1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
|
//===-- tsan_rtl_access.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Definitions of memory access and function entry/exit entry points.
//===----------------------------------------------------------------------===//
#include "tsan_rtl.h"
namespace __tsan {
ALWAYS_INLINE USED bool TryTraceMemoryAccess(ThreadState* thr, uptr pc,
uptr addr, uptr size,
AccessType typ) {
DCHECK(size == 1 || size == 2 || size == 4 || size == 8);
if (!kCollectHistory)
return true;
EventAccess* ev;
if (UNLIKELY(!TraceAcquire(thr, &ev)))
return false;
u64 size_log = size == 1 ? 0 : size == 2 ? 1 : size == 4 ? 2 : 3;
uptr pc_delta = pc - thr->trace_prev_pc + (1 << (EventAccess::kPCBits - 1));
thr->trace_prev_pc = pc;
if (LIKELY(pc_delta < (1 << EventAccess::kPCBits))) {
ev->is_access = 1;
ev->is_read = !!(typ & kAccessRead);
ev->is_atomic = !!(typ & kAccessAtomic);
ev->size_log = size_log;
ev->pc_delta = pc_delta;
DCHECK_EQ(ev->pc_delta, pc_delta);
ev->addr = CompressAddr(addr);
TraceRelease(thr, ev);
return true;
}
auto* evex = reinterpret_cast<EventAccessExt*>(ev);
evex->is_access = 0;
evex->is_func = 0;
evex->type = EventType::kAccessExt;
evex->is_read = !!(typ & kAccessRead);
evex->is_atomic = !!(typ & kAccessAtomic);
evex->size_log = size_log;
// Note: this is important, see comment in EventAccessExt.
evex->_ = 0;
evex->addr = CompressAddr(addr);
evex->pc = pc;
TraceRelease(thr, evex);
return true;
}
ALWAYS_INLINE
bool TryTraceMemoryAccessRange(ThreadState* thr, uptr pc, uptr addr, uptr size,
AccessType typ) {
if (!kCollectHistory)
return true;
EventAccessRange* ev;
if (UNLIKELY(!TraceAcquire(thr, &ev)))
return false;
thr->trace_prev_pc = pc;
ev->is_access = 0;
ev->is_func = 0;
ev->type = EventType::kAccessRange;
ev->is_read = !!(typ & kAccessRead);
ev->is_free = !!(typ & kAccessFree);
ev->size_lo = size;
ev->pc = CompressAddr(pc);
ev->addr = CompressAddr(addr);
ev->size_hi = size >> EventAccessRange::kSizeLoBits;
TraceRelease(thr, ev);
return true;
}
void TraceMemoryAccessRange(ThreadState* thr, uptr pc, uptr addr, uptr size,
AccessType typ) {
if (LIKELY(TryTraceMemoryAccessRange(thr, pc, addr, size, typ)))
return;
TraceSwitchPart(thr);
UNUSED bool res = TryTraceMemoryAccessRange(thr, pc, addr, size, typ);
DCHECK(res);
}
void TraceFunc(ThreadState* thr, uptr pc) {
if (LIKELY(TryTraceFunc(thr, pc)))
return;
TraceSwitchPart(thr);
UNUSED bool res = TryTraceFunc(thr, pc);
DCHECK(res);
}
NOINLINE void TraceRestartFuncEntry(ThreadState* thr, uptr pc) {
TraceSwitchPart(thr);
FuncEntry(thr, pc);
}
NOINLINE void TraceRestartFuncExit(ThreadState* thr) {
TraceSwitchPart(thr);
FuncExit(thr);
}
void TraceMutexLock(ThreadState* thr, EventType type, uptr pc, uptr addr,
StackID stk) {
DCHECK(type == EventType::kLock || type == EventType::kRLock);
if (!kCollectHistory)
return;
EventLock ev;
ev.is_access = 0;
ev.is_func = 0;
ev.type = type;
ev.pc = CompressAddr(pc);
ev.stack_lo = stk;
ev.stack_hi = stk >> EventLock::kStackIDLoBits;
ev._ = 0;
ev.addr = CompressAddr(addr);
TraceEvent(thr, ev);
}
void TraceMutexUnlock(ThreadState* thr, uptr addr) {
if (!kCollectHistory)
return;
EventUnlock ev;
ev.is_access = 0;
ev.is_func = 0;
ev.type = EventType::kUnlock;
ev._ = 0;
ev.addr = CompressAddr(addr);
TraceEvent(thr, ev);
}
void TraceTime(ThreadState* thr) {
if (!kCollectHistory)
return;
FastState fast_state = thr->fast_state;
EventTime ev;
ev.is_access = 0;
ev.is_func = 0;
ev.type = EventType::kTime;
ev.sid = static_cast<u64>(fast_state.sid());
ev.epoch = static_cast<u64>(fast_state.epoch());
ev._ = 0;
TraceEvent(thr, ev);
}
NOINLINE void DoReportRace(ThreadState* thr, RawShadow* shadow_mem, Shadow cur,
Shadow old,
AccessType typ) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
// For the free shadow markers the first element (that contains kFreeSid)
// triggers the race, but the second element contains info about the freeing
// thread, take it.
if (old.sid() == kFreeSid)
old = Shadow(LoadShadow(&shadow_mem[1]));
// This prevents trapping on this address in future.
for (uptr i = 0; i < kShadowCnt; i++)
StoreShadow(&shadow_mem[i], i == 0 ? Shadow::kRodata : Shadow::kEmpty);
// See the comment in MemoryRangeFreed as to why the slot is locked
// for free memory accesses. ReportRace must not be called with
// the slot locked because of the fork. But MemoryRangeFreed is not
// called during fork because fork sets ignore_reads_and_writes,
// so simply unlocking the slot should be fine.
if (typ & kAccessSlotLocked)
SlotUnlock(thr);
ReportRace(thr, shadow_mem, cur, Shadow(old), typ);
if (typ & kAccessSlotLocked)
SlotLock(thr);
}
#if !TSAN_VECTORIZE
ALWAYS_INLINE
bool ContainsSameAccess(RawShadow* s, Shadow cur, int unused0, int unused1,
AccessType typ) {
for (uptr i = 0; i < kShadowCnt; i++) {
auto old = LoadShadow(&s[i]);
if (!(typ & kAccessRead)) {
if (old == cur.raw())
return true;
continue;
}
auto masked = static_cast<RawShadow>(static_cast<u32>(old) |
static_cast<u32>(Shadow::kRodata));
if (masked == cur.raw())
return true;
if (!(typ & kAccessNoRodata) && !SANITIZER_GO) {
if (old == Shadow::kRodata)
return true;
}
}
return false;
}
ALWAYS_INLINE
bool CheckRaces(ThreadState* thr, RawShadow* shadow_mem, Shadow cur,
int unused0, int unused1, AccessType typ) {
bool stored = false;
for (uptr idx = 0; idx < kShadowCnt; idx++) {
RawShadow* sp = &shadow_mem[idx];
Shadow old(LoadShadow(sp));
if (LIKELY(old.raw() == Shadow::kEmpty)) {
if (!(typ & kAccessCheckOnly) && !stored)
StoreShadow(sp, cur.raw());
return false;
}
if (LIKELY(!(cur.access() & old.access())))
continue;
if (LIKELY(cur.sid() == old.sid())) {
if (!(typ & kAccessCheckOnly) &&
LIKELY(cur.access() == old.access() && old.IsRWWeakerOrEqual(typ))) {
StoreShadow(sp, cur.raw());
stored = true;
}
continue;
}
if (LIKELY(old.IsBothReadsOrAtomic(typ)))
continue;
if (LIKELY(thr->clock.Get(old.sid()) >= old.epoch()))
continue;
DoReportRace(thr, shadow_mem, cur, old, typ);
return true;
}
// We did not find any races and had already stored
// the current access info, so we are done.
if (LIKELY(stored))
return false;
// Choose a random candidate slot and replace it.
uptr index =
atomic_load_relaxed(&thr->trace_pos) / sizeof(Event) % kShadowCnt;
StoreShadow(&shadow_mem[index], cur.raw());
return false;
}
# define LOAD_CURRENT_SHADOW(cur, shadow_mem) UNUSED int access = 0, shadow = 0
#else /* !TSAN_VECTORIZE */
ALWAYS_INLINE
bool ContainsSameAccess(RawShadow* unused0, Shadow unused1, m128 shadow,
m128 access, AccessType typ) {
// Note: we could check if there is a larger access of the same type,
// e.g. we just allocated/memset-ed a block (so it contains 8 byte writes)
// and now do smaller reads/writes, these can also be considered as "same
// access". However, it will make the check more expensive, so it's unclear
// if it's worth it. But this would conserve trace space, so it's useful
// besides potential speed up.
if (!(typ & kAccessRead)) {
const m128 same = _mm_cmpeq_epi32(shadow, access);
return _mm_movemask_epi8(same);
}
// For reads we need to reset read bit in the shadow,
// because we need to match read with both reads and writes.
// Shadow::kRodata has only read bit set, so it does what we want.
// We also abuse it for rodata check to save few cycles
// since we already loaded Shadow::kRodata into a register.
// Reads from rodata can't race.
// Measurements show that they can be 10-20% of all memory accesses.
// Shadow::kRodata has epoch 0 which cannot appear in shadow normally
// (thread epochs start from 1). So the same read bit mask
// serves as rodata indicator.
const m128 read_mask = _mm_set1_epi32(static_cast<u32>(Shadow::kRodata));
const m128 masked_shadow = _mm_or_si128(shadow, read_mask);
m128 same = _mm_cmpeq_epi32(masked_shadow, access);
// Range memory accesses check Shadow::kRodata before calling this,
// Shadow::kRodatas is not possible for free memory access
// and Go does not use Shadow::kRodata.
if (!(typ & kAccessNoRodata) && !SANITIZER_GO) {
const m128 ro = _mm_cmpeq_epi32(shadow, read_mask);
same = _mm_or_si128(ro, same);
}
return _mm_movemask_epi8(same);
}
NOINLINE void DoReportRaceV(ThreadState* thr, RawShadow* shadow_mem, Shadow cur,
u32 race_mask, m128 shadow, AccessType typ) {
// race_mask points which of the shadow elements raced with the current
// access. Extract that element.
CHECK_NE(race_mask, 0);
u32 old;
// Note: _mm_extract_epi32 index must be a constant value.
switch (__builtin_ffs(race_mask) / 4) {
case 0:
old = _mm_extract_epi32(shadow, 0);
break;
case 1:
old = _mm_extract_epi32(shadow, 1);
break;
case 2:
old = _mm_extract_epi32(shadow, 2);
break;
case 3:
old = _mm_extract_epi32(shadow, 3);
break;
}
Shadow prev(static_cast<RawShadow>(old));
// For the free shadow markers the first element (that contains kFreeSid)
// triggers the race, but the second element contains info about the freeing
// thread, take it.
if (prev.sid() == kFreeSid)
prev = Shadow(static_cast<RawShadow>(_mm_extract_epi32(shadow, 1)));
DoReportRace(thr, shadow_mem, cur, prev, typ);
}
ALWAYS_INLINE
bool CheckRaces(ThreadState* thr, RawShadow* shadow_mem, Shadow cur,
m128 shadow, m128 access, AccessType typ) {
// Note: empty/zero slots don't intersect with any access.
const m128 zero = _mm_setzero_si128();
const m128 mask_access = _mm_set1_epi32(0x000000ff);
const m128 mask_sid = _mm_set1_epi32(0x0000ff00);
const m128 mask_read_atomic = _mm_set1_epi32(0xc0000000);
const m128 access_and = _mm_and_si128(access, shadow);
const m128 access_xor = _mm_xor_si128(access, shadow);
const m128 intersect = _mm_and_si128(access_and, mask_access);
const m128 not_intersect = _mm_cmpeq_epi32(intersect, zero);
const m128 not_same_sid = _mm_and_si128(access_xor, mask_sid);
const m128 same_sid = _mm_cmpeq_epi32(not_same_sid, zero);
const m128 both_read_or_atomic = _mm_and_si128(access_and, mask_read_atomic);
const m128 no_race =
_mm_or_si128(_mm_or_si128(not_intersect, same_sid), both_read_or_atomic);
const int race_mask = _mm_movemask_epi8(_mm_cmpeq_epi32(no_race, zero));
if (UNLIKELY(race_mask))
goto SHARED;
STORE : {
if (typ & kAccessCheckOnly)
return false;
// We could also replace different sid's if access is the same,
// rw weaker and happens before. However, just checking access below
// is not enough because we also need to check that !both_read_or_atomic
// (reads from different sids can be concurrent).
// Theoretically we could replace smaller accesses with larger accesses,
// but it's unclear if it's worth doing.
const m128 mask_access_sid = _mm_set1_epi32(0x0000ffff);
const m128 not_same_sid_access = _mm_and_si128(access_xor, mask_access_sid);
const m128 same_sid_access = _mm_cmpeq_epi32(not_same_sid_access, zero);
const m128 access_read_atomic =
_mm_set1_epi32((typ & (kAccessRead | kAccessAtomic)) << 30);
const m128 rw_weaker =
_mm_cmpeq_epi32(_mm_max_epu32(shadow, access_read_atomic), shadow);
const m128 rewrite = _mm_and_si128(same_sid_access, rw_weaker);
const int rewrite_mask = _mm_movemask_epi8(rewrite);
int index = __builtin_ffs(rewrite_mask);
if (UNLIKELY(index == 0)) {
const m128 empty = _mm_cmpeq_epi32(shadow, zero);
const int empty_mask = _mm_movemask_epi8(empty);
index = __builtin_ffs(empty_mask);
if (UNLIKELY(index == 0))
index = (atomic_load_relaxed(&thr->trace_pos) / 2) % 16;
}
StoreShadow(&shadow_mem[index / 4], cur.raw());
// We could zero other slots determined by rewrite_mask.
// That would help other threads to evict better slots,
// but it's unclear if it's worth it.
return false;
}
SHARED:
m128 thread_epochs = _mm_set1_epi32(0x7fffffff);
// Need to unwind this because _mm_extract_epi8/_mm_insert_epi32
// indexes must be constants.
# define LOAD_EPOCH(idx) \
if (LIKELY(race_mask & (1 << (idx * 4)))) { \
u8 sid = _mm_extract_epi8(shadow, idx * 4 + 1); \
u16 epoch = static_cast<u16>(thr->clock.Get(static_cast<Sid>(sid))); \
thread_epochs = _mm_insert_epi32(thread_epochs, u32(epoch) << 16, idx); \
}
LOAD_EPOCH(0);
LOAD_EPOCH(1);
LOAD_EPOCH(2);
LOAD_EPOCH(3);
# undef LOAD_EPOCH
const m128 mask_epoch = _mm_set1_epi32(0x3fff0000);
const m128 shadow_epochs = _mm_and_si128(shadow, mask_epoch);
const m128 concurrent = _mm_cmplt_epi32(thread_epochs, shadow_epochs);
const int concurrent_mask = _mm_movemask_epi8(concurrent);
if (LIKELY(concurrent_mask == 0))
goto STORE;
DoReportRaceV(thr, shadow_mem, cur, concurrent_mask, shadow, typ);
return true;
}
# define LOAD_CURRENT_SHADOW(cur, shadow_mem) \
const m128 access = _mm_set1_epi32(static_cast<u32>((cur).raw())); \
const m128 shadow = _mm_load_si128(reinterpret_cast<m128*>(shadow_mem))
#endif
char* DumpShadow(char* buf, RawShadow raw) {
if (raw == Shadow::kEmpty) {
internal_snprintf(buf, 64, "0");
return buf;
}
Shadow s(raw);
AccessType typ;
s.GetAccess(nullptr, nullptr, &typ);
internal_snprintf(buf, 64, "{tid=%u@%u access=0x%x typ=%x}",
static_cast<u32>(s.sid()), static_cast<u32>(s.epoch()),
s.access(), static_cast<u32>(typ));
return buf;
}
// TryTrace* and TraceRestart* functions allow to turn memory access and func
// entry/exit callbacks into leaf functions with all associated performance
// benefits. These hottest callbacks do only 2 slow path calls: report a race
// and trace part switching. Race reporting is easy to turn into a tail call, we
// just always return from the runtime after reporting a race. But trace part
// switching is harder because it needs to be in the middle of callbacks. To
// turn it into a tail call we immidiately return after TraceRestart* functions,
// but TraceRestart* functions themselves recurse into the callback after
// switching trace part. As the result the hottest callbacks contain only tail
// calls, which effectively makes them leaf functions (can use all registers,
// no frame setup, etc).
NOINLINE void TraceRestartMemoryAccess(ThreadState* thr, uptr pc, uptr addr,
uptr size, AccessType typ) {
TraceSwitchPart(thr);
MemoryAccess(thr, pc, addr, size, typ);
}
ALWAYS_INLINE USED void MemoryAccess(ThreadState* thr, uptr pc, uptr addr,
uptr size, AccessType typ) {
RawShadow* shadow_mem = MemToShadow(addr);
UNUSED char memBuf[4][64];
DPrintf2("#%d: Access: %d@%d %p/%zd typ=0x%x {%s, %s, %s, %s}\n", thr->tid,
static_cast<int>(thr->fast_state.sid()),
static_cast<int>(thr->fast_state.epoch()), (void*)addr, size,
static_cast<int>(typ), DumpShadow(memBuf[0], shadow_mem[0]),
DumpShadow(memBuf[1], shadow_mem[1]),
DumpShadow(memBuf[2], shadow_mem[2]),
DumpShadow(memBuf[3], shadow_mem[3]));
FastState fast_state = thr->fast_state;
Shadow cur(fast_state, addr, size, typ);
LOAD_CURRENT_SHADOW(cur, shadow_mem);
if (LIKELY(ContainsSameAccess(shadow_mem, cur, shadow, access, typ)))
return;
if (UNLIKELY(fast_state.GetIgnoreBit()))
return;
if (!TryTraceMemoryAccess(thr, pc, addr, size, typ))
return TraceRestartMemoryAccess(thr, pc, addr, size, typ);
CheckRaces(thr, shadow_mem, cur, shadow, access, typ);
}
void MemoryAccess16(ThreadState* thr, uptr pc, uptr addr, AccessType typ);
NOINLINE
void RestartMemoryAccess16(ThreadState* thr, uptr pc, uptr addr,
AccessType typ) {
TraceSwitchPart(thr);
MemoryAccess16(thr, pc, addr, typ);
}
ALWAYS_INLINE USED void MemoryAccess16(ThreadState* thr, uptr pc, uptr addr,
AccessType typ) {
const uptr size = 16;
FastState fast_state = thr->fast_state;
if (UNLIKELY(fast_state.GetIgnoreBit()))
return;
Shadow cur(fast_state, 0, 8, typ);
RawShadow* shadow_mem = MemToShadow(addr);
bool traced = false;
{
LOAD_CURRENT_SHADOW(cur, shadow_mem);
if (LIKELY(ContainsSameAccess(shadow_mem, cur, shadow, access, typ)))
goto SECOND;
if (!TryTraceMemoryAccessRange(thr, pc, addr, size, typ))
return RestartMemoryAccess16(thr, pc, addr, typ);
traced = true;
if (UNLIKELY(CheckRaces(thr, shadow_mem, cur, shadow, access, typ)))
return;
}
SECOND:
shadow_mem += kShadowCnt;
LOAD_CURRENT_SHADOW(cur, shadow_mem);
if (LIKELY(ContainsSameAccess(shadow_mem, cur, shadow, access, typ)))
return;
if (!traced && !TryTraceMemoryAccessRange(thr, pc, addr, size, typ))
return RestartMemoryAccess16(thr, pc, addr, typ);
CheckRaces(thr, shadow_mem, cur, shadow, access, typ);
}
NOINLINE
void RestartUnalignedMemoryAccess(ThreadState* thr, uptr pc, uptr addr,
uptr size, AccessType typ) {
TraceSwitchