const Expr *getColumnIdx() const {
assert(!isIncomplete() &&
"cannot get the column index of an incomplete expression");
return cast<Expr>(SubExprs[COLUMN_IDX]);
}
void setColumnIdx(Expr *E) { SubExprs[COLUMN_IDX] = E; }
SourceLocation getBeginLoc() const LLVM_READONLY {
return getBase()->getBeginLoc();
}
SourceLocation getEndLoc() const { return getRBracketLoc(); }
SourceLocation getExprLoc() const LLVM_READONLY {
return getBase()->getExprLoc();
}
SourceLocation getRBracketLoc() const {
return ArrayOrMatrixSubscriptExprBits.RBracketLoc;
}
void setRBracketLoc(SourceLocation L) {
ArrayOrMatrixSubscriptExprBits.RBracketLoc = L;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == MatrixSubscriptExprClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
};
/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
/// while its subclasses may represent alternative syntax that (semantically)
/// results in a function call. For example, CXXOperatorCallExpr is
/// a subclass for overloaded operator calls that use operator syntax, e.g.,
/// "str1 + str2" to resolve to a function call.
class CallExpr : public Expr {
enum { FN = 0, PREARGS_START = 1 };
/// The number of arguments in the call expression.
unsigned NumArgs;
/// The location of the right parenthese. This has a different meaning for
/// the derived classes of CallExpr.
SourceLocation RParenLoc;
// CallExpr store some data in trailing objects. However since CallExpr
// is used a base of other expression classes we cannot use
// llvm::TrailingObjects. Instead we manually perform the pointer arithmetic
// and casts.
//
// The trailing objects are in order:
//
// * A single "Stmt *" for the callee expression.
//
// * An array of getNumPreArgs() "Stmt *" for the pre-argument expressions.
//
// * An array of getNumArgs() "Stmt *" for the argument expressions.
//
// * An optional of type FPOptionsOverride.
//
// Note that we store the offset in bytes from the this pointer to the start
// of the trailing objects. It would be perfectly possible to compute it
// based on the dynamic kind of the CallExpr. However 1.) we have plenty of
// space in the bit-fields of Stmt. 2.) It was benchmarked to be faster to
// compute this once and then load the offset from the bit-fields of Stmt,
// instead of re-computing the offset each time the trailing objects are
// accessed.
/// Return a pointer to the start of the trailing array of "Stmt *".
Stmt **getTrailingStmts() {
return reinterpret_cast<Stmt **>(reinterpret_cast<char *>(this) +
CallExprBits.OffsetToTrailingObjects);
}
Stmt *const *getTrailingStmts() const {
return const_cast<CallExpr *>(this)->getTrailingStmts();
}
/// Map a statement class to the appropriate offset in bytes from the
/// this pointer to the trailing objects.
static unsigned offsetToTrailingObjects(StmtClass SC);
unsigned getSizeOfTrailingStmts() const {
return (1 + getNumPreArgs() + getNumArgs()) * sizeof(Stmt *);
}
size_t getOffsetOfTrailingFPFeatures() const {
assert(hasStoredFPFeatures());
return CallExprBits.OffsetToTrailingObjects + getSizeOfTrailingStmts();
}
public:
enum class ADLCallKind : bool { NotADL, UsesADL };
static constexpr ADLCallKind NotADL = ADLCallKind::NotADL;
static constexpr ADLCallKind UsesADL = ADLCallKind::UsesADL;
protected:
/// Build a call expression, assuming that appropriate storage has been
/// allocated for the trailing objects.
CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
unsigned MinNumArgs, ADLCallKind UsesADL);
/// Build an empty call expression, for deserialization.
CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
bool hasFPFeatures, EmptyShell Empty);
/// Return the size in bytes needed for the trailing objects.
/// Used by the derived classes to allocate the right amount of storage.
static unsigned sizeOfTrailingObjects(unsigned NumPreArgs, unsigned NumArgs,
bool HasFPFeatures) {
return (1 + NumPreArgs + NumArgs) * sizeof(Stmt *) +
HasFPFeatures * sizeof(FPOptionsOverride);
}
Stmt *getPreArg(unsigned I) {
assert(I < getNumPreArgs() && "Prearg access out of range!");
return getTrailingStmts()[PREARGS_START + I];
}
const Stmt *getPreArg(unsigned I) const {
assert(I < getNumPreArgs() && "Prearg access out of range!");
return getTrailingStmts()[PREARGS_START + I];
}
void setPreArg(unsigned I, Stmt *PreArg) {
assert(I < getNumPreArgs() && "Prearg access out of range!");
getTrailingStmts()[PREARGS_START + I] = PreArg;
}
unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
/// Return a pointer to the trailing FPOptions
FPOptionsOverride *getTrailingFPFeatures() {
assert(hasStoredFPFeatures());
return reinterpret_cast<FPOptionsOverride *>(
reinterpret_cast<char *>(this) + CallExprBits.OffsetToTrailingObjects +
getSizeOfTrailingStmts());
}
const FPOptionsOverride *getTrailingFPFeatures() const {
assert(hasStoredFPFeatures());
return reinterpret_cast<const FPOptionsOverride *>(
reinterpret_cast<const char *>(this) +
CallExprBits.OffsetToTrailingObjects + getSizeOfTrailingStmts());
}
public:
/// Create a call expression.
/// \param Fn The callee expression,
/// \param Args The argument array,
/// \param Ty The type of the call expression (which is *not* the return
/// type in general),
/// \param VK The value kind of the call expression (lvalue, rvalue, ...),
/// \param RParenLoc The location of the right parenthesis in the call
/// expression.
/// \param FPFeatures Floating-point features associated with the call,
/// \param MinNumArgs Specifies the minimum number of arguments. The actual
/// number of arguments will be the greater of Args.size()
/// and MinNumArgs. This is used in a few places to allocate
/// enough storage for the default arguments.
/// \param UsesADL Specifies whether the callee was found through
/// argument-dependent lookup.
///
/// Note that you can use CreateTemporary if you need a temporary call
/// expression on the stack.
static CallExpr *Create(const ASTContext &Ctx, Expr *Fn,
ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
SourceLocation RParenLoc,
FPOptionsOverride FPFeatures, unsigned MinNumArgs = 0,
ADLCallKind UsesADL = NotADL);
/// Create a temporary call expression with no arguments in the memory
/// pointed to by Mem. Mem must points to at least sizeof(CallExpr)
/// + sizeof(Stmt *) bytes of storage, aligned to alignof(CallExpr):
///
/// \code{.cpp}
/// alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
/// CallExpr *TheCall = CallExpr::CreateTemporary(Buffer, etc);
/// \endcode
static CallExpr *CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
ExprValueKind VK, SourceLocation RParenLoc,
ADLCallKind UsesADL = NotADL);
/// Create an empty call expression, for deserialization.
static CallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
bool HasFPFeatures, EmptyShell Empty);
Expr *getCallee() { return cast<Expr>(getTrailingStmts()[FN]); }
const Expr *getCallee() const { return cast<Expr>(getTrailingStmts()[FN]); }
void setCallee(Expr *F) { getTrailingStmts()[FN] = F; }
ADLCallKind getADLCallKind() const {
return static_cast<ADLCallKind>(CallExprBits.UsesADL);
}
void setADLCallKind(ADLCallKind V = UsesADL) {
CallExprBits.UsesADL = static_cast<bool>(V);
}
bool usesADL() const { return getADLCallKind() == UsesADL; }
bool hasStoredFPFeatures() const { return CallExprBits.HasFPFeatures; }
Decl *getCalleeDecl() { return getCallee()->getReferencedDeclOfCallee(); }
const Decl *getCalleeDecl() const {
return getCallee()->getReferencedDeclOfCallee();
}
/// If the callee is a FunctionDecl, return it. Otherwise return null.
FunctionDecl *getDirectCallee() {
return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
}
const FunctionDecl *getDirectCallee() const {
return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
}
/// getNumArgs - Return the number of actual arguments to this call.
unsigned getNumArgs() const { return NumArgs; }
/// Retrieve the call arguments.
Expr **getArgs() {
return reinterpret_cast<Expr **>(getTrailingStmts() + PREARGS_START +
getNumPreArgs());
}
const Expr *const *getArgs() const {
return reinterpret_cast<const Expr *const *>(
getTrailingStmts() + PREARGS_START + getNumPreArgs());
}
/// getArg - Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < getNumArgs() && "Arg access out of range!");
return getArgs()[Arg];
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < getNumArgs() && "Arg access out of range!");
return getArgs()[Arg];
}
/// setArg - Set the specified argument.
/// ! the dependence bits might be stale after calling this setter, it is
/// *caller*'s responsibility to recompute them by calling
/// computeDependence().
void setArg(unsigned Arg, Expr *ArgExpr) {
assert(Arg < getNumArgs() && "Arg access out of range!");
getArgs()[Arg] = ArgExpr;
}
/// Compute and set dependence bits.
void computeDependence() {
setDependence(clang::computeDependence(
this, llvm::ArrayRef(
reinterpret_cast<Expr **>(getTrailingStmts() + PREARGS_START),
getNumPreArgs())));
}
/// Reduce the number of arguments in this call expression. This is used for
/// example during error recovery to drop extra arguments. There is no way
/// to perform the opposite because: 1.) We don't track how much storage
/// we have for the argument array 2.) This would potentially require growing
/// the argument array, something we cannot support since the arguments are
/// stored in a trailing array.
void shrinkNumArgs(unsigned NewNumArgs) {
assert((NewNumArgs <= getNumArgs()) &&
"shrinkNumArgs cannot increase the number of arguments!");
NumArgs = NewNumArgs;
}
/// Bluntly set a new number of arguments without doing any checks whatsoever.
/// Only used during construction of a CallExpr in a few places in Sema.
/// FIXME: Find a way to remove it.
void setNumArgsUnsafe(unsigned NewNumArgs) { NumArgs = NewNumArgs; }
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
typedef llvm::iterator_range<arg_iterator> arg_range;
typedef llvm::iterator_range<const_arg_iterator> const_arg_range;
arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
const_arg_range arguments() const {
return const_arg_range(arg_begin(), arg_end());
}
arg_iterator arg_begin() {
return getTrailingStmts() + PREARGS_START + getNumPreArgs();
}
arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
const_arg_iterator arg_begin() const {
return getTrailingStmts() + PREARGS_START + getNumPreArgs();
}
const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
/// This method provides fast access to all the subexpressions of
/// a CallExpr without going through the slower virtual child_iterator
/// interface. This provides efficient reverse iteration of the
/// subexpressions. This is currently used for CFG construction.
ArrayRef<Stmt *> getRawSubExprs() {
return llvm::ArrayRef(getTrailingStmts(),
PREARGS_START + getNumPreArgs() + getNumArgs());
}
/// Get FPOptionsOverride from trailing storage.
FPOptionsOverride getStoredFPFeatures() const {
assert(hasStoredFPFeatures());
return *getTrailingFPFeatures();
}
/// Set FPOptionsOverride in trailing storage. Used only by Serialization.
void setStoredFPFeatures(FPOptionsOverride F) {
assert(hasStoredFPFeatures());
*getTrailingFPFeatures() = F;
}
// Get the FP features status of this operator. Only meaningful for
// operations on floating point types.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const {
if (hasStoredFPFeatures())
return getStoredFPFeatures().applyOverrides(LO);
return FPOptions::defaultWithoutTrailingStorage(LO);
}
FPOptionsOverride getFPFeatures() const {
if (hasStoredFPFeatures())
return getStoredFPFeatures();
return FPOptionsOverride();
}
/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
/// of the callee. If not, return 0.
unsigned getBuiltinCallee() const;
/// Returns \c true if this is a call to a builtin which does not
/// evaluate side-effects within its arguments.
bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
/// getCallReturnType - Get the return type of the call expr. This is not
/// always the type of the expr itself, if the return type is a reference
/// type.
QualType getCallReturnType(const ASTContext &Ctx) const;
/// Returns the WarnUnusedResultAttr that is either declared on the called
/// function, or its return type declaration.
const Attr *getUnusedResultAttr(const ASTContext &Ctx) const;
/// Returns true if this call expression should warn on unused results.
bool hasUnusedResultAttr(const ASTContext &Ctx) const {
return getUnusedResultAttr(Ctx) != nullptr;
}
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
/// Return true if this is a call to __assume() or __builtin_assume() with
/// a non-value-dependent constant parameter evaluating as false.
bool isBuiltinAssumeFalse(const ASTContext &Ctx) const;
/// Used by Sema to implement MSVC-compatible delayed name lookup.
/// (Usually Exprs themselves should set dependence).
void markDependentForPostponedNameLookup() {
setDependence(getDependence() | ExprDependence::TypeValueInstantiation);
}
bool isCallToStdMove() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstCallExprConstant &&
T->getStmtClass() <= lastCallExprConstant;
}
// Iterators
child_range children() {
return child_range(getTrailingStmts(), getTrailingStmts() + PREARGS_START +
getNumPreArgs() + getNumArgs());
}
const_child_range children() const {
return const_child_range(getTrailingStmts(),
getTrailingStmts() + PREARGS_START +
getNumPreArgs() + getNumArgs());
}
};
/// Extra data stored in some MemberExpr objects.
struct MemberExprNameQualifier {
/// The nested-name-specifier that qualifies the name, including
/// source-location information.
NestedNameSpecifierLoc QualifierLoc;
/// The DeclAccessPair through which the MemberDecl was found due to
/// name qualifiers.
DeclAccessPair FoundDecl;
};
/// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
///
class MemberExpr final
: public Expr,
private llvm::TrailingObjects<MemberExpr, MemberExprNameQualifier,
ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc> {
friend class ASTReader;
friend class ASTStmtReader;
friend class ASTStmtWriter;
friend TrailingObjects;
/// Base - the expression for the base pointer or structure references. In
/// X.F, this is "X".
Stmt *Base;
/// MemberDecl - This is the decl being referenced by the field/member name.
/// In X.F, this is the decl referenced by F.
ValueDecl *MemberDecl;
/// MemberDNLoc - Provides source/type location info for the
/// declaration name embedded in MemberDecl.
DeclarationNameLoc MemberDNLoc;
/// MemberLoc - This is the location of the member name.
SourceLocation MemberLoc;
size_t numTrailingObjects(OverloadToken<MemberExprNameQualifier>) const {
return hasQualifierOrFoundDecl();
}
size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
return hasTemplateKWAndArgsInfo();
}
bool hasQualifierOrFoundDecl() const {
return MemberExprBits.HasQualifierOrFoundDecl;
}
bool hasTemplateKWAndArgsInfo() const {
return MemberExprBits.HasTemplateKWAndArgsInfo;
}
MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
ValueDecl *MemberDecl, const DeclarationNameInfo &NameInfo,
QualType T, ExprValueKind VK, ExprObjectKind OK,
NonOdrUseReason NOUR);
MemberExpr(EmptyShell Empty)
: Expr(MemberExprClass, Empty), Base(), MemberDecl() {}
public:
static MemberExpr *Create(const ASTContext &C, Expr *Base, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *MemberDecl,
DeclAccessPair FoundDecl,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs,
QualType T, ExprValueKind VK, ExprObjectKind OK,
NonOdrUseReason NOUR);
/// Create an implicit MemberExpr, with no location, qualifier, template
/// arguments, and so on. Suitable only for non-static member access.
static MemberExpr *CreateImplicit(const ASTContext &C, Expr *Base,
bool IsArrow, ValueDecl *MemberDecl,
QualType T, ExprValueKind VK,
ExprObjectKind OK) {
return Create(C, Base, IsArrow, SourceLocation(), NestedNameSpecifierLoc(),
SourceLocation(), MemberDecl,
DeclAccessPair::make(MemberDecl, MemberDecl->getAccess()),
DeclarationNameInfo(), nullptr, T, VK, OK, NOUR_None);
}
static MemberExpr *CreateEmpty(const ASTContext &Context, bool HasQualifier,
bool HasFoundDecl,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
void setBase(Expr *E) { Base = E; }
Expr *getBase() const { return cast<Expr>(Base); }
/// Retrieve the member declaration to which this expression refers.
///
/// The returned declaration will be a FieldDecl or (in C++) a VarDecl (for
/// static data members), a CXXMethodDecl, or an EnumConstantDecl.
ValueDecl *getMemberDecl() const { return MemberDecl; }
void setMemberDecl(ValueDecl *D);
/// Retrieves the declaration found by lookup.
DeclAccessPair getFoundDecl() const {
if (!hasQualifierOrFoundDecl())
return DeclAccessPair::make(getMemberDecl(),
getMemberDecl()->getAccess());
return getTrailingObjects<MemberExprNameQualifier>()->FoundDecl;
}
/// Determines whether this member expression actually had
/// a C++ nested-name-specifier prior to the name of the member, e.g.,
/// x->Base::foo.
bool hasQualifier() const { return getQualifier() != nullptr; }
/// If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name, with source-location
/// information.
NestedNameSpecifierLoc getQualifierLoc() const {
if (!hasQualifierOrFoundDecl())
return NestedNameSpecifierLoc();
return getTrailingObjects<MemberExprNameQualifier>()->QualifierLoc;
}
/// If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name. Otherwise, returns
/// NULL.
NestedNameSpecifier *getQualifier() const {
return getQualifierLoc().getNestedNameSpecifier();
}
/// Retrieve the location of the template keyword preceding
/// the member name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
}
/// Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the member name, if any.
SourceLocation getLAngleLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
}
/// Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the member name, if any.
SourceLocation getRAngleLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
}
/// Determines whether the member name was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether the member name was followed by an
/// explicit template argument list.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
if (hasExplicitTemplateArgs())
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
getTrailingObjects<TemplateArgumentLoc>(), List);
}
/// Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return nullptr;
return getTrailingObjects<TemplateArgumentLoc>();
}
/// Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return 0;
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
}
ArrayRef<TemplateArgumentLoc> template_arguments() const {
return {getTemplateArgs(), getNumTemplateArgs()};
}
/// Retrieve the member declaration name info.
DeclarationNameInfo getMemberNameInfo() const {
return DeclarationNameInfo(MemberDecl->getDeclName(),
MemberLoc, MemberDNLoc);
}
SourceLocation getOperatorLoc() const { return MemberExprBits.OperatorLoc; }
bool isArrow() const { return MemberExprBits.IsArrow; }
void setArrow(bool A) { MemberExprBits.IsArrow = A; }
/// getMemberLoc - Return the location of the "member", in X->F, it is the
/// location of 'F'.
SourceLocation getMemberLoc() const { return MemberLoc; }
void setMemberLoc(SourceLocation L) { MemberLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
/// Determine whether the base of this explicit is implicit.
bool isImplicitAccess() const {
return getBase() && getBase()->isImplicitCXXThis();
}
/// Returns true if this member expression refers to a method that
/// was resolved from an overloaded set having size greater than 1.
bool hadMultipleCandidates() const {
return MemberExprBits.HadMultipleCandidates;
}
/// Sets the flag telling whether this expression refers to
/// a method that was resolved from an overloaded set having size
/// greater than 1.
void setHadMultipleCandidates(bool V = true) {
MemberExprBits.HadMultipleCandidates = V;
}
/// Returns true if virtual dispatch is performed.
/// If the member access is fully qualified, (i.e. X::f()), virtual
/// dispatching is not performed. In -fapple-kext mode qualified
/// calls to virtual method will still go through the vtable.
bool performsVirtualDispatch(const LangOptions &LO) const {
return LO.AppleKext || !hasQualifier();
}
/// Is this expression a non-odr-use reference, and if so, why?
/// This is only meaningful if the named member is a static member.
NonOdrUseReason isNonOdrUse() const {
return static_cast<NonOdrUseReason>(MemberExprBits.NonOdrUseReason);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == MemberExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
const_child_range children() const {
return const_child_range(&Base, &Base + 1);
}
};
/// CompoundLiteralExpr - [C99 6.5.2.5]
///
class CompoundLiteralExpr : public Expr {
/// LParenLoc - If non-null, this is the location of the left paren in a
/// compound literal like "(int){4}". This can be null if this is a
/// synthesized compound expression.
SourceLocation LParenLoc;
/// The type as written. This can be an incomplete array type, in
/// which case the actual expression type will be different.
/// The int part of the pair stores whether this expr is file scope.
llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
Stmt *Init;
public:
CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
QualType T, ExprValueKind VK, Expr *init, bool fileScope)
: Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary),
LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {
setDependence(computeDependence(this));
}
/// Construct an empty compound literal.
explicit CompoundLiteralExpr(EmptyShell Empty)
: Expr(CompoundLiteralExprClass, Empty) { }
const Expr *getInitializer() const { return cast<Expr>(Init); }
Expr *getInitializer() { return cast<Expr>(Init); }
void setInitializer(Expr *E) { Init = E; }
bool isFileScope() const { return TInfoAndScope.getInt(); }
void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
TypeSourceInfo *getTypeSourceInfo() const {
return TInfoAndScope.getPointer();
}
void setTypeSourceInfo(TypeSourceInfo *tinfo) {
TInfoAndScope.setPointer(tinfo);
}
SourceLocation getBeginLoc() const LLVM_READONLY {
// FIXME: Init should never be null.
if (!Init)
return SourceLocation();
if (LParenLoc.isInvalid())
return Init->getBeginLoc();
return LParenLoc;
}
SourceLocation getEndLoc() const LLVM_READONLY {
// FIXME: Init should never be null.
if (!Init)
return SourceLocation();
return Init->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CompoundLiteralExprClass;
}
// Iterators
child_range children() { return child_range(&Init, &Init+1); }
const_child_range children() const {
return const_child_range(&Init, &Init + 1);
}
};
/// CastExpr - Base class for type casts, including both implicit
/// casts (ImplicitCastExpr) and explicit casts that have some
/// representation in the source code (ExplicitCastExpr's derived
/// classes).
class CastExpr : public Expr {
Stmt *Op;
bool CastConsistency() const;
const CXXBaseSpecifier * const *path_buffer() const {
return const_cast<CastExpr*>(this)->path_buffer();
}
CXXBaseSpecifier **path_buffer();
friend class ASTStmtReader;
protected:
CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
Expr *op, unsigned BasePathSize, bool HasFPFeatures)
: Expr(SC, ty, VK, OK_Ordinary), Op(op) {
CastExprBits.Kind = kind;
CastExprBits.PartOfExplicitCast = false;
CastExprBits.BasePathSize = BasePathSize;
assert((CastExprBits.BasePathSize == BasePathSize) &&
"BasePathSize overflow!");
assert(CastConsistency());
CastExprBits.HasFPFeatures = HasFPFeatures;
}
/// Construct an empty cast.
CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize,
bool HasFPFeatures)
: Expr(SC, Empty) {
CastExprBits.PartOfExplicitCast = false;
CastExprBits.BasePathSize = BasePathSize;
CastExprBits.HasFPFeatures = HasFPFeatures;
assert((CastExprBits.BasePathSize == BasePathSize) &&
"BasePathSize overflow!");
}
/// Return a pointer to the trailing FPOptions.
/// \pre hasStoredFPFeatures() == true
FPOptionsOverride *getTrailingFPFeatures();
const FPOptionsOverride *getTrailingFPFeatures() const {
return const_cast<CastExpr *>(this)->getTrailingFPFeatures();
}
public:
CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
void setCastKind(CastKind K) { CastExprBits.Kind = K; }
static const char *getCastKindName(CastKind CK);
const char *getCastKindName() const { return getCastKindName(getCastKind()); }
Expr *getSubExpr() { return cast<Expr>(Op); }
const Expr *getSubExpr() const { return cast<Expr>(Op); }
void setSubExpr(Expr *E) { Op = E; }
/// Retrieve the cast subexpression as it was written in the source
/// code, looking through any implicit casts or other intermediate nodes
/// introduced by semantic analysis.
Expr *getSubExprAsWritten();
const Expr *getSubExprAsWritten() const {
return const_cast<CastExpr *>(this)->getSubExprAsWritten();
}
/// If this cast applies a user-defined conversion, retrieve the conversion
/// function that it invokes.
NamedDecl *getConversionFunction() const;
typedef CXXBaseSpecifier **path_iterator;
typedef const CXXBaseSpecifier *const *path_const_iterator;
bool path_empty() const { return path_size() == 0; }
unsigned path_size() const { return CastExprBits.BasePathSize; }
path_iterator path_begin() { return path_buffer(); }
path_iterator path_end() { return path_buffer() + path_size(); }
path_const_iterator path_begin() const { return path_buffer(); }
path_const_iterator path_end() const { return path_buffer() + path_size(); }
llvm::iterator_range<path_iterator> path() {
return llvm::make_range(path_begin(), path_end());
}
llvm::iterator_range<path_const_iterator> path() const {
return llvm::make_range(path_begin(), path_end());
}
const FieldDecl *getTargetUnionField() const {
assert(getCastKind() == CK_ToUnion);
return getTargetFieldForToUnionCast(getType(), getSubExpr()->getType());
}
bool hasStoredFPFeatures() const { return CastExprBits.HasFPFeatures; }
/// Get FPOptionsOverride from trailing storage.
FPOptionsOverride getStoredFPFeatures() const {
assert(hasStoredFPFeatures());
return *getTrailingFPFeatures();
}
// Get the FP features status of this operation. Only meaningful for
// operations on floating point types.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const {
if (hasStoredFPFeatures())
return getStoredFPFeatures().applyOverrides(LO);
return FPOptions::defaultWithoutTrailingStorage(LO);
}
FPOptionsOverride getFPFeatures() const {
if (hasStoredFPFeatures())
return getStoredFPFeatures();
return FPOptionsOverride();
}
static const FieldDecl *getTargetFieldForToUnionCast(QualType unionType,
QualType opType);
static const FieldDecl *getTargetFieldForToUnionCast(const RecordDecl *RD,
QualType opType);
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstCastExprConstant &&
T->getStmtClass() <= lastCastExprConstant;
}
// Iterators
child_range children() { return child_range(&Op, &Op+1); }
const_child_range children() const { return const_child_range(&Op, &Op + 1); }
};
/// ImplicitCastExpr - Allows us to explicitly represent implicit type
/// conversions, which have no direct representation in the original
/// source code. For example: converting T[]->T*, void f()->void
/// (*f)(), float->double, short->int, etc.
///
/// In C, implicit casts always produce rvalues. However, in C++, an
/// implicit cast whose result is being bound to a reference will be
/// an lvalue or xvalue. For example:
///
/// @code
/// class Base { };
/// class Derived : public Base { };
/// Derived &&ref();
/// void f(Derived d) {
/// Base& b = d; // initializer is an ImplicitCastExpr
/// // to an lvalue of type Base
/// Base&& r = ref(); // initializer is an ImplicitCastExpr
/// // to an xvalue of type Base
/// }
/// @endcode
class ImplicitCastExpr final
: public CastExpr,
private llvm::TrailingObjects<ImplicitCastExpr, CXXBaseSpecifier *,
FPOptionsOverride> {
ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
unsigned BasePathLength, FPOptionsOverride FPO,
ExprValueKind VK)
: CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength,
FPO.requiresTrailingStorage()) {
setDependence(computeDependence(this));
if (hasStoredFPFeatures())
*getTrailingFPFeatures() = FPO;
}
/// Construct an empty implicit cast.
explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize,
bool HasFPFeatures)
: CastExpr(ImplicitCastExprClass, Shell, PathSize, HasFPFeatures) {}
unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const {
return path_size();
}
public:
enum OnStack_t { OnStack };
ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
ExprValueKind VK, FPOptionsOverride FPO)
: CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0,
FPO.requiresTrailingStorage()) {
if (hasStoredFPFeatures())
*getTrailingFPFeatures() = FPO;
}
bool isPartOfExplicitCast() const { return CastExprBits.PartOfExplicitCast; }
void setIsPartOfExplicitCast(bool PartOfExplicitCast) {
CastExprBits.PartOfExplicitCast = PartOfExplicitCast;
}
static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
CastKind Kind, Expr *Operand,
const CXXCastPath *BasePath,
ExprValueKind Cat, FPOptionsOverride FPO);
static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
unsigned PathSize, bool HasFPFeatures);
SourceLocation getBeginLoc() const LLVM_READONLY {
return getSubExpr()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getSubExpr()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImplicitCastExprClass;
}
friend TrailingObjects;
friend class CastExpr;
};
/// ExplicitCastExpr - An explicit cast written in the source
/// code.
///
/// This class is effectively an abstract class, because it provides
/// the basic representation of an explicitly-written cast without
/// specifying which kind of cast (C cast, functional cast, static
/// cast, etc.) was written; specific derived classes represent the
/// particular style of cast and its location information.
///
/// Unlike implicit casts, explicit cast nodes have two different
/// types: the type that was written into the source code, and the
/// actual type of the expression as determined by semantic
/// analysis. These types may differ slightly. For example, in C++ one
/// can cast to a reference type, which indicates that the resulting
/// expression will be an lvalue or xvalue. The reference type, however,
/// will not be used as the type of the expression.
class ExplicitCastExpr : public CastExpr {
/// TInfo - Source type info for the (written) type
/// this expression is casting to.
TypeSourceInfo *TInfo;
protected:
ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
CastKind kind, Expr *op, unsigned PathSize,
bool HasFPFeatures, TypeSourceInfo *writtenTy)
: CastExpr(SC, exprTy, VK, kind, op, PathSize, HasFPFeatures),
TInfo(writtenTy) {
setDependence(computeDependence(this));
}
/// Construct an empty explicit cast.
ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize,
bool HasFPFeatures)
: CastExpr(SC, Shell, PathSize, HasFPFeatures) {}
public:
/// getTypeInfoAsWritten - Returns the type source info for the type
/// that this expression is casting to.
TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
/// getTypeAsWritten - Returns the type that this expression is
/// casting to, as written in the source code.
QualType getTypeAsWritten() const { return TInfo->getType(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstExplicitCastExprConstant &&
T->getStmtClass() <= lastExplicitCastExprConstant;
}
};
/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
/// cast in C++ (C++ [expr.cast]), which uses the syntax
/// (Type)expr. For example: @c (int)f.
class CStyleCastExpr final
: public ExplicitCastExpr,
private llvm::TrailingObjects<CStyleCastExpr, CXXBaseSpecifier *,
FPOptionsOverride> {
SourceLocation LPLoc; // the location of the left paren
SourceLocation RPLoc; // the location of the right paren
CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
unsigned PathSize, FPOptionsOverride FPO,
TypeSourceInfo *writtenTy, SourceLocation l, SourceLocation r)
: ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
FPO.requiresTrailingStorage(), writtenTy),
LPLoc(l), RPLoc(r) {
if (hasStoredFPFeatures())
*getTrailingFPFeatures() = FPO;
}
/// Construct an empty C-style explicit cast.
explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize,
bool HasFPFeatures)
: ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize, HasFPFeatures) {}
unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const {
return path_size();
}
public:
static CStyleCastExpr *
Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind K,
Expr *Op, const CXXCastPath *BasePath, FPOptionsOverride FPO,
TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation R);
static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
unsigned PathSize, bool HasFPFeatures);
SourceLocation getLParenLoc() const { return LPLoc; }
void setLParenLoc(SourceLocation L) { LPLoc = L; }
SourceLocation getRParenLoc() const { return RPLoc; }
void setRParenLoc(SourceLocation L) { RPLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return LPLoc; }
SourceLocation getEndLoc() const LLVM_READONLY {
return getSubExpr()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CStyleCastExprClass;
}
friend TrailingObjects;
friend class CastExpr;
};
/// A builtin binary operation expression such as "x + y" or "x <= y".
///
/// This expression node kind describes a builtin binary operation,
/// such as "x + y" for integer values "x" and "y". The operands will
/// already have been converted to appropriate types (e.g., by
/// performing promotions or conversions).
///
/// In C++, where operators may be overloaded, a different kind of
/// expression node (CXXOperatorCallExpr) is used to express the
/// invocation of an overloaded operator with operator syntax. Within
/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
/// used to store an expression "x + y" depends on the subexpressions
/// for x and y. If neither x or y is type-dependent, and the "+"
/// operator resolves to a built-in operation, BinaryOperator will be
/// used to express the computation (x and y may still be
/// value-dependent). If either x or y is type-dependent, or if the
/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
/// be used to express the computation.
class BinaryOperator : public Expr {
enum { LHS, RHS, END_EXPR };
Stmt *SubExprs[END_EXPR];
public:
typedef BinaryOperatorKind Opcode;
protected:
size_t offsetOfTrailingStorage() const;
/// Return a pointer to the trailing FPOptions
FPOptionsOverride *getTrailingFPFeatures() {
assert(BinaryOperatorBits.HasFPFeatures);
return reinterpret_cast<FPOptionsOverride *>(
reinterpret_cast<char *>(this) + offsetOfTrailingStorage());
}
const FPOptionsOverride *getTrailingFPFeatures() const {
assert(BinaryOperatorBits.HasFPFeatures);
return reinterpret_cast<const FPOptionsOverride *>(
reinterpret_cast<const char *>(this) + offsetOfTrailingStorage());
}
/// Build a binary operator, assuming that appropriate storage has been
/// allocated for the trailing objects when needed.
BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, Opcode opc,
QualType ResTy, ExprValueKind VK, ExprObjectKind OK,
SourceLocation opLoc, FPOptionsOverride FPFeatures);
/// Construct an empty binary operator.
explicit BinaryOperator(EmptyShell Empty) : Expr(BinaryOperatorClass, Empty) {
BinaryOperatorBits.Opc = BO_Comma;
}
public:
static BinaryOperator *CreateEmpty(const ASTContext &C, bool hasFPFeatures);
static BinaryOperator *Create(const ASTContext &C, Expr *lhs, Expr *rhs,
Opcode opc, QualType ResTy, ExprValueKind VK,
ExprObjectKind OK, SourceLocation opLoc,
FPOptionsOverride FPFeatures);
SourceLocation getExprLoc() const { return getOperatorLoc(); }
SourceLocation getOperatorLoc() const { return BinaryOperatorBits.OpLoc; }
void setOperatorLoc(SourceLocation L) { BinaryOperatorBits.OpLoc = L; }
Opcode getOpcode() const {
return static_cast<Opcode>(BinaryOperatorBits.Opc);
}
void setOpcode(Opcode Opc) { BinaryOperatorBits.Opc = Opc; }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
SourceLocation getBeginLoc() const LLVM_READONLY {
return getLHS()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getRHS()->getEndLoc();
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
static StringRef getOpcodeStr(Opcode Op);
StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
/// Retrieve the binary opcode that corresponds to the given
/// overloaded operator.
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
/// Retrieve the overloaded operator kind that corresponds to
/// the given binary opcode.
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
/// predicates to categorize the respective opcodes.
static bool isPtrMemOp(Opcode Opc) {
return Opc == BO_PtrMemD || Opc == BO_PtrMemI;
}
bool isPtrMemOp() const { return isPtrMemOp(getOpcode()); }
static bool isMultiplicativeOp(Opcode Opc) {
return Opc >= BO_Mul && Opc <= BO_Rem;
}
bool isMultiplicativeOp() const { return isMultiplicativeOp(getOpcode()); }
static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
bool isShiftOp() const { return isShiftOp(getOpcode()); }
static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
static bool isComparisonOp(Opcode Opc) { return Opc >= BO_Cmp && Opc<=BO_NE; }
bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
static bool isCommaOp(Opcode Opc) { return Opc == BO_Comma; }
bool isCommaOp() const { return isCommaOp(getOpcode()); }
static Opcode negateComparisonOp(Opcode Opc) {
switch (Opc) {
default:
llvm_unreachable("Not a comparison operator.");
case BO_LT: return BO_GE;
case BO_GT: return BO_LE;
case BO_LE: return BO_GT;
case BO_GE: return BO_LT;
case BO_EQ: return BO_NE;
case BO_NE: return BO_EQ;
}
}
static Opcode reverseComparisonOp(Opcode Opc) {
switch (Opc) {
default:
llvm_unreachable("Not a comparison operator.");
case BO_LT: return BO_GT;
case BO_GT: return BO_LT;
case BO_LE: return BO_GE;
case BO_GE: return BO_LE;
case BO_EQ:
case BO_NE:
return Opc;
}
}
static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
static bool isAssignmentOp(Opcode Opc) {
return Opc >= BO_Assign && Opc <= BO_OrAssign;
}
bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
static bool isCompoundAssignmentOp(Opcode Opc) {
return Opc > BO_Assign && Opc <= BO_OrAssign;
}
bool isCompoundAssignmentOp() const {
return isCompoundAssignmentOp(getOpcode());
}
static Opcode getOpForCompoundAssignment(Opcode Opc) {
assert(isCompoundAssignmentOp(Opc));
if (Opc >= BO_AndAssign)
return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
else
return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
}
static bool isShiftAssignOp(Opcode Opc) {
return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
}
bool isShiftAssignOp() const {
return isShiftAssignOp(getOpcode());
}
// Return true if a binary operator using the specified opcode and operands
// would match the 'p = (i8*)nullptr + n' idiom for casting a pointer-sized
// integer to a pointer.
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc,
Expr *LHS, Expr *RHS);
static bool classof(const Stmt *S) {
return S->getStmtClass() >= firstBinaryOperatorConstant &&
S->getStmtClass() <= lastBinaryOperatorConstant;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
/// Set and fetch the bit that shows whether FPFeatures needs to be
/// allocated in Trailing Storage
void setHasStoredFPFeatures(bool B) { BinaryOperatorBits.HasFPFeatures = B; }
bool hasStoredFPFeatures() const { return BinaryOperatorBits.HasFPFeatures; }
/// Get FPFeatures from trailing storage
FPOptionsOverride getStoredFPFeatures() const {
assert(hasStoredFPFeatures());
return *getTrailingFPFeatures();
}
/// Set FPFeatures in trailing storage, used only by Serialization
void setStoredFPFeatures(FPOptionsOverride F) {
assert(BinaryOperatorBits.HasFPFeatures);
*getTrailingFPFeatures() = F;
}
// Get the FP features status of this operator. Only meaningful for
// operations on floating point types.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const {
if (BinaryOperatorBits.HasFPFeatures)
return getStoredFPFeatures().applyOverrides(LO);
return FPOptions::defaultWithoutTrailingStorage(LO);
}
// This is used in ASTImporter
FPOptionsOverride getFPFeatures() const {
if (BinaryOperatorBits.HasFPFeatures)
return getStoredFPFeatures();
return FPOptionsOverride();
}
// Get the FP contractability status of this operator. Only meaningful for
// operations on floating point types.
bool isFPContractableWithinStatement(const LangOptions &LO) const {
return getFPFeaturesInEffect(LO).allowFPContractWithinStatement();
}
// Get the FENV_ACCESS status of this operator. Only meaningful for
// operations on floating point types.
bool isFEnvAccessOn(const LangOptions &LO) const {
return getFPFeaturesInEffect(LO).getAllowFEnvAccess();
}
protected:
BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, Opcode opc,
QualType ResTy, ExprValueKind VK, ExprObjectKind OK,
SourceLocation opLoc, FPOptionsOverride FPFeatures,
bool dead2);
/// Construct an empty BinaryOperator, SC is CompoundAssignOperator.
BinaryOperator(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) {
BinaryOperatorBits.Opc = BO_MulAssign;
}
/// Return the size in bytes needed for the trailing objects.
/// Used to allocate the right amount of storage.
static unsigned sizeOfTrailingObjects(bool HasFPFeatures) {
return HasFPFeatures * sizeof(FPOptionsOverride);
}
};
/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
/// track of the type the operation is performed in. Due to the semantics of
/// these operators, the operands are promoted, the arithmetic performed, an
/// implicit conversion back to the result type done, then the assignment takes
/// place. This captures the intermediate type which the computation is done
/// in.
class CompoundAssignOperator : public BinaryOperator {
QualType ComputationLHSType;
QualType ComputationResultType;
/// Construct an empty CompoundAssignOperator.
explicit CompoundAssignOperator(const ASTContext &C, EmptyShell Empty,
bool hasFPFeatures)
: BinaryOperator(CompoundAssignOperatorClass, Empty) {}
protected:
CompoundAssignOperator(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc,
QualType ResType, ExprValueKind VK, ExprObjectKind OK,
SourceLocation OpLoc, FPOptionsOverride FPFeatures,
QualType CompLHSType, QualType CompResultType)
: BinaryOperator(C, lhs, rhs, opc, ResType, VK, OK, OpLoc, FPFeatures,
true),
ComputationLHSType(CompLHSType), ComputationResultType(CompResultType) {
assert(isCompoundAssignmentOp() &&
"Only should be used for compound assignments");
}
public:
static CompoundAssignOperator *CreateEmpty(const ASTContext &C,
bool hasFPFeatures);
static CompoundAssignOperator *
Create(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc,
FPOptionsOverride FPFeatures, QualType CompLHSType = QualType(),
QualType CompResultType = QualType());
// The two computation types are the type the LHS is converted
// to for the computation and the type of the result; the two are
// distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
QualType getComputationLHSType() const { return ComputationLHSType; }
void setComputationLHSType(QualType T) { ComputationLHSType = T; }
QualType getComputationResultType() const { return ComputationResultType; }
void setComputationResultType(QualType T) { ComputationResultType = T; }
static bool classof(const Stmt *S) {
return S->getStmtClass() == CompoundAssignOperatorClass;
}
};
inline size_t BinaryOperator::offsetOfTrailingStorage() const {
assert(BinaryOperatorBits.HasFPFeatures);
return isa<CompoundAssignOperator>(this) ? sizeof(CompoundAssignOperator)
: sizeof(BinaryOperator);
}
/// AbstractConditionalOperator - An abstract base class for
/// ConditionalOperator and BinaryConditionalOperator.
class AbstractConditionalOperator : public Expr {
SourceLocation QuestionLoc, ColonLoc;
friend class ASTStmtReader;
protected:
AbstractConditionalOperator(StmtClass SC, QualType T, ExprValueKind VK,
ExprObjectKind OK, SourceLocation qloc,
SourceLocation cloc)
: Expr(SC, T, VK, OK), QuestionLoc(qloc), ColonLoc(cloc) {}
AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty) { }
public:
// getCond - Return the expression representing the condition for
// the ?: operator.
Expr *getCond() const;
// getTrueExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to true.
Expr *getTrueExpr() const;
// getFalseExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to false. This is
// the same as getRHS.
Expr *getFalseExpr() const;
SourceLocation getQuestionLoc() const { return QuestionLoc; }
SourceLocation getColonLoc() const { return ColonLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConditionalOperatorClass ||
T->getStmtClass() == BinaryConditionalOperatorClass;
}
};
/// ConditionalOperator - The ?: ternary operator. The GNU "missing
/// middle" extension is a BinaryConditionalOperator.
class ConditionalOperator : public AbstractConditionalOperator {
enum { COND, LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
friend class ASTStmtReader;
public:
ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
SourceLocation CLoc, Expr *rhs, QualType t,
ExprValueKind VK, ExprObjectKind OK)
: AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK, QLoc,
CLoc) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
setDependence(computeDependence(this));
}
/// Build an empty conditional operator.
explicit ConditionalOperator(EmptyShell Empty)
: AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
// getCond - Return the expression representing the condition for
// the ?: operator.
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
// getTrueExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to true.
Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
// getFalseExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to false. This is
// the same as getRHS.
Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCond()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getRHS()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConditionalOperatorClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
};
/// BinaryConditionalOperator - The GNU extension to the conditional
/// operator which allows the middle operand to be omitted.
///
/// This is a different expression kind on the assumption that almost
/// every client ends up needing to know that these are different.
class BinaryConditionalOperator : public AbstractConditionalOperator {
enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
/// - the common condition/left-hand-side expression, which will be
/// evaluated as the opaque value
/// - the condition, expressed in terms of the opaque value
/// - the left-hand-side, expressed in terms of the opaque value
/// - the right-hand-side
Stmt *SubExprs[NUM_SUBEXPRS];
OpaqueValueExpr *OpaqueValue;
friend class ASTStmtReader;
public:
BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
Expr *cond, Expr *lhs, Expr *rhs,
SourceLocation qloc, SourceLocation cloc,
QualType t, ExprValueKind VK, ExprObjectKind OK)
: AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
qloc, cloc),
OpaqueValue(opaqueValue) {
SubExprs[COMMON] = common;
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
setDependence(computeDependence(this));
}
/// Build an empty conditional operator.
explicit BinaryConditionalOperator(EmptyShell Empty)
: AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
/// getCommon - Return the common expression, written to the
/// left of the condition. The opaque value will be bound to the
/// result of this expression.
Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
/// getOpaqueValue - Return the opaque value placeholder.
OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
/// getCond - Return the condition expression; this is defined
/// in terms of the opaque value.
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
/// getTrueExpr - Return the subexpression which will be
/// evaluated if the condition evaluates to true; this is defined
/// in terms of the opaque value.
Expr *getTrueExpr() const {
return cast<Expr>(SubExprs[LHS]);
}
/// getFalseExpr - Return the subexpression which will be
/// evaluated if the condnition evaluates to false; this is
/// defined in terms of the opaque value.
Expr *getFalseExpr() const {
return cast<Expr>(SubExprs[RHS]);
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCommon()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getFalseExpr()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == BinaryConditionalOperatorClass;
}
// Iterators
child_range children() {
return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
}
const_child_range children() const {
return const_child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
}
};
inline Expr *AbstractConditionalOperator::getCond() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getCond();
return cast<BinaryConditionalOperator>(this)->getCond();
}
inline Expr *AbstractConditionalOperator::getTrueExpr() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getTrueExpr();
return cast<BinaryConditionalOperator>(this)->getTrueExpr();
}
inline Expr *AbstractConditionalOperator::getFalseExpr() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getFalseExpr();
return cast<BinaryConditionalOperator>(this)->getFalseExpr();
}
/// AddrLabelExpr - The GNU address of label extension, representing &&label.
class AddrLabelExpr : public Expr {
SourceLocation AmpAmpLoc, LabelLoc;
LabelDecl *Label;
public:
AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
QualType t)
: Expr(AddrLabelExprClass, t, VK_PRValue, OK_Ordinary), AmpAmpLoc(AALoc),
LabelLoc(LLoc), Label(L) {
setDependence(ExprDependence::None);
}
/// Build an empty address of a label expression.
explicit AddrLabelExpr(EmptyShell Empty)
: Expr(AddrLabelExprClass, Empty) { }
SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
SourceLocation getLabelLoc() const { return LabelLoc; }
void setLabelLoc(SourceLocation L) { LabelLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return AmpAmpLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return LabelLoc; }
LabelDecl *getLabel() const { return Label; }
void setLabel(LabelDecl *L) { Label = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AddrLabelExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
/// takes the value of the last subexpression.
///
/// A StmtExpr is always an r-value; values "returned" out of a
/// StmtExpr will be copied.
class StmtExpr : public Expr {
Stmt *SubStmt;
SourceLocation LParenLoc, RParenLoc;
public:
StmtExpr(CompoundStmt *SubStmt, QualType T, SourceLocation LParenLoc,
SourceLocation RParenLoc, unsigned TemplateDepth)
: Expr(StmtExprClass, T, VK_PRValue, OK_Ordinary), SubStmt(SubStmt),
LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
setDependence(computeDependence(this, TemplateDepth));
// FIXME: A templated statement expression should have an associated
// DeclContext so that nested declarations always have a dependent context.
StmtExprBits.TemplateDepth = TemplateDepth;
}
/// Build an empty statement expression.
explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
void setSubStmt(CompoundStmt *S) { SubStmt = S; }
SourceLocation getBeginLoc() const LLVM_READONLY { return LParenLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
unsigned getTemplateDepth() const { return StmtExprBits.TemplateDepth; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == StmtExprClass;
}
// Iterators
child_range children() { return child_range(&SubStmt, &SubStmt+1); }
const_child_range children() const {
return const_child_range(&SubStmt, &SubStmt + 1);
}
};
/// ShuffleVectorExpr - clang-specific builtin-in function
/// __builtin_shufflevector.
/// This AST node represents a operator that does a constant
/// shuffle, similar to LLVM's shufflevector instruction. It takes
/// two vectors and a variable number of constant indices,
/// and returns the appropriately shuffled vector.
class ShuffleVectorExpr : public Expr {
SourceLocation BuiltinLoc, RParenLoc;
// SubExprs - the list of values passed to the __builtin_shufflevector
// function. The first two are vectors, and the rest are constant
// indices. The number of values in this list is always
// 2+the number of indices in the vector type.
Stmt **SubExprs;
unsigned NumExprs;
public:
ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
SourceLocation BLoc, SourceLocation RP);
/// Build an empty vector-shuffle expression.
explicit ShuffleVectorExpr(EmptyShell Empty)
: Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ShuffleVectorExprClass;
}
/// getNumSubExprs - Return the size of the SubExprs array. This includes the
/// constant expression, the actual arguments passed in, and the function
/// pointers.
unsigned getNumSubExprs() const { return NumExprs; }
/// Retrieve the array of expressions.
Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
/// getExpr - Return the Expr at the specified index.
Expr *getExpr(unsigned Index) {
assert((Index < NumExprs) && "Arg access out of range!");
return cast<Expr>(SubExprs[Index]);
}
const Expr *getExpr(unsigned Index) const {
assert((Index < NumExprs) && "Arg access out of range!");
return cast<Expr>(SubExprs[Index]);
}
void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
assert((N < NumExprs - 2) && "Shuffle idx out of range!");
return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + NumExprs);
}
};
/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
/// This AST node provides support for converting a vector type to another
/// vector type of the same arity.
class ConvertVectorExpr : public Expr {
private:
Stmt *SrcExpr;
TypeSourceInfo *TInfo;
SourceLocation BuiltinLoc, RParenLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
public:
ConvertVectorExpr(Expr *SrcExpr, TypeSourceInfo *TI, QualType DstType,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation BuiltinLoc, SourceLocation RParenLoc)
: Expr(ConvertVectorExprClass, DstType, VK, OK), SrcExpr(SrcExpr),
TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {
setDependence(computeDependence(this));
}
/// getSrcExpr - Return the Expr to be converted.
Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
/// getTypeSourceInfo - Return the destination type.
TypeSourceInfo *getTypeSourceInfo() const {
return TInfo;
}
void setTypeSourceInfo(TypeSourceInfo *ti) {
TInfo = ti;
}
/// getBuiltinLoc - Return the location of the __builtin_convertvector token.
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
/// getRParenLoc - Return the location of final right parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConvertVectorExprClass;
}
// Iterators
child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
const_child_range children() const {
return const_child_range(&SrcExpr, &SrcExpr + 1);
}
};
/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
/// This AST node is similar to the conditional operator (?:) in C, with
/// the following exceptions:
/// - the test expression must be a integer constant expression.
/// - the expression returned acts like the chosen subexpression in every
/// visible way: the type is the same as that of the chosen subexpression,
/// and all predicates (whether it's an l-value, whether it's an integer
/// constant expression, etc.) return the same result as for the chosen
/// sub-expression.
class ChooseExpr : public Expr {
enum { COND, LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
SourceLocation BuiltinLoc, RParenLoc;
bool CondIsTrue;
public:
ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
ExprValueKind VK, ExprObjectKind OK, SourceLocation RP,
bool condIsTrue)
: Expr(ChooseExprClass, t, VK, OK), BuiltinLoc(BLoc), RParenLoc(RP),
CondIsTrue(condIsTrue) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
setDependence(computeDependence(this));
}
/// Build an empty __builtin_choose_expr.
explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
/// isConditionTrue - Return whether the condition is true (i.e. not
/// equal to zero).
bool isConditionTrue() const {
assert(!isConditionDependent() &&
"Dependent condition isn't true or false");
return CondIsTrue;
}
void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
bool isConditionDependent() const {
return getCond()->isTypeDependent() || getCond()->isValueDependent();
}
/// getChosenSubExpr - Return the subexpression chosen according to the
/// condition.
Expr *getChosenSubExpr() const {
return isConditionTrue() ? getLHS() : getRHS();
}
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
void setCond(Expr *E) { SubExprs[COND] = E; }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ChooseExprClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
};
/// GNUNullExpr - Implements the GNU __null extension, which is a name
/// for a null pointer constant that has integral type (e.g., int or
/// long) and is the same size and alignment as a pointer. The __null
/// extension is typically only used by system headers, which define
/// NULL as __null in C++ rather than using 0 (which is an integer
/// that may not match the size of a pointer).
class GNUNullExpr : public Expr {
/// TokenLoc - The location of the __null keyword.
SourceLocation TokenLoc;
public:
GNUNullExpr(QualType Ty, SourceLocation Loc)
: Expr(GNUNullExprClass, Ty, VK_PRValue, OK_Ordinary), TokenLoc(Loc) {
setDependence(ExprDependence::None);
}
/// Build an empty GNU __null expression.
explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
/// getTokenLocation - The location of the __null token.
SourceLocation getTokenLocation() const { return TokenLoc; }
void setTokenLocation(SourceLocation L) { TokenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return TokenLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return TokenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == GNUNullExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// Represents a call to the builtin function \c __builtin_va_arg.
class VAArgExpr : public Expr {
Stmt *Val;
llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
SourceLocation BuiltinLoc, RParenLoc;
public:
VAArgExpr(SourceLocation BLoc, Expr *e, TypeSourceInfo *TInfo,
SourceLocation RPLoc, QualType t, bool IsMS)
: Expr(VAArgExprClass, t, VK_PRValue, OK_Ordinary), Val(e),
TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {
setDependence(computeDependence(this));
}
/// Create an empty __builtin_va_arg expression.
explicit VAArgExpr(EmptyShell Empty)
: Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
/// Returns whether this is really a Win64 ABI va_arg expression.
bool isMicrosoftABI() const { return TInfo.getInt(); }
void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == VAArgExprClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
};
/// Represents a function call to one of __builtin_LINE(), __builtin_COLUMN(),
/// __builtin_FUNCTION(), __builtin_FILE(), or __builtin_source_location().
class SourceLocExpr final : public Expr {
SourceLocation BuiltinLoc, RParenLoc;
DeclContext *ParentContext;
public:
enum IdentKind { Function, File, Line, Column, SourceLocStruct };
SourceLocExpr(const ASTContext &Ctx, IdentKind Type, QualType ResultTy,
SourceLocation BLoc, SourceLocation RParenLoc,
DeclContext *Context);
/// Build an empty call expression.
explicit SourceLocExpr(EmptyShell Empty) : Expr(SourceLocExprClass, Empty) {}
/// Return the result of evaluating this SourceLocExpr in the specified
/// (and possibly null) default argument or initialization context.
APValue EvaluateInContext(const ASTContext &Ctx,
const Expr *DefaultExpr) const;
/// Return a string representing the name of the specific builtin function.
StringRef getBuiltinStr() const;
IdentKind getIdentKind() const {
return static_cast<IdentKind>(SourceLocExprBits.Kind);
}
bool isIntType() const {
switch (getIdentKind()) {
case File:
case Function:
case SourceLocStruct:
return false;
case Line:
case Column:
return true;
}
llvm_unreachable("unknown source location expression kind");
}
/// If the SourceLocExpr has been resolved return the subexpression
/// representing the resolved value. Otherwise return null.
const DeclContext *getParentContext() const { return ParentContext; }
DeclContext *getParentContext() { return ParentContext; }
SourceLocation getLocation() const { return BuiltinLoc; }
SourceLocation getBeginLoc() const { return BuiltinLoc; }
SourceLocation getEndLoc() const { return RParenLoc; }
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(child_iterator(), child_iterator());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == SourceLocExprClass;
}
private:
friend class ASTStmtReader;
};
/// Describes an C or C++ initializer list.
///
/// InitListExpr describes an initializer list, which can be used to
/// initialize objects of different types, including
/// struct/class/union types, arrays, and vectors. For example:
///
/// @code
/// struct foo x = { 1, { 2, 3 } };
/// @endcode
///
/// Prior to semantic analysis, an initializer list will represent the
/// initializer list as written by the user, but will have the
/// placeholder type "void". This initializer list is called the
/// syntactic form of the initializer, and may contain C99 designated
/// initializers (represented as DesignatedInitExprs), initializations
/// of subobject members without explicit braces, and so on. Clients
/// interested in the original syntax of the initializer list should
/// use the syntactic form of the initializer list.
///
/// After semantic analysis, the initializer list will represent the
/// semantic form of the initializer, where the initializations of all
/// subobjects are made explicit with nested InitListExpr nodes and
/// C99 designators have been eliminated by placing the designated
/// initializations into the subobject they initialize. Additionally,
/// any "holes" in the initialization, where no initializer has been
/// specified for a particular subobject, will be replaced with
/// implicitly-generated ImplicitValueInitExpr expressions that
/// value-initialize the subobjects. Note, however, that the
/// initializer lists may still have fewer initializers than there are
/// elements to initialize within the object.
///
/// After semantic analysis has completed, given an initializer list,
/// method isSemanticForm() returns true if and only if this is the
/// semantic form of the initializer list (note: the same AST node
/// may at the same time be the syntactic form).
/// Given the semantic form of the initializer list, one can retrieve
/// the syntactic form of that initializer list (when different)
/// using method getSyntacticForm(); the method returns null if applied
/// to a initializer list which is already in syntactic form.
/// Similarly, given the syntactic form (i.e., an initializer list such
/// that isSemanticForm() returns false), one can retrieve the semantic
/// form using method getSemanticForm().
/// Since many initializer lists have the same syntactic and semantic forms,
/// getSyntacticForm() may return NULL, indicating that the current
/// semantic initializer list also serves as its syntactic form.
class InitListExpr : public Expr {
// FIXME: Eliminate this vector in favor of ASTContext allocation
typedef ASTVector<Stmt *> InitExprsTy;
InitExprsTy InitExprs;
SourceLocation LBraceLoc, RBraceLoc;
/// The alternative form of the initializer list (if it exists).
/// The int part of the pair stores whether this initializer list is
/// in semantic form. If not null, the pointer points to:
/// - the syntactic form, if this is in semantic form;
/// - the semantic form, if this is in syntactic form.
llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
/// Either:
/// If this initializer list initializes an array with more elements than
/// there are initializers in the list, specifies an expression to be used
/// for value initialization of the rest of the elements.
/// Or
/// If this initializer list initializes a union, specifies which
/// field within the union will be initialized.
llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
public:
InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
/// Build an empty initializer list.
explicit InitListExpr(EmptyShell Empty)
: Expr(InitListExprClass, Empty), AltForm(nullptr, true) { }
unsigned getNumInits() const { return InitExprs.size(); }
/// Retrieve the set of initializers.
Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
/// Retrieve the set of initializers.
Expr * const *getInits() const {
return reinterpret_cast<Expr * const *>(InitExprs.data());
}
ArrayRef<Expr *> inits() { return llvm::ArrayRef(getInits(), getNumInits()); }
ArrayRef<Expr *> inits() const {
return llvm::ArrayRef(getInits(), getNumInits());
}
const Expr *getInit(unsigned Init) const {
assert(Init < getNumInits() && "Initializer access out of range!");
return cast_or_null<Expr>(InitExprs[Init]);
}
Expr *getInit(unsigned Init) {
assert(Init < getNumInits() && "Initializer access out of range!");
return cast_or_null<Expr>(InitExprs[Init]);
}
void setInit(unsigned Init, Expr *expr) {
assert(Init < getNumInits() && "Initializer access out of range!");
InitExprs[Init] = expr;
if (expr)
setDependence(getDependence() | expr->getDependence());
}
/// Mark the semantic form of the InitListExpr as error when the semantic
/// analysis fails.
void markError() {
assert(isSemanticForm());
setDependence(getDependence() | ExprDependence::ErrorDependent);
}
/// Reserve space for some number of initializers.
void reserveInits(const ASTContext &C, unsigned NumInits);
/// Specify the number of initializers
///
/// If there are more than @p NumInits initializers, the remaining
/// initializers will be destroyed. If there are fewer than @p
/// NumInits initializers, NULL expressions will be added for the
/// unknown initializers.
void resizeInits(const ASTContext &Context, unsigned NumInits);
/// Updates the initializer at index @p Init with the new
/// expression @p expr, and returns the old expression at that
/// location.
///
/// When @p Init is out of range for this initializer list, the
/// initializer list will be extended with NULL expressions to
/// accommodate the new entry.
Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
/// If this initializer list initializes an array with more elements
/// than there are initializers in the list, specifies an expression to be
/// used for value initialization of the rest of the elements.
Expr *getArrayFiller() {
return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
}
const Expr *getArrayFiller() const {
return const_cast<InitListExpr *>(this)->getArrayFiller();
}
void setArrayFiller(Expr *filler);
/// Return true if this is an array initializer and its array "filler"
/// has been set.
bool hasArrayFiller() const { return getArrayFiller(); }
/// If this initializes a union, specifies which field in the
/// union to initialize.
///
/// Typically, this field is the first named field within the
/// union. However, a designated initializer can specify the
/// initialization of a different field within the union.
FieldDecl *getInitializedFieldInUnion() {
return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
}
const FieldDecl *getInitializedFieldInUnion() const {
return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
}
void setInitializedFieldInUnion(FieldDecl *FD) {
assert((FD == nullptr
|| getInitializedFieldInUnion() == nullptr
|| getInitializedFieldInUnion() == FD)
&& "Only one field of a union may be initialized at a time!");
ArrayFillerOrUnionFieldInit = FD;
}
// Explicit InitListExpr's originate from source code (and have valid source
// locations). Implicit InitListExpr's are created by the semantic analyzer.
// FIXME: This is wrong; InitListExprs created by semantic analysis have
// valid source locations too!
bool isExplicit() const {
return LBraceLoc.isValid() && RBraceLoc.isValid();
}
// Is this an initializer for an array of characters, initialized by a string
// literal or an @encode?
bool isStringLiteralInit() const;
/// Is this a transparent initializer list (that is, an InitListExpr that is
/// purely syntactic, and whose semantics are that of the sole contained
/// initializer)?
bool isTransparent() const;
/// Is this the zero initializer {0} in a language which considers it
/// idiomatic?
bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const;
SourceLocation getLBraceLoc() const { return LBraceLoc; }
void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
bool isSemanticForm() const { return AltForm.getInt(); }
InitListExpr *getSemanticForm() const {
return isSemanticForm() ? nullptr : AltForm.getPointer();
}
bool isSyntacticForm() const {
return !AltForm.getInt() || !AltForm.getPointer();
}
InitListExpr *getSyntacticForm() const {
return isSemanticForm() ? AltForm.getPointer() : nullptr;
}
void setSyntacticForm(InitListExpr *Init) {
AltForm.setPointer(Init);
AltForm.setInt(true);
Init->AltForm.setPointer(this);
Init->AltForm.setInt(false);
}
bool hadArrayRangeDesignator() const {
return InitListExprBits.HadArrayRangeDesignator != 0;
}
void sawArrayRangeDesignator(bool ARD = true) {
InitListExprBits.HadArrayRangeDesignator = ARD;
}
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == InitListExprClass;
}
// Iterators
child_range children() {
const_child_range CCR = const_cast<const InitListExpr *>(this)->children();
return child_range(cast_away_const(CCR.begin()),
cast_away_const(CCR.end()));
}
const_child_range children() const {
// FIXME: This does not include the array filler expression.
if (InitExprs.empty())
return const_child_range(const_child_iterator(), const_child_iterator());
return const_child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
}
typedef InitExprsTy::iterator iterator;
typedef InitExprsTy::const_iterator const_iterator;
typedef InitExprsTy::reverse_iterator reverse_iterator;
typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
iterator begin() { return InitExprs.begin(); }
const_iterator begin() const { return InitExprs.begin(); }
iterator end() { return InitExprs.end(); }
const_iterator end() const { return InitExprs.end(); }
reverse_iterator rbegin() { return InitExprs.rbegin(); }
const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
reverse_iterator rend() { return InitExprs.rend(); }
const_reverse_iterator rend() const { return InitExprs.rend(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Represents a C99 designated initializer expression.
///
/// A designated initializer expression (C99 6.7.8) contains one or
/// more designators (which can be field designators, array
/// designators, or GNU array-range designators) followed by an
/// expression that initializes the field or element(s) that the
/// designators refer to. For example, given:
///
/// @code
/// struct point {
/// double x;
/// double y;
/// };
/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
/// @endcode
///
/// The InitListExpr contains three DesignatedInitExprs, the first of
/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
/// designators, one array designator for @c [2] followed by one field
/// designator for @c .y. The initialization expression will be 1.0.
class DesignatedInitExpr final
: public Expr,
private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
public:
/// Forward declaration of the Designator class.
class Designator;
private:
/// The location of the '=' or ':' prior to the actual initializer
/// expression.
SourceLocation EqualOrColonLoc;
/// Whether this designated initializer used the GNU deprecated
/// syntax rather than the C99 '=' syntax.
unsigned GNUSyntax : 1;
/// The number of designators in this initializer expression.
unsigned NumDesignators : 15;
/// The number of subexpressions of this initializer expression,
/// which contains both the initializer and any additional
/// expressions used by array and array-range designators.
unsigned NumSubExprs : 16;
/// The designators in this designated initialization
/// expression.
Designator *Designators;
DesignatedInitExpr(const ASTContext &C, QualType Ty,
llvm::ArrayRef<Designator> Designators,
SourceLocation EqualOrColonLoc, bool GNUSyntax,
ArrayRef<Expr *> IndexExprs, Expr *Init);
explicit DesignatedInitExpr(unsigned NumSubExprs)
: Expr(DesignatedInitExprClass, EmptyShell()),
NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
public:
/// A field designator, e.g., ".x".
struct FieldDesignator {
/// Refers to the field that is being initialized. The low bit
/// of this field determines whether this is actually a pointer
/// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
/// initially constructed, a field designator will store an
/// IdentifierInfo*. After semantic analysis has resolved that
/// name, the field designator will instead store a FieldDecl*.
uintptr_t NameOrField;
/// The location of the '.' in the designated initializer.
SourceLocation DotLoc;
/// The location of the field name in the designated initializer.
SourceLocation FieldLoc;
};
/// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
struct ArrayOrRangeDesignator {
/// Location of the first index expression within the designated
/// initializer expression's list of subexpressions.
unsigned Index;
/// The location of the '[' starting the array range designator.
SourceLocation LBracketLoc;
/// The location of the ellipsis separating the start and end
/// indices. Only valid for GNU array-range designators.
SourceLocation EllipsisLoc;
/// The location of the ']' terminating the array range designator.
SourceLocation RBracketLoc;
};
/// Represents a single C99 designator.
///
/// @todo This class is infuriatingly similar to clang::Designator,
/// but minor differences (storing indices vs. storing pointers)
/// keep us from reusing it. Try harder, later, to rectify these
/// differences.
class Designator {
/// The kind of designator this describes.
enum {
FieldDesignator,
ArrayDesignator,
ArrayRangeDesignator
} Kind;
union {
/// A field designator, e.g., ".x".
struct FieldDesignator Field;
/// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
struct ArrayOrRangeDesignator ArrayOrRange;
};
friend class DesignatedInitExpr;
public:
Designator() {}
/// Initializes a field designator.
Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
SourceLocation FieldLoc)
: Kind(FieldDesignator) {
new (&Field) DesignatedInitExpr::FieldDesignator;
Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
Field.DotLoc = DotLoc;
Field.FieldLoc = FieldLoc;
}
/// Initializes an array designator.
Designator(unsigned Index, SourceLocation LBracketLoc,
SourceLocation RBracketLoc)
: Kind(ArrayDesignator) {
new (&ArrayOrRange) DesignatedInitExpr::ArrayOrRangeDesignator;
ArrayOrRange.Index = Index;
ArrayOrRange.LBracketLoc = LBracketLoc;
ArrayOrRange.EllipsisLoc = SourceLocation();
ArrayOrRange.RBracketLoc = RBracketLoc;
}
/// Initializes a GNU array-range designator.
Designator(unsigned Index, SourceLocation LBracketLoc,
SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
: Kind(ArrayRangeDesignator) {
new (&ArrayOrRange) DesignatedInitExpr::ArrayOrRangeDesignator;
ArrayOrRange.Index = Index;
ArrayOrRange.LBracketLoc = LBracketLoc;
ArrayOrRange.EllipsisLoc = EllipsisLoc;
ArrayOrRange.RBracketLoc = RBracketLoc;
}
bool isFieldDesignator() const { return Kind == FieldDesignator; }
bool isArrayDesignator() const { return Kind == ArrayDesignator; }
bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
IdentifierInfo *getFieldName() const;
FieldDecl *getField() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
if (Field.NameOrField & 0x01)
return nullptr;
else
return reinterpret_cast<FieldDecl *>(Field.NameOrField);
}
void setField(FieldDecl *FD) {
assert(Kind == FieldDesignator && "Only valid on a field designator");
Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
}
SourceLocation getDotLoc() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
return Field.DotLoc;
}
SourceLocation getFieldLoc() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
return Field.FieldLoc;
}
SourceLocation getLBracketLoc() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return ArrayOrRange.LBracketLoc;
}
SourceLocation getRBracketLoc() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return ArrayOrRange.RBracketLoc;
}
SourceLocation getEllipsisLoc() const {
assert(Kind == ArrayRangeDesignator &&
"Only valid on an array-range designator");
return ArrayOrRange.EllipsisLoc;
}
unsigned getFirstExprIndex() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return ArrayOrRange.Index;
}
SourceLocation getBeginLoc() const LLVM_READONLY {
if (Kind == FieldDesignator)
return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
else
return getLBracketLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
}
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getBeginLoc(), getEndLoc());
}
};
static DesignatedInitExpr *Create(const ASTContext &C,
llvm::ArrayRef<Designator> Designators,
ArrayRef<Expr*> IndexExprs,
SourceLocation EqualOrColonLoc,
bool GNUSyntax, Expr *Init);
static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
unsigned NumIndexExprs);
/// Returns the number of designators in this initializer.
unsigned size() const { return NumDesignators; }
// Iterator access to the designators.
llvm::MutableArrayRef<Designator> designators() {
return {Designators, NumDesignators};
}
llvm::ArrayRef<Designator> designators() const {
return {Designators, NumDesignators};
}
Designator *getDesignator(unsigned Idx) { return &designators()[Idx]; }
const Designator *getDesignator(unsigned Idx) const {
return &designators()[Idx];
}
void setDesignators(const ASTContext &C, const Designator *Desigs,
unsigned NumDesigs);
Expr *getArrayIndex(const Designator &D) const;
Expr *getArrayRangeStart(const Designator &D) const;
Expr *getArrayRangeEnd(const Designator &D) const;
/// Retrieve the location of the '=' that precedes the
/// initializer value itself, if present.
SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
/// Whether this designated initializer should result in direct-initialization
/// of the designated subobject (eg, '{.foo{1, 2, 3}}').
bool isDirectInit() const { return EqualOrColonLoc.isInvalid(); }
/// Determines whether this designated initializer used the
/// deprecated GNU syntax for designated initializers.
bool usesGNUSyntax() const { return GNUSyntax; }
void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
/// Retrieve the initializer value.
Expr *getInit() const {
return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
}
void setInit(Expr *init) {
*child_begin() = init;
}
/// Retrieve the total number of subexpressions in this
/// designated initializer expression, including the actual
/// initialized value and any expressions that occur within array
/// and array-range designators.
unsigned getNumSubExprs() const { return NumSubExprs; }
Expr *getSubExpr(unsigned Idx) const {
assert(Idx < NumSubExprs && "Subscript out of range");
return cast<Expr>(getTrailingObjects<Stmt *>()[Idx]);
}
void setSubExpr(unsigned Idx, Expr *E) {
assert(Idx < NumSubExprs && "Subscript out of range");
getTrailingObjects<Stmt *>()[Idx] = E;
}
/// Replaces the designator at index @p Idx with the series
/// of designators in [First, Last).
void ExpandDesignator(const ASTContext &C, unsigned Idx,
const Designator *First, const Designator *Last);
SourceRange getDesignatorsSourceRange() const;
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == DesignatedInitExprClass;
}
// Iterators
child_range children() {
Stmt **begin = getTrailingObjects<Stmt *>();
return child_range(begin, begin + NumSubExprs);
}
const_child_range children() const {
Stmt * const *begin = getTrailingObjects<Stmt *>();
return const_child_range(begin, begin + NumSubExprs);
}
friend TrailingObjects;
};
/// Represents a place-holder for an object not to be initialized by
/// anything.
///
/// This only makes sense when it appears as part of an updater of a
/// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
/// initializes a big object, and the NoInitExpr's mark the spots within the
/// big object not to be overwritten by the updater.
///
/// \see DesignatedInitUpdateExpr
class NoInitExpr : public Expr {
public:
explicit NoInitExpr(QualType ty)
: Expr(NoInitExprClass, ty, VK_PRValue, OK_Ordinary) {
setDependence(computeDependence(this));
}
explicit NoInitExpr(EmptyShell Empty)
: Expr(NoInitExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == NoInitExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
// In cases like:
// struct Q { int a, b, c; };
// Q *getQ();
// void foo() {
// struct A { Q q; } a = { *getQ(), .q.b = 3 };
// }
//
// We will have an InitListExpr for a, with type A, and then a
// DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
// is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
//
class DesignatedInitUpdateExpr : public Expr {
// BaseAndUpdaterExprs[0] is the base expression;
// BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
Stmt *BaseAndUpdaterExprs[2];
public:
DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc,
Expr *baseExprs, SourceLocation rBraceLoc);
explicit DesignatedInitUpdateExpr(EmptyShell Empty)
: Expr(DesignatedInitUpdateExprClass, Empty) { }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == DesignatedInitUpdateExprClass;
}
Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
InitListExpr *getUpdater() const {
return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
}
void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
// Iterators
// children = the base and the updater
child_range children() {
return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
}
const_child_range children() const {
return const_child_range(&BaseAndUpdaterExprs[0],
&BaseAndUpdaterExprs[0] + 2);
}
};
/// Represents a loop initializing the elements of an array.
///
/// The need to initialize the elements of an array occurs in a number of
/// contexts:
///
/// * in the implicit copy/move constructor for a class with an array member
/// * when a lambda-expression captures an array by value
/// * when a decomposition declaration decomposes an array
///
/// There are two subexpressions: a common expression (the source array)
/// that is evaluated once up-front, and a per-element initializer that
/// runs once for each array element.
///
/// Within the per-element initializer, the common expression may be referenced
/// via an OpaqueValueExpr, and the current index may be obtained via an
/// ArrayInitIndexExpr.
class ArrayInitLoopExpr : public Expr {
Stmt *SubExprs[2];
explicit ArrayInitLoopExpr(EmptyShell Empty)
: Expr(ArrayInitLoopExprClass, Empty), SubExprs{} {}
public:
explicit ArrayInitLoopExpr(QualType T, Expr *CommonInit, Expr *ElementInit)
: Expr(ArrayInitLoopExprClass, T, VK_PRValue, OK_Ordinary),
SubExprs{CommonInit, ElementInit} {
setDependence(computeDependence(this));
}
/// Get the common subexpression shared by all initializations (the source
/// array).
OpaqueValueExpr *getCommonExpr() const {
return cast<OpaqueValueExpr>(SubExprs[0]);
}
/// Get the initializer to use for each array element.
Expr *getSubExpr() const { return cast<Expr>(SubExprs[1]); }
llvm::APInt getArraySize() const {
return cast<ConstantArrayType>(getType()->castAsArrayTypeUnsafe())
->getSize();
}
static bool classof(const Stmt *S) {
return S->getStmtClass() == ArrayInitLoopExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCommonExpr()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getCommonExpr()->getEndLoc();
}
child_range children() {
return child_range(SubExprs, SubExprs + 2);
}
const_child_range children() const {
return const_child_range(SubExprs, SubExprs + 2);
}
friend class ASTReader;
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Represents the index of the current element of an array being
/// initialized by an ArrayInitLoopExpr. This can only appear within the
/// subexpression of an ArrayInitLoopExpr.
class ArrayInitIndexExpr : public Expr {
explicit ArrayInitIndexExpr(EmptyShell Empty)
: Expr(ArrayInitIndexExprClass, Empty) {}
public:
explicit ArrayInitIndexExpr(QualType T)
: Expr(ArrayInitIndexExprClass, T, VK_PRValue, OK_Ordinary) {
setDependence(ExprDependence::None);
}
static bool classof(const Stmt *S) {
return S->getStmtClass() == ArrayInitIndexExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
friend class ASTReader;
friend class ASTStmtReader;
};
/// Represents an implicitly-generated value initialization of
/// an object of a given type.
///
/// Implicit value initializations occur within semantic initializer
/// list expressions (InitListExpr) as placeholders for subobject
/// initializations not explicitly specified by the user.
///
/// \see InitListExpr
class ImplicitValueInitExpr : public Expr {
public:
explicit ImplicitValueInitExpr(QualType ty)
: Expr(ImplicitValueInitExprClass, ty, VK_PRValue, OK_Ordinary) {
setDependence(computeDependence(this));
}
/// Construct an empty implicit value initialization.
explicit ImplicitValueInitExpr(EmptyShell Empty)
: Expr(ImplicitValueInitExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImplicitValueInitExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class ParenListExpr final
: public Expr,
private llvm::TrailingObjects<ParenListExpr, Stmt *> {
friend class ASTStmtReader;
friend TrailingObjects;
/// The location of the left and right parentheses.
SourceLocation LParenLoc, RParenLoc;
/// Build a paren list.
ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
SourceLocation RParenLoc);
/// Build an empty paren list.
ParenListExpr(EmptyShell Empty, unsigned NumExprs);
public:
/// Create a paren list.
static ParenListExpr *Create(const ASTContext &Ctx, SourceLocation LParenLoc,
ArrayRef<Expr *> Exprs,
SourceLocation RParenLoc);
/// Create an empty paren list.
static ParenListExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumExprs);
/// Return the number of expressions in this paren list.
unsigned getNumExprs() const { return ParenListExprBits.NumExprs; }
Expr *getExpr(unsigned Init) {
assert(Init < getNumExprs() && "Initializer access out of range!");
return getExprs()[Init];
}
const Expr *getExpr(unsigned Init) const {
return const_cast<ParenListExpr *>(this)->getExpr(Init);
}
Expr **getExprs() {
return reinterpret_cast<Expr **>(getTrailingObjects<Stmt *>());
}
ArrayRef<Expr *> exprs() { return llvm::ArrayRef(getExprs(), getNumExprs()); }
SourceLocation getLParenLoc() const { return LParenLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const { return getLParenLoc(); }
SourceLocation getEndLoc() const { return getRParenLoc(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ParenListExprClass;
}
// Iterators
child_range children() {
return child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() + getNumExprs());
}
const_child_range children() const {
return const_child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() + getNumExprs());
}
};
/// Represents a C11 generic selection.
///
/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
/// expression, followed by one or more generic associations. Each generic
/// association specifies a type name and an expression, or "default" and an
/// expression (in which case it is known as a default generic association).
/// The type and value of the generic selection are identical to those of its
/// result expression, which is defined as the expression in the generic
/// association with a type name that is compatible with the type of the
/// controlling expression, or the expression in the default generic association
/// if no types are compatible. For example:
///
/// @code
/// _Generic(X, double: 1, float: 2, default: 3)
/// @endcode
///
/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
/// or 3 if "hello".
///
/// As an extension, generic selections are allowed in C++, where the following
/// additional semantics apply:
///
/// Any generic selection whose controlling expression is type-dependent or
/// which names a dependent type in its association list is result-dependent,
/// which means that the choice of result expression is dependent.
/// Result-dependent generic associations are both type- and value-dependent.
class GenericSelectionExpr final
: public Expr,
private llvm::TrailingObjects<GenericSelectionExpr, Stmt *,
TypeSourceInfo *> {
friend class ASTStmtReader;
friend class ASTStmtWriter;
friend TrailingObjects;
/// The number of association expressions and the index of the result
/// expression in the case where the generic selection expression is not
/// result-dependent. The result index is equal to ResultDependentIndex
/// if and only if the generic selection expression is result-dependent.
unsigned NumAssocs, ResultIndex;
enum : unsigned {
ResultDependentIndex = std::numeric_limits<unsigned>::max(),
ControllingIndex = 0,
AssocExprStartIndex = 1
};
/// The location of the "default" and of the right parenthesis.
SourceLocation DefaultLoc, RParenLoc;
// GenericSelectionExpr is followed by several trailing objects.
// They are (in order):
//
// * A single Stmt * for the controlling expression.
// * An array of getNumAssocs() Stmt * for the association expressions.
// * An array of getNumAssocs() TypeSourceInfo *, one for each of the
// association expressions.
unsigned numTrailingObjects(OverloadToken<Stmt *>) const {
// Add one to account for the controlling expression; the remainder
// are the associated expressions.
return 1 + getNumAssocs();
}
unsigned numTrailingObjects(OverloadToken<TypeSourceInfo *>) const {
return getNumAssocs();
}
template <bool Const> class AssociationIteratorTy;
/// Bundle together an association expression and its TypeSourceInfo.
/// The Const template parameter is for the const and non-const versions
/// of AssociationTy.
template <bool Const> class AssociationTy {
friend class GenericSelectionExpr;
template <bool OtherConst> friend class AssociationIteratorTy;
using ExprPtrTy = std::conditional_t<Const, const Expr *, Expr *>;
using TSIPtrTy =
std::conditional_t<Const, const TypeSourceInfo *, TypeSourceInfo *>;
ExprPtrTy E;
TSIPtrTy TSI;
bool Selected;
AssociationTy(ExprPtrTy E, TSIPtrTy TSI, bool Selected)
: E(E), TSI(TSI), Selected(Selected) {}
public:
ExprPtrTy getAssociationExpr() const { return E; }
TSIPtrTy getTypeSourceInfo() const { return TSI; }
QualType getType() const { return TSI ? TSI->getType() : QualType(); }
bool isSelected() const { return Selected; }
AssociationTy *operator->() { return this; }
const AssociationTy *operator->() const { return this; }
}; // class AssociationTy
/// Iterator over const and non-const Association objects. The Association
/// objects are created on the fly when the iterator is dereferenced.
/// This abstract over how exactly the association expressions and the
/// corresponding TypeSourceInfo * are stored.
template <bool Const>
class AssociationIteratorTy
: public llvm::iterator_facade_base<
AssociationIteratorTy<Const>, std::input_iterator_tag,
AssociationTy<Const>, std::ptrdiff_t, AssociationTy<Const>,
AssociationTy<Const>> {
friend class GenericSelectionExpr;
// FIXME: This iterator could conceptually be a random access iterator, and
// it would be nice if we could strengthen the iterator category someday.
// However this iterator does not satisfy two requirements of forward
// iterators:
// a) reference = T& or reference = const T&
// b) If It1 and It2 are both dereferenceable, then It1 == It2 if and only
// if *It1 and *It2 are bound to the same objects.
// An alternative design approach was discussed during review;
// store an Association object inside the iterator, and return a reference
// to it when dereferenced. This idea was discarded beacuse of nasty
// lifetime issues:
// AssociationIterator It = ...;
// const Association &Assoc = *It++; // Oops, Assoc is dangling.
using BaseTy = typename AssociationIteratorTy::iterator_facade_base;
using StmtPtrPtrTy =
std::conditional_t<Const, const Stmt *const *, Stmt **>;
using TSIPtrPtrTy = std::conditional_t<Const, const TypeSourceInfo *const *,
TypeSourceInfo **>;
StmtPtrPtrTy E; // = nullptr; FIXME: Once support for gcc 4.8 is dropped.
TSIPtrPtrTy TSI; // Kept in sync with E.
unsigned Offset = 0, SelectedOffset = 0;
AssociationIteratorTy(StmtPtrPtrTy E, TSIPtrPtrTy TSI, unsigned Offset,
unsigned SelectedOffset)
: E(E), TSI(TSI), Offset(Offset), SelectedOffset(SelectedOffset) {}
public:
AssociationIteratorTy() : E(nullptr), TSI(nullptr) {}
typename BaseTy::reference operator*() const {
return AssociationTy<Const>(cast<Expr>(*E), *TSI,
Offset == SelectedOffset);
}
typename BaseTy::pointer operator->() const { return **this; }
using BaseTy::operator++;
AssociationIteratorTy &operator++() {
++E;
++TSI;
++Offset;
return *this;
}
bool operator==(AssociationIteratorTy Other) const { return E == Other.E; }
}; // class AssociationIterator
/// Build a non-result-dependent generic selection expression.
GenericSelectionExpr(const ASTContext &Context, SourceLocation GenericLoc,
Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack,
unsigned ResultIndex);
/// Build a result-dependent generic selection expression.
GenericSelectionExpr(const ASTContext &Context, SourceLocation GenericLoc,
Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack);
/// Build an empty generic selection expression for deserialization.
explicit GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs);
public:
/// Create a non-result-dependent generic selection expression.
static GenericSelectionExpr *
Create(const ASTContext &Context, SourceLocation GenericLoc,
Expr *ControllingExpr, ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
unsigned ResultIndex);
/// Create a result-dependent generic selection expression.
static GenericSelectionExpr *
Create(const ASTContext &Context, SourceLocation GenericLoc,
Expr *ControllingExpr, ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack);
/// Create an empty generic selection expression for deserialization.
static GenericSelectionExpr *CreateEmpty(const ASTContext &Context,
unsigned NumAssocs);
using Association = AssociationTy<false>;
using ConstAssociation = AssociationTy<true>;
using AssociationIterator = AssociationIteratorTy<false>;
using ConstAssociationIterator = AssociationIteratorTy<true>;
using association_range = llvm::iterator_range<AssociationIterator>;
using const_association_range =
llvm::iterator_range<ConstAssociationIterator>;
/// The number of association expressions.
unsigned getNumAssocs() const { return NumAssocs; }
/// The zero-based index of the result expression's generic association in
/// the generic selection's association list. Defined only if the
/// generic selection is not result-dependent.
unsigned getResultIndex() const {
assert(!isResultDependent() &&
"Generic selection is result-dependent but getResultIndex called!");
return ResultIndex;
}
/// Whether this generic selection is result-dependent.
bool isResultDependent() const { return ResultIndex == ResultDependentIndex; }
/// Return the controlling expression of this generic selection expression.
Expr *getControllingExpr() {
return cast<Expr>(getTrailingObjects<Stmt *>()[ControllingIndex]);
}
const Expr *getControllingExpr() const {
return cast<Expr>(getTrailingObjects<Stmt *>()[ControllingIndex]);
}
/// Return the result expression of this controlling expression. Defined if
/// and only if the generic selection expression is not result-dependent.
Expr *getResultExpr() {
return cast<Expr>(
getTrailingObjects<Stmt *>()[AssocExprStartIndex + getResultIndex()]);
}
const Expr *getResultExpr() const {
return cast<Expr>(
getTrailingObjects<Stmt *>()[AssocExprStartIndex + getResultIndex()]);
}
ArrayRef<Expr *> getAssocExprs() const {
return {reinterpret_cast<Expr *const *>(getTrailingObjects<Stmt *>() +
AssocExprStartIndex),
NumAssocs};
}
ArrayRef<TypeSourceInfo *> getAssocTypeSourceInfos() const {
return {getTrailingObjects<TypeSourceInfo *>(), NumAssocs};
}
/// Return the Ith association expression with its TypeSourceInfo,
/// bundled together in GenericSelectionExpr::(Const)Association.
Association getAssociation(unsigned I) {
assert(I < getNumAssocs() &&
"Out-of-range index in GenericSelectionExpr::getAssociation!");
return Association(
cast<Expr>(getTrailingObjects<Stmt *>()[AssocExprStartIndex + I]),
getTrailingObjects<TypeSourceInfo *>()[I],
!isResultDependent() && (getResultIndex() == I));
}
ConstAssociation getAssociation(unsigned I) const {
assert(I < getNumAssocs() &&
"Out-of-range index in GenericSelectionExpr::getAssociation!");
return ConstAssociation(
cast<Expr>(getTrailingObjects<Stmt *>()[AssocExprStartIndex + I]),
getTrailingObjects<TypeSourceInfo *>()[I],
!isResultDependent() && (getResultIndex() == I));
}
association_range associations() {
AssociationIterator Begin(getTrailingObjects<Stmt *>() +
AssocExprStartIndex,
getTrailingObjects<TypeSourceInfo *>(),
/*Offset=*/0, ResultIndex);
AssociationIterator End(Begin.E + NumAssocs, Begin.TSI + NumAssocs,
/*Offset=*/NumAssocs, ResultIndex);
return llvm::make_range(Begin, End);
}
const_association_range associations() const {
ConstAssociationIterator Begin(getTrailingObjects<Stmt *>() +
AssocExprStartIndex,
getTrailingObjects<TypeSourceInfo *>(),
/*Offset=*/0, ResultIndex);
ConstAssociationIterator End(Begin.E + NumAssocs, Begin.TSI + NumAssocs,
/*Offset=*/NumAssocs, ResultIndex);
return llvm::make_range(Begin, End);
}
SourceLocation getGenericLoc() const {
return GenericSelectionExprBits.GenericLoc;
}
SourceLocation getDefaultLoc() const { return DefaultLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const { return getGenericLoc(); }
SourceLocation getEndLoc() const { return getRParenLoc(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == GenericSelectionExprClass;
}
child_range children() {
return child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() +
numTrailingObjects(OverloadToken<Stmt *>()));
}
const_child_range children() const {
return const_child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() +
numTrailingObjects(OverloadToken<Stmt *>()));
}
};
//===----------------------------------------------------------------------===//
// Clang Extensions
//===----------------------------------------------------------------------===//
/// ExtVectorElementExpr - This represents access to specific elements of a
/// vector, and may occur on the left hand side or right hand side. For example
/// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
///
/// Note that the base may have either vector or pointer to vector type, just
/// like a struct field reference.
///
class ExtVectorElementExpr : public Expr {
Stmt *Base;
IdentifierInfo *Accessor;
SourceLocation AccessorLoc;
public:
ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
IdentifierInfo &accessor, SourceLocation loc)
: Expr(ExtVectorElementExprClass, ty, VK,
(VK == VK_PRValue ? OK_Ordinary : OK_VectorComponent)),
Base(base), Accessor(&accessor), AccessorLoc(loc) {
setDependence(computeDependence(this));
}
/// Build an empty vector element expression.
explicit ExtVectorElementExpr(EmptyShell Empty)
: Expr(ExtVectorElementExprClass, Empty) { }
const Expr *getBase() const { return cast<Expr>(Base); }
Expr *getBase() { return cast<Expr>(Base); }
void setBase(Expr *E) { Base = E; }
IdentifierInfo &getAccessor() const { return *Accessor; }
void setAccessor(IdentifierInfo *II) { Accessor = II; }
SourceLocation getAccessorLoc() const { return AccessorLoc; }
void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
/// getNumElements - Get the number of components being selected.
unsigned getNumElements() const;
/// containsDuplicateElements - Return true if any element access is
/// repeated.
bool containsDuplicateElements() const;
/// getEncodedElementAccess - Encode the elements accessed into an llvm
/// aggregate Constant of ConstantInt(s).
void getEncodedElementAccess(SmallVectorImpl<uint32_t> &Elts) const;
SourceLocation getBeginLoc() const LLVM_READONLY {
return getBase()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY { return AccessorLoc; }
/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool isArrow() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == ExtVectorElementExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
const_child_range children() const {
return const_child_range(&Base, &Base + 1);
}
};
/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
class BlockExpr : public Expr {
protected:
BlockDecl *TheBlock;
public:
BlockExpr(BlockDecl *BD, QualType ty)
: Expr(BlockExprClass, ty, VK_PRValue, OK_Ordinary), TheBlock(BD) {
setDependence(computeDependence(this));
}
/// Build an empty block expression.
explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
const BlockDecl *getBlockDecl() const { return TheBlock; }
BlockDecl *getBlockDecl() { return TheBlock; }
void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
// Convenience functions for probing the underlying BlockDecl.
SourceLocation getCaretLocation() const;
const Stmt *getBody() const;
Stmt *getBody();
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCaretLocation();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getBody()->getEndLoc();
}
/// getFunctionType - Return the underlying function type for this block.
const FunctionProtoType *getFunctionType() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == BlockExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// Copy initialization expr of a __block variable and a boolean flag that
/// indicates whether the expression can throw.
struct BlockVarCopyInit {
BlockVarCopyInit() = default;
BlockVarCopyInit(Expr *CopyExpr, bool CanThrow)
: ExprAndFlag(CopyExpr, CanThrow) {}
void setExprAndFlag(Expr *CopyExpr, bool CanThrow) {
ExprAndFlag.setPointerAndInt(CopyExpr, CanThrow);
}
Expr *getCopyExpr() const { return ExprAndFlag.getPointer(); }
bool canThrow() const { return ExprAndFlag.getInt(); }
llvm::PointerIntPair<Expr *, 1, bool> ExprAndFlag;
};
/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
/// This AST node provides support for reinterpreting a type to another
/// type of the same size.
class AsTypeExpr : public Expr {
private:
Stmt *SrcExpr;
SourceLocation BuiltinLoc, RParenLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
public:
AsTypeExpr(Expr *SrcExpr, QualType DstType, ExprValueKind VK,
ExprObjectKind OK, SourceLocation BuiltinLoc,
SourceLocation RParenLoc)
: Expr(AsTypeExprClass, DstType, VK, OK), SrcExpr(SrcExpr),
BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {
setDependence(computeDependence(this));
}
/// getSrcExpr - Return the Expr to be converted.
Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
/// getBuiltinLoc - Return the location of the __builtin_astype token.
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
/// getRParenLoc - Return the location of final right parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AsTypeExprClass;
}
// Iterators
child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
const_child_range children() const {
return const_child_range(&SrcExpr, &SrcExpr + 1);
}
};
/// PseudoObjectExpr - An expression which accesses a pseudo-object
/// l-value. A pseudo-object is an abstract object, accesses to which
/// are translated to calls. The pseudo-object expression has a
/// syntactic form, which shows how the expression was actually
/// written in the source code, and a semantic form, which is a series
/// of expressions to be executed in order which detail how the
/// operation is actually evaluated. Optionally, one of the semantic
/// forms may also provide a result value for the expression.
///
/// If any of the semantic-form expressions is an OpaqueValueExpr,
/// that OVE is required to have a source expression, and it is bound
/// to the result of that source expression. Such OVEs may appear
/// only in subsequent semantic-form expressions and as
/// sub-expressions of the syntactic form.
///
/// PseudoObjectExpr should be used only when an operation can be
/// usefully described in terms of fairly simple rewrite rules on
/// objects and functions that are meant to be used by end-developers.
/// For example, under the Itanium ABI, dynamic casts are implemented
/// as a call to a runtime function called __dynamic_cast; using this
/// class to describe that would be inappropriate because that call is
/// not really part of the user-visible semantics, and instead the
/// cast is properly reflected in the AST and IR-generation has been
/// taught to generate the call as necessary. In contrast, an
/// Objective-C property access is semantically defined to be
/// equivalent to a particular message send, and this is very much
/// part of the user model. The name of this class encourages this
/// modelling design.
class PseudoObjectExpr final
: public Expr,
private llvm::TrailingObjects<PseudoObjectExpr, Expr *> {
// PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
// Always at least two, because the first sub-expression is the
// syntactic form.
// PseudoObjectExprBits.ResultIndex - The index of the
// sub-expression holding the result. 0 means the result is void,
// which is unambiguous because it's the index of the syntactic
// form. Note that this is therefore 1 higher than the value passed
// in to Create, which is an index within the semantic forms.
// Note also that ASTStmtWriter assumes this encoding.
Expr **getSubExprsBuffer() { return getTrailingObjects<Expr *>(); }
const Expr * const *getSubExprsBuffer() const {
return getTrailingObjects<Expr *>();
}
PseudoObjectExpr(QualType type, ExprValueKind VK,
Expr *syntactic, ArrayRef<Expr*> semantic,
unsigned resultIndex);
PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
unsigned getNumSubExprs() const {
return PseudoObjectExprBits.NumSubExprs;
}
public:
/// NoResult - A value for the result index indicating that there is
/// no semantic result.
enum : unsigned { NoResult = ~0U };
static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
ArrayRef<Expr*> semantic,
unsigned resultIndex);
static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
unsigned numSemanticExprs);
/// Return the syntactic form of this expression, i.e. the
/// expression it actually looks like. Likely to be expressed in
/// terms of OpaqueValueExprs bound in the semantic form.
Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
/// Return the index of the result-bearing expression into the semantics
/// expressions, or PseudoObjectExpr::NoResult if there is none.
unsigned getResultExprIndex() const {
if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
return PseudoObjectExprBits.ResultIndex - 1;
}
/// Return the result-bearing expression, or null if there is none.
Expr *getResultExpr() {
if (PseudoObjectExprBits.ResultIndex == 0)
return nullptr;
return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
}
const Expr *getResultExpr() const {
return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
}
unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
typedef Expr * const *semantics_iterator;
typedef const Expr * const *const_semantics_iterator;
semantics_iterator semantics_begin() {
return getSubExprsBuffer() + 1;
}
const_semantics_iterator semantics_begin() const {
return getSubExprsBuffer() + 1;
}
semantics_iterator semantics_end() {
return getSubExprsBuffer() + getNumSubExprs();
}
const_semantics_iterator semantics_end() const {
return getSubExprsBuffer() + getNumSubExprs();
}
llvm::iterator_range<semantics_iterator> semantics() {
return llvm::make_range(semantics_begin(), semantics_end());
}
llvm::iterator_range<const_semantics_iterator> semantics() const {
return llvm::make_range(semantics_begin(), semantics_end());
}
Expr *getSemanticExpr(unsigned index) {
assert(index + 1 < getNumSubExprs());
return getSubExprsBuffer()[index + 1];
}
const Expr *getSemanticExpr(unsigned index) const {
return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
}
SourceLocation getExprLoc() const LLVM_READONLY {
return getSyntacticForm()->getExprLoc();
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getSyntacticForm()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getSyntacticForm()->getEndLoc();
}
child_range children() {
const_child_range CCR =
const_cast<const PseudoObjectExpr *>(this)->children();
return child_range(cast_away_const(CCR.begin()),
cast_away_const(CCR.end()));
}
const_child_range children() const {
Stmt *const *cs = const_cast<Stmt *const *>(
reinterpret_cast<const Stmt *const *>(getSubExprsBuffer()));
return const_child_range(cs, cs + getNumSubExprs());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == PseudoObjectExprClass;
}
friend TrailingObjects;
friend class ASTStmtReader;
};
/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>,
/// and corresponding __opencl_atomic_* for OpenCL 2.0.
/// All of these instructions take one primary pointer, at least one memory
/// order. The instructions for which getScopeModel returns non-null value
/// take one synch scope.
class AtomicExpr : public Expr {
public:
enum AtomicOp {
#define BUILTIN(ID, TYPE, ATTRS)
#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
#include "clang/Basic/Builtins.def"
// Avoid trailing comma
BI_First = 0
};
private:
/// Location of sub-expressions.
/// The location of Scope sub-expression is NumSubExprs - 1, which is
/// not fixed, therefore is not defined in enum.
enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
Stmt *SubExprs[END_EXPR + 1];
unsigned NumSubExprs;
SourceLocation BuiltinLoc, RParenLoc;
AtomicOp Op;
friend class ASTStmtReader;
public:
AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
AtomicOp op, SourceLocation RP);
/// Determine the number of arguments the specified atomic builtin
/// should have.
static unsigned getNumSubExprs(AtomicOp Op);
/// Build an empty AtomicExpr.
explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
Expr *getPtr() const {
return cast<Expr>(SubExprs[PTR]);
}
Expr *getOrder() const {
return cast<Expr>(SubExprs[ORDER]);
}
Expr *getScope() const {
assert(getScopeModel() && "No scope");
return cast<Expr>(SubExprs[NumSubExprs - 1]);
}
Expr *getVal1() const {
if (Op == AO__c11_atomic_init || Op == AO__opencl_atomic_init)
return cast<Expr>(SubExprs[ORDER]);
assert(NumSubExprs > VAL1);
return cast<Expr>(SubExprs[VAL1]);
}
Expr *getOrderFail() const {
assert(NumSubExprs > ORDER_FAIL);
return cast<Expr>(SubExprs[ORDER_FAIL]);
}
Expr *getVal2() const {
if (Op == AO__atomic_exchange)
return cast<Expr>(SubExprs[ORDER_FAIL]);
assert(NumSubExprs > VAL2);
return cast<Expr>(SubExprs[VAL2]);
}
Expr *getWeak() const {
assert(NumSubExprs > WEAK);
return cast<Expr>(SubExprs[WEAK]);
}
QualType getValueType() const;
AtomicOp getOp() const { return Op; }
unsigned getNumSubExprs() const { return NumSubExprs; }
Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
const Expr * const *getSubExprs() const {
return reinterpret_cast<Expr * const *>(SubExprs);
}
bool isVolatile() const {
return getPtr()->getType()->getPointeeType().isVolatileQualified();
}
bool isCmpXChg() const {
return getOp() == AO__c11_atomic_compare_exchange_strong ||
getOp() == AO__c11_atomic_compare_exchange_weak ||
getOp() == AO__hip_atomic_compare_exchange_strong ||
getOp() == AO__opencl_atomic_compare_exchange_strong ||
getOp() == AO__opencl_atomic_compare_exchange_weak ||
getOp() == AO__hip_atomic_compare_exchange_weak ||
getOp() == AO__atomic_compare_exchange ||
getOp() == AO__atomic_compare_exchange_n;
}
bool isOpenCL() const {
return getOp() >= AO__opencl_atomic_init &&
getOp() <= AO__opencl_atomic_fetch_max;
}
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AtomicExprClass;
}
// Iterators
child_range children() {
return child_range(SubExprs, SubExprs+NumSubExprs);
}
const_child_range children() const {
return const_child_range(SubExprs, SubExprs + NumSubExprs);
}
/// Get atomic scope model for the atomic op code.
/// \return empty atomic scope model if the atomic op code does not have
/// scope operand.
static std::unique_ptr<AtomicScopeModel> getScopeModel(AtomicOp Op) {
auto Kind =
(Op >= AO__opencl_atomic_load && Op <= AO__opencl_atomic_fetch_max)
? AtomicScopeModelKind::OpenCL
: (Op >= AO__hip_atomic_load && Op <= AO__hip_atomic_fetch_max)
? AtomicScopeModelKind::HIP
: AtomicScopeModelKind::None;
return AtomicScopeModel::create(Kind);
}
/// Get atomic scope model.
/// \return empty atomic scope model if this atomic expression does not have
/// scope operand.
std::unique_ptr<AtomicScopeModel> getScopeModel() const {
return getScopeModel(getOp());
}
};
/// TypoExpr - Internal placeholder for expressions where typo correction
/// still needs to be performed and/or an error diagnostic emitted.
class TypoExpr : public Expr {
// The location for the typo name.
SourceLocation TypoLoc;
public:
TypoExpr(QualType T, SourceLocation TypoLoc)
: Expr(TypoExprClass, T, VK_LValue, OK_Ordinary), TypoLoc(TypoLoc) {
assert(T->isDependentType() && "TypoExpr given a non-dependent type");
setDependence(ExprDependence::TypeValueInstantiation |
ExprDependence::Error);
}
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
SourceLocation getBeginLoc() const LLVM_READONLY { return TypoLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return TypoLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == TypoExprClass;
}
};
/// Frontend produces RecoveryExprs on semantic errors that prevent creating
/// other well-formed expressions. E.g. when type-checking of a binary operator
/// fails, we cannot produce a BinaryOperator expression. Instead, we can choose
/// to produce a recovery expression storing left and right operands.
///
/// RecoveryExpr does not have any semantic meaning in C++, it is only useful to
/// preserve expressions in AST that would otherwise be dropped. It captures
/// subexpressions of some expression that we could not construct and source
/// range covered by the expression.
///
/// By default, RecoveryExpr uses dependence-bits to take advantage of existing
/// machinery to deal with dependent code in C++, e.g. RecoveryExpr is preserved
/// in `decltype(<broken-expr>)` as part of the `DependentDecltypeType`. In
/// addition to that, clang does not report most errors on dependent
/// expressions, so we get rid of bogus errors for free. However, note that
/// unlike other dependent expressions, RecoveryExpr can be produced in
/// non-template contexts.
///
/// We will preserve the type in RecoveryExpr when the type is known, e.g.
/// preserving the return type for a broken non-overloaded function call, a
/// overloaded call where all candidates have the same return type. In this
/// case, the expression is not type-dependent (unless the known type is itself
/// dependent)
///
/// One can also reliably suppress all bogus errors on expressions containing
/// recovery expressions by examining results of Expr::containsErrors().
class RecoveryExpr final : public Expr,
private llvm::TrailingObjects<RecoveryExpr, Expr *> {
public:
static RecoveryExpr *Create(ASTContext &Ctx, QualType T,
SourceLocation BeginLoc, SourceLocation EndLoc,
ArrayRef<Expr *> SubExprs);
static RecoveryExpr *CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs);
ArrayRef<Expr *> subExpressions() {
auto *B = getTrailingObjects<Expr *>();
return llvm::ArrayRef(B, B + NumExprs);
}
ArrayRef<const Expr *> subExpressions() const {
return const_cast<RecoveryExpr *>(this)->subExpressions();
}
child_range children() {
Stmt **B = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
return child_range(B, B + NumExprs);
}
SourceLocation getBeginLoc() const { return BeginLoc; }
SourceLocation getEndLoc() const { return EndLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == RecoveryExprClass;
}
private:
RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
SourceLocation EndLoc, ArrayRef<Expr *> SubExprs);
RecoveryExpr(EmptyShell Empty, unsigned NumSubExprs)
: Expr(RecoveryExprClass, Empty), NumExprs(NumSubExprs) {}
size_t numTrailingObjects(OverloadToken<Stmt *>) const { return NumExprs; }
SourceLocation BeginLoc, EndLoc;
unsigned NumExprs;
friend TrailingObjects;
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
} // end namespace clang
#endif // LLVM_CLANG_AST_EXPR_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|