aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16-rt/lib/ubsan/ubsan_handlers.cpp
blob: 410292a0d53878d94f6592676168d5944382f12c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
//===-- ubsan_handlers.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Error logging entry points for the UBSan runtime.
//
//===----------------------------------------------------------------------===//

#include "ubsan_platform.h"
#if CAN_SANITIZE_UB
#include "ubsan_handlers.h"
#include "ubsan_diag.h"
#include "ubsan_flags.h"
#include "ubsan_monitor.h"
#include "ubsan_value.h"

#include "sanitizer_common/sanitizer_common.h"

using namespace __sanitizer;
using namespace __ubsan;

namespace __ubsan {
bool ignoreReport(SourceLocation SLoc, ReportOptions Opts, ErrorType ET) {
  // We are not allowed to skip error report: if we are in unrecoverable
  // handler, we have to terminate the program right now, and therefore
  // have to print some diagnostic.
  //
  // Even if source location is disabled, it doesn't mean that we have
  // already report an error to the user: some concurrently running
  // thread could have acquired it, but not yet printed the report.
  if (Opts.FromUnrecoverableHandler)
    return false;
  return SLoc.isDisabled() || IsPCSuppressed(ET, Opts.pc, SLoc.getFilename());
}

/// Situations in which we might emit a check for the suitability of a
/// pointer or glvalue. Needs to be kept in sync with CodeGenFunction.h in
/// clang.
enum TypeCheckKind {
  /// Checking the operand of a load. Must be suitably sized and aligned.
  TCK_Load,
  /// Checking the destination of a store. Must be suitably sized and aligned.
  TCK_Store,
  /// Checking the bound value in a reference binding. Must be suitably sized
  /// and aligned, but is not required to refer to an object (until the
  /// reference is used), per core issue 453.
  TCK_ReferenceBinding,
  /// Checking the object expression in a non-static data member access. Must
  /// be an object within its lifetime.
  TCK_MemberAccess,
  /// Checking the 'this' pointer for a call to a non-static member function.
  /// Must be an object within its lifetime.
  TCK_MemberCall,
  /// Checking the 'this' pointer for a constructor call.
  TCK_ConstructorCall,
  /// Checking the operand of a static_cast to a derived pointer type. Must be
  /// null or an object within its lifetime.
  TCK_DowncastPointer,
  /// Checking the operand of a static_cast to a derived reference type. Must
  /// be an object within its lifetime.
  TCK_DowncastReference,
  /// Checking the operand of a cast to a base object. Must be suitably sized
  /// and aligned.
  TCK_Upcast,
  /// Checking the operand of a cast to a virtual base object. Must be an
  /// object within its lifetime.
  TCK_UpcastToVirtualBase,
  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
  TCK_NonnullAssign,
  /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
  /// null or an object within its lifetime.
  TCK_DynamicOperation
};

extern const char *const TypeCheckKinds[] = {
    "load of", "store to", "reference binding to", "member access within",
    "member call on", "constructor call on", "downcast of", "downcast of",
    "upcast of", "cast to virtual base of", "_Nonnull binding to",
    "dynamic operation on"};
}

static void handleTypeMismatchImpl(TypeMismatchData *Data, ValueHandle Pointer,
                                   ReportOptions Opts) {
  Location Loc = Data->Loc.acquire();

  uptr Alignment = (uptr)1 << Data->LogAlignment;
  ErrorType ET;
  if (!Pointer)
    ET = (Data->TypeCheckKind == TCK_NonnullAssign)
             ? ErrorType::NullPointerUseWithNullability
             : ErrorType::NullPointerUse;
  else if (Pointer & (Alignment - 1))
    ET = ErrorType::MisalignedPointerUse;
  else
    ET = ErrorType::InsufficientObjectSize;

  // Use the SourceLocation from Data to track deduplication, even if it's
  // invalid.
  if (ignoreReport(Loc.getSourceLocation(), Opts, ET))
    return;

  SymbolizedStackHolder FallbackLoc;
  if (Data->Loc.isInvalid()) {
    FallbackLoc.reset(getCallerLocation(Opts.pc));
    Loc = FallbackLoc;
  }

  ScopedReport R(Opts, Loc, ET);

  switch (ET) {
  case ErrorType::NullPointerUse:
  case ErrorType::NullPointerUseWithNullability:
    Diag(Loc, DL_Error, ET, "%0 null pointer of type %1")
        << TypeCheckKinds[Data->TypeCheckKind] << Data->Type;
    break;
  case ErrorType::MisalignedPointerUse:
    Diag(Loc, DL_Error, ET, "%0 misaligned address %1 for type %3, "
                        "which requires %2 byte alignment")
        << TypeCheckKinds[Data->TypeCheckKind] << (void *)Pointer << Alignment
        << Data->Type;
    break;
  case ErrorType::InsufficientObjectSize:
    Diag(Loc, DL_Error, ET, "%0 address %1 with insufficient space "
                        "for an object of type %2")
        << TypeCheckKinds[Data->TypeCheckKind] << (void *)Pointer << Data->Type;
    break;
  default:
    UNREACHABLE("unexpected error type!");
  }

  if (Pointer)
    Diag(Pointer, DL_Note, ET, "pointer points here");
}

void __ubsan::__ubsan_handle_type_mismatch_v1(TypeMismatchData *Data,
                                              ValueHandle Pointer) {
  GET_REPORT_OPTIONS(false);
  handleTypeMismatchImpl(Data, Pointer, Opts);
}
void __ubsan::__ubsan_handle_type_mismatch_v1_abort(TypeMismatchData *Data,
                                                    ValueHandle Pointer) {
  GET_REPORT_OPTIONS(true);
  handleTypeMismatchImpl(Data, Pointer, Opts);
  Die();
}

static void handleAlignmentAssumptionImpl(AlignmentAssumptionData *Data,
                                          ValueHandle Pointer,
                                          ValueHandle Alignment,
                                          ValueHandle Offset,
                                          ReportOptions Opts) {
  Location Loc = Data->Loc.acquire();
  SourceLocation AssumptionLoc = Data->AssumptionLoc.acquire();

  ErrorType ET = ErrorType::AlignmentAssumption;

  if (ignoreReport(Loc.getSourceLocation(), Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  uptr RealPointer = Pointer - Offset;
  uptr LSB = LeastSignificantSetBitIndex(RealPointer);
  uptr ActualAlignment = uptr(1) << LSB;

  uptr Mask = Alignment - 1;
  uptr MisAlignmentOffset = RealPointer & Mask;

  if (!Offset) {
    Diag(Loc, DL_Error, ET,
         "assumption of %0 byte alignment for pointer of type %1 failed")
        << Alignment << Data->Type;
  } else {
    Diag(Loc, DL_Error, ET,
         "assumption of %0 byte alignment (with offset of %1 byte) for pointer "
         "of type %2 failed")
        << Alignment << Offset << Data->Type;
  }

  if (!AssumptionLoc.isInvalid())
    Diag(AssumptionLoc, DL_Note, ET, "alignment assumption was specified here");

  Diag(RealPointer, DL_Note, ET,
       "%0address is %1 aligned, misalignment offset is %2 bytes")
      << (Offset ? "offset " : "") << ActualAlignment << MisAlignmentOffset;
}

void __ubsan::__ubsan_handle_alignment_assumption(AlignmentAssumptionData *Data,
                                                  ValueHandle Pointer,
                                                  ValueHandle Alignment,
                                                  ValueHandle Offset) {
  GET_REPORT_OPTIONS(false);
  handleAlignmentAssumptionImpl(Data, Pointer, Alignment, Offset, Opts);
}
void __ubsan::__ubsan_handle_alignment_assumption_abort(
    AlignmentAssumptionData *Data, ValueHandle Pointer, ValueHandle Alignment,
    ValueHandle Offset) {
  GET_REPORT_OPTIONS(true);
  handleAlignmentAssumptionImpl(Data, Pointer, Alignment, Offset, Opts);
  Die();
}

/// \brief Common diagnostic emission for various forms of integer overflow.
template <typename T>
static void handleIntegerOverflowImpl(OverflowData *Data, ValueHandle LHS,
                                      const char *Operator, T RHS,
                                      ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  bool IsSigned = Data->Type.isSignedIntegerTy();
  ErrorType ET = IsSigned ? ErrorType::SignedIntegerOverflow
                          : ErrorType::UnsignedIntegerOverflow;

  if (ignoreReport(Loc, Opts, ET))
    return;

  // If this is an unsigned overflow in non-fatal mode, potentially ignore it.
  if (!IsSigned && !Opts.FromUnrecoverableHandler &&
      flags()->silence_unsigned_overflow)
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET, "%0 integer overflow: "
                          "%1 %2 %3 cannot be represented in type %4")
      << (IsSigned ? "signed" : "unsigned") << Value(Data->Type, LHS)
      << Operator << RHS << Data->Type;
}

#define UBSAN_OVERFLOW_HANDLER(handler_name, op, unrecoverable)                \
  void __ubsan::handler_name(OverflowData *Data, ValueHandle LHS,              \
                             ValueHandle RHS) {                                \
    GET_REPORT_OPTIONS(unrecoverable);                                         \
    handleIntegerOverflowImpl(Data, LHS, op, Value(Data->Type, RHS), Opts);    \
    if (unrecoverable)                                                         \
      Die();                                                                   \
  }

UBSAN_OVERFLOW_HANDLER(__ubsan_handle_add_overflow, "+", false)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_add_overflow_abort, "+", true)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_sub_overflow, "-", false)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_sub_overflow_abort, "-", true)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_mul_overflow, "*", false)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_mul_overflow_abort, "*", true)

static void handleNegateOverflowImpl(OverflowData *Data, ValueHandle OldVal,
                                     ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  bool IsSigned = Data->Type.isSignedIntegerTy();
  ErrorType ET = IsSigned ? ErrorType::SignedIntegerOverflow
                          : ErrorType::UnsignedIntegerOverflow;

  if (ignoreReport(Loc, Opts, ET))
    return;

  if (!IsSigned && flags()->silence_unsigned_overflow)
    return;

  ScopedReport R(Opts, Loc, ET);

  if (IsSigned)
    Diag(Loc, DL_Error, ET,
         "negation of %0 cannot be represented in type %1; "
         "cast to an unsigned type to negate this value to itself")
        << Value(Data->Type, OldVal) << Data->Type;
  else
    Diag(Loc, DL_Error, ET, "negation of %0 cannot be represented in type %1")
        << Value(Data->Type, OldVal) << Data->Type;
}

void __ubsan::__ubsan_handle_negate_overflow(OverflowData *Data,
                                             ValueHandle OldVal) {
  GET_REPORT_OPTIONS(false);
  handleNegateOverflowImpl(Data, OldVal, Opts);
}
void __ubsan::__ubsan_handle_negate_overflow_abort(OverflowData *Data,
                                                    ValueHandle OldVal) {
  GET_REPORT_OPTIONS(true);
  handleNegateOverflowImpl(Data, OldVal, Opts);
  Die();
}

static void handleDivremOverflowImpl(OverflowData *Data, ValueHandle LHS,
                                     ValueHandle RHS, ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  Value LHSVal(Data->Type, LHS);
  Value RHSVal(Data->Type, RHS);

  ErrorType ET;
  if (RHSVal.isMinusOne())
    ET = ErrorType::SignedIntegerOverflow;
  else if (Data->Type.isIntegerTy())
    ET = ErrorType::IntegerDivideByZero;
  else
    ET = ErrorType::FloatDivideByZero;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  switch (ET) {
  case ErrorType::SignedIntegerOverflow:
    Diag(Loc, DL_Error, ET,
         "division of %0 by -1 cannot be represented in type %1")
        << LHSVal << Data->Type;
    break;
  default:
    Diag(Loc, DL_Error, ET, "division by zero");
    break;
  }
}

void __ubsan::__ubsan_handle_divrem_overflow(OverflowData *Data,
                                             ValueHandle LHS, ValueHandle RHS) {
  GET_REPORT_OPTIONS(false);
  handleDivremOverflowImpl(Data, LHS, RHS, Opts);
}
void __ubsan::__ubsan_handle_divrem_overflow_abort(OverflowData *Data,
                                                    ValueHandle LHS,
                                                    ValueHandle RHS) {
  GET_REPORT_OPTIONS(true);
  handleDivremOverflowImpl(Data, LHS, RHS, Opts);
  Die();
}

static void handleShiftOutOfBoundsImpl(ShiftOutOfBoundsData *Data,
                                       ValueHandle LHS, ValueHandle RHS,
                                       ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  Value LHSVal(Data->LHSType, LHS);
  Value RHSVal(Data->RHSType, RHS);

  ErrorType ET;
  if (RHSVal.isNegative() ||
      RHSVal.getPositiveIntValue() >= Data->LHSType.getIntegerBitWidth())
    ET = ErrorType::InvalidShiftExponent;
  else
    ET = ErrorType::InvalidShiftBase;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  if (ET == ErrorType::InvalidShiftExponent) {
    if (RHSVal.isNegative())
      Diag(Loc, DL_Error, ET, "shift exponent %0 is negative") << RHSVal;
    else
      Diag(Loc, DL_Error, ET,
           "shift exponent %0 is too large for %1-bit type %2")
          << RHSVal << Data->LHSType.getIntegerBitWidth() << Data->LHSType;
  } else {
    if (LHSVal.isNegative())
      Diag(Loc, DL_Error, ET, "left shift of negative value %0") << LHSVal;
    else
      Diag(Loc, DL_Error, ET,
           "left shift of %0 by %1 places cannot be represented in type %2")
          << LHSVal << RHSVal << Data->LHSType;
  }
}

void __ubsan::__ubsan_handle_shift_out_of_bounds(ShiftOutOfBoundsData *Data,
                                                 ValueHandle LHS,
                                                 ValueHandle RHS) {
  GET_REPORT_OPTIONS(false);
  handleShiftOutOfBoundsImpl(Data, LHS, RHS, Opts);
}
void __ubsan::__ubsan_handle_shift_out_of_bounds_abort(
                                                     ShiftOutOfBoundsData *Data,
                                                     ValueHandle LHS,
                                                     ValueHandle RHS) {
  GET_REPORT_OPTIONS(true);
  handleShiftOutOfBoundsImpl(Data, LHS, RHS, Opts);
  Die();
}

static void handleOutOfBoundsImpl(OutOfBoundsData *Data, ValueHandle Index,
                                  ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::OutOfBoundsIndex;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Value IndexVal(Data->IndexType, Index);
  Diag(Loc, DL_Error, ET, "index %0 out of bounds for type %1")
    << IndexVal << Data->ArrayType;
}

void __ubsan::__ubsan_handle_out_of_bounds(OutOfBoundsData *Data,
                                           ValueHandle Index) {
  GET_REPORT_OPTIONS(false);
  handleOutOfBoundsImpl(Data, Index, Opts);
}
void __ubsan::__ubsan_handle_out_of_bounds_abort(OutOfBoundsData *Data,
                                                 ValueHandle Index) {
  GET_REPORT_OPTIONS(true);
  handleOutOfBoundsImpl(Data, Index, Opts);
  Die();
}

static void handleBuiltinUnreachableImpl(UnreachableData *Data,
                                         ReportOptions Opts) {
  ErrorType ET = ErrorType::UnreachableCall;
  ScopedReport R(Opts, Data->Loc, ET);
  Diag(Data->Loc, DL_Error, ET,
       "execution reached an unreachable program point");
}

void __ubsan::__ubsan_handle_builtin_unreachable(UnreachableData *Data) {
  GET_REPORT_OPTIONS(true);
  handleBuiltinUnreachableImpl(Data, Opts);
  Die();
}

static void handleMissingReturnImpl(UnreachableData *Data, ReportOptions Opts) {
  ErrorType ET = ErrorType::MissingReturn;
  ScopedReport R(Opts, Data->Loc, ET);
  Diag(Data->Loc, DL_Error, ET,
       "execution reached the end of a value-returning function "
       "without returning a value");
}

void __ubsan::__ubsan_handle_missing_return(UnreachableData *Data) {
  GET_REPORT_OPTIONS(true);
  handleMissingReturnImpl(Data, Opts);
  Die();
}

static void handleVLABoundNotPositive(VLABoundData *Data, ValueHandle Bound,
                                      ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::NonPositiveVLAIndex;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET, "variable length array bound evaluates to "
                          "non-positive value %0")
      << Value(Data->Type, Bound);
}

void __ubsan::__ubsan_handle_vla_bound_not_positive(VLABoundData *Data,
                                                    ValueHandle Bound) {
  GET_REPORT_OPTIONS(false);
  handleVLABoundNotPositive(Data, Bound, Opts);
}
void __ubsan::__ubsan_handle_vla_bound_not_positive_abort(VLABoundData *Data,
                                                          ValueHandle Bound) {
  GET_REPORT_OPTIONS(true);
  handleVLABoundNotPositive(Data, Bound, Opts);
  Die();
}

static bool looksLikeFloatCastOverflowDataV1(void *Data) {
  // First field is either a pointer to filename or a pointer to a
  // TypeDescriptor.
  u8 *FilenameOrTypeDescriptor;
  internal_memcpy(&FilenameOrTypeDescriptor, Data,
                  sizeof(FilenameOrTypeDescriptor));

  // Heuristic: For float_cast_overflow, the TypeKind will be either TK_Integer
  // (0x0), TK_Float (0x1) or TK_Unknown (0xff). If both types are known,
  // adding both bytes will be 0 or 1 (for BE or LE). If it were a filename,
  // adding two printable characters will not yield such a value. Otherwise,
  // if one of them is 0xff, this is most likely TK_Unknown type descriptor.
  u16 MaybeFromTypeKind =
      FilenameOrTypeDescriptor[0] + FilenameOrTypeDescriptor[1];
  return MaybeFromTypeKind < 2 || FilenameOrTypeDescriptor[0] == 0xff ||
         FilenameOrTypeDescriptor[1] == 0xff;
}

static void handleFloatCastOverflow(void *DataPtr, ValueHandle From,
                                    ReportOptions Opts) {
  SymbolizedStackHolder CallerLoc;
  Location Loc;
  const TypeDescriptor *FromType, *ToType;
  ErrorType ET = ErrorType::FloatCastOverflow;

  if (looksLikeFloatCastOverflowDataV1(DataPtr)) {
    auto Data = reinterpret_cast<FloatCastOverflowData *>(DataPtr);
    CallerLoc.reset(getCallerLocation(Opts.pc));
    Loc = CallerLoc;
    FromType = &Data->FromType;
    ToType = &Data->ToType;
  } else {
    auto Data = reinterpret_cast<FloatCastOverflowDataV2 *>(DataPtr);
    SourceLocation SLoc = Data->Loc.acquire();
    if (ignoreReport(SLoc, Opts, ET))
      return;
    Loc = SLoc;
    FromType = &Data->FromType;
    ToType = &Data->ToType;
  }

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET,
       "%0 is outside the range of representable values of type %2")
      << Value(*FromType, From) << *FromType << *ToType;
}

void __ubsan::__ubsan_handle_float_cast_overflow(void *Data, ValueHandle From) {
  GET_REPORT_OPTIONS(false);
  handleFloatCastOverflow(Data, From, Opts);
}
void __ubsan::__ubsan_handle_float_cast_overflow_abort(void *Data,
                                                       ValueHandle From) {
  GET_REPORT_OPTIONS(true);
  handleFloatCastOverflow(Data, From, Opts);
  Die();
}

static void handleLoadInvalidValue(InvalidValueData *Data, ValueHandle Val,
                                   ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  // This check could be more precise if we used different handlers for
  // -fsanitize=bool and -fsanitize=enum.
  bool IsBool = (0 == internal_strcmp(Data->Type.getTypeName(), "'bool'")) ||
                (0 == internal_strncmp(Data->Type.getTypeName(), "'BOOL'", 6));
  ErrorType ET =
      IsBool ? ErrorType::InvalidBoolLoad : ErrorType::InvalidEnumLoad;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET,
       "load of value %0, which is not a valid value for type %1")
      << Value(Data->Type, Val) << Data->Type;
}

void __ubsan::__ubsan_handle_load_invalid_value(InvalidValueData *Data,
                                                ValueHandle Val) {
  GET_REPORT_OPTIONS(false);
  handleLoadInvalidValue(Data, Val, Opts);
}
void __ubsan::__ubsan_handle_load_invalid_value_abort(InvalidValueData *Data,
                                                      ValueHandle Val) {
  GET_REPORT_OPTIONS(true);
  handleLoadInvalidValue(Data, Val, Opts);
  Die();
}

static void handleImplicitConversion(ImplicitConversionData *Data,
                                     ReportOptions Opts, ValueHandle Src,
                                     ValueHandle Dst) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::GenericUB;

  const TypeDescriptor &SrcTy = Data->FromType;
  const TypeDescriptor &DstTy = Data->ToType;

  bool SrcSigned = SrcTy.isSignedIntegerTy();
  bool DstSigned = DstTy.isSignedIntegerTy();

  switch (Data->Kind) {
  case ICCK_IntegerTruncation: { // Legacy, no longer used.
    // Let's figure out what it should be as per the new types, and upgrade.
    // If both types are unsigned, then it's an unsigned truncation.
    // Else, it is a signed truncation.
    if (!SrcSigned && !DstSigned) {
      ET = ErrorType::ImplicitUnsignedIntegerTruncation;
    } else {
      ET = ErrorType::ImplicitSignedIntegerTruncation;
    }
    break;
  }
  case ICCK_UnsignedIntegerTruncation:
    ET = ErrorType::ImplicitUnsignedIntegerTruncation;
    break;
  case ICCK_SignedIntegerTruncation:
    ET = ErrorType::ImplicitSignedIntegerTruncation;
    break;
  case ICCK_IntegerSignChange:
    ET = ErrorType::ImplicitIntegerSignChange;
    break;
  case ICCK_SignedIntegerTruncationOrSignChange:
    ET = ErrorType::ImplicitSignedIntegerTruncationOrSignChange;
    break;
  }

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  // FIXME: is it possible to dump the values as hex with fixed width?

  Diag(Loc, DL_Error, ET,
       "implicit conversion from type %0 of value %1 (%2-bit, %3signed) to "
       "type %4 changed the value to %5 (%6-bit, %7signed)")
      << SrcTy << Value(SrcTy, Src) << SrcTy.getIntegerBitWidth()
      << (SrcSigned ? "" : "un") << DstTy << Value(DstTy, Dst)
      << DstTy.getIntegerBitWidth() << (DstSigned ? "" : "un");
}

void __ubsan::__ubsan_handle_implicit_conversion(ImplicitConversionData *Data,
                                                 ValueHandle Src,
                                                 ValueHandle Dst) {
  GET_REPORT_OPTIONS(false);
  handleImplicitConversion(Data, Opts, Src, Dst);
}
void __ubsan::__ubsan_handle_implicit_conversion_abort(
    ImplicitConversionData *Data, ValueHandle Src, ValueHandle Dst) {
  GET_REPORT_OPTIONS(true);
  handleImplicitConversion(Data, Opts, Src, Dst);
  Die();
}

static void handleInvalidBuiltin(InvalidBuiltinData *Data, ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::InvalidBuiltin;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET,
       "passing zero to %0, which is not a valid argument")
    << ((Data->Kind == BCK_CTZPassedZero) ? "ctz()" : "clz()");
}

void __ubsan::__ubsan_handle_invalid_builtin(InvalidBuiltinData *Data) {
  GET_REPORT_OPTIONS(true);
  handleInvalidBuiltin(Data, Opts);
}
void __ubsan::__ubsan_handle_invalid_builtin_abort(InvalidBuiltinData *Data) {
  GET_REPORT_OPTIONS(true);
  handleInvalidBuiltin(Data, Opts);
  Die();
}

static void handleInvalidObjCCast(InvalidObjCCast *Data, ValueHandle Pointer,
                                  ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::InvalidObjCCast;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  const char *GivenClass = getObjCClassName(Pointer);
  const char *GivenClassStr = GivenClass ? GivenClass : "<unknown type>";

  Diag(Loc, DL_Error, ET,
       "invalid ObjC cast, object is a '%0', but expected a %1")
      << GivenClassStr << Data->ExpectedType;
}

void __ubsan::__ubsan_handle_invalid_objc_cast(InvalidObjCCast *Data,
                                               ValueHandle Pointer) {
  GET_REPORT_OPTIONS(false);
  handleInvalidObjCCast(Data, Pointer, Opts);
}
void __ubsan::__ubsan_handle_invalid_objc_cast_abort(InvalidObjCCast *Data,
                                                     ValueHandle Pointer) {
  GET_REPORT_OPTIONS(true);
  handleInvalidObjCCast(Data, Pointer, Opts);
  Die();
}

static void handleNonNullReturn(NonNullReturnData *Data, SourceLocation *LocPtr,
                                ReportOptions Opts, bool IsAttr) {
  if (!LocPtr)
    UNREACHABLE("source location pointer is null!");

  SourceLocation Loc = LocPtr->acquire();
  ErrorType ET = IsAttr ? ErrorType::InvalidNullReturn
                        : ErrorType::InvalidNullReturnWithNullability;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET,
       "null pointer returned from function declared to never return null");
  if (!Data->AttrLoc.isInvalid())
    Diag(Data->AttrLoc, DL_Note, ET, "%0 specified here")
        << (IsAttr ? "returns_nonnull attribute"
                   : "_Nonnull return type annotation");
}

void __ubsan::__ubsan_handle_nonnull_return_v1(NonNullReturnData *Data,
                                               SourceLocation *LocPtr) {
  GET_REPORT_OPTIONS(false);
  handleNonNullReturn(Data, LocPtr, Opts, true);
}

void __ubsan::__ubsan_handle_nonnull_return_v1_abort(NonNullReturnData *Data,
                                                     SourceLocation *LocPtr) {
  GET_REPORT_OPTIONS(true);
  handleNonNullReturn(Data, LocPtr, Opts, true);
  Die();
}

void __ubsan::__ubsan_handle_nullability_return_v1(NonNullReturnData *Data,
                                                   SourceLocation *LocPtr) {
  GET_REPORT_OPTIONS(false);
  handleNonNullReturn(Data, LocPtr, Opts, false);
}

void __ubsan::__ubsan_handle_nullability_return_v1_abort(
    NonNullReturnData *Data, SourceLocation *LocPtr) {
  GET_REPORT_OPTIONS(true);
  handleNonNullReturn(Data, LocPtr, Opts, false);
  Die();
}

static void handleNonNullArg(NonNullArgData *Data, ReportOptions Opts,
                             bool IsAttr) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = IsAttr ? ErrorType::InvalidNullArgument
                        : ErrorType::InvalidNullArgumentWithNullability;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET,
       "null pointer passed as argument %0, which is declared to "
       "never be null")
      << Data->ArgIndex;
  if (!Data->AttrLoc.isInvalid())
    Diag(Data->AttrLoc, DL_Note, ET, "%0 specified here")
        << (IsAttr ? "nonnull attribute" : "_Nonnull type annotation");
}

void __ubsan::__ubsan_handle_nonnull_arg(NonNullArgData *Data) {
  GET_REPORT_OPTIONS(false);
  handleNonNullArg(Data, Opts, true);
}

void __ubsan::__ubsan_handle_nonnull_arg_abort(NonNullArgData *Data) {
  GET_REPORT_OPTIONS(true);
  handleNonNullArg(Data, Opts, true);
  Die();
}

void __ubsan::__ubsan_handle_nullability_arg(NonNullArgData *Data) {
  GET_REPORT_OPTIONS(false);
  handleNonNullArg(Data, Opts, false);
}

void __ubsan::__ubsan_handle_nullability_arg_abort(NonNullArgData *Data) {
  GET_REPORT_OPTIONS(true);
  handleNonNullArg(Data, Opts, false);
  Die();
}

static void handlePointerOverflowImpl(PointerOverflowData *Data,
                                      ValueHandle Base,
                                      ValueHandle Result,
                                      ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET;

  if (Base == 0 && Result == 0)
    ET = ErrorType::NullptrWithOffset;
  else if (Base == 0 && Result != 0)
    ET = ErrorType::NullptrWithNonZeroOffset;
  else if (Base != 0 && Result == 0)
    ET = ErrorType::NullptrAfterNonZeroOffset;
  else
    ET = ErrorType::PointerOverflow;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  if (ET == ErrorType::NullptrWithOffset) {
    Diag(Loc, DL_Error, ET, "applying zero offset to null pointer");
  } else if (ET == ErrorType::NullptrWithNonZeroOffset) {
    Diag(Loc, DL_Error, ET, "applying non-zero offset %0 to null pointer")
        << Result;
  } else if (ET == ErrorType::NullptrAfterNonZeroOffset) {
    Diag(
        Loc, DL_Error, ET,
        "applying non-zero offset to non-null pointer %0 produced null pointer")
        << (void *)Base;
  } else if ((sptr(Base) >= 0) == (sptr(Result) >= 0)) {
    if (Base > Result)
      Diag(Loc, DL_Error, ET,
           "addition of unsigned offset to %0 overflowed to %1")
          << (void *)Base << (void *)Result;
    else
      Diag(Loc, DL_Error, ET,
           "subtraction of unsigned offset from %0 overflowed to %1")
          << (void *)Base << (void *)Result;
  } else {
    Diag(Loc, DL_Error, ET,
         "pointer index expression with base %0 overflowed to %1")
        << (void *)Base << (void *)Result;
  }
}

void __ubsan::__ubsan_handle_pointer_overflow(PointerOverflowData *Data,
                                              ValueHandle Base,
                                              ValueHandle Result) {
  GET_REPORT_OPTIONS(false);
  handlePointerOverflowImpl(Data, Base, Result, Opts);
}

void __ubsan::__ubsan_handle_pointer_overflow_abort(PointerOverflowData *Data,
                                                    ValueHandle Base,
                                                    ValueHandle Result) {
  GET_REPORT_OPTIONS(true);
  handlePointerOverflowImpl(Data, Base, Result, Opts);
  Die();
}

static void handleCFIBadIcall(CFICheckFailData *Data, ValueHandle Function,
                              ReportOptions Opts) {
  if (Data->CheckKind != CFITCK_ICall && Data->CheckKind != CFITCK_NVMFCall)
    Die();

  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::CFIBadType;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  const char *CheckKindStr = Data->CheckKind == CFITCK_NVMFCall
                                 ? "non-virtual pointer to member function call"
                                 : "indirect function call";
  Diag(Loc, DL_Error, ET,
       "control flow integrity check for type %0 failed during %1")
      << Data->Type << CheckKindStr;

  SymbolizedStackHolder FLoc(getSymbolizedLocation(Function));
  const char *FName = FLoc.get()->info.function;
  if (!FName)
    FName = "(unknown)";
  Diag(FLoc, DL_Note, ET, "%0 defined here") << FName;

  // If the failure involved different DSOs for the check location and icall
  // target, report the DSO names.
  const char *DstModule = FLoc.get()->info.module;
  if (!DstModule)
    DstModule = "(unknown)";

  const char *SrcModule = Symbolizer::GetOrInit()->GetModuleNameForPc(Opts.pc);
  if (!SrcModule)
    SrcModule = "(unknown)";

  if (internal_strcmp(SrcModule, DstModule))
    Diag(Loc, DL_Note, ET,
         "check failed in %0, destination function located in %1")
        << SrcModule << DstModule;
}

namespace __ubsan {

#ifdef UBSAN_CAN_USE_CXXABI

#ifdef _WIN32

extern "C" void __ubsan_handle_cfi_bad_type_default(CFICheckFailData *Data,
                                                    ValueHandle Vtable,
                                                    bool ValidVtable,
                                                    ReportOptions Opts) {
  Die();
}

WIN_WEAK_ALIAS(__ubsan_handle_cfi_bad_type, __ubsan_handle_cfi_bad_type_default)
#else
SANITIZER_WEAK_ATTRIBUTE
#endif
void __ubsan_handle_cfi_bad_type(CFICheckFailData *Data, ValueHandle Vtable,
                                 bool ValidVtable, ReportOptions Opts);

#else
void __ubsan_handle_cfi_bad_type(CFICheckFailData *Data, ValueHandle Vtable,
                                 bool ValidVtable, ReportOptions Opts) {
  Die();
}
#endif

}  // namespace __ubsan

void __ubsan::__ubsan_handle_cfi_check_fail(CFICheckFailData *Data,
                                            ValueHandle Value,
                                            uptr ValidVtable) {
  GET_REPORT_OPTIONS(false);
  if (Data->CheckKind == CFITCK_ICall || Data->CheckKind == CFITCK_NVMFCall)
    handleCFIBadIcall(Data, Value, Opts);
  else
    __ubsan_handle_cfi_bad_type(Data, Value, ValidVtable, Opts);
}

void __ubsan::__ubsan_handle_cfi_check_fail_abort(CFICheckFailData *Data,
                                                  ValueHandle Value,
                                                  uptr ValidVtable) {
  GET_REPORT_OPTIONS(true);
  if (Data->CheckKind == CFITCK_ICall || Data->CheckKind == CFITCK_NVMFCall)
    handleCFIBadIcall(Data, Value, Opts);
  else
    __ubsan_handle_cfi_bad_type(Data, Value, ValidVtable, Opts);
  Die();
}

#endif  // CAN_SANITIZE_UB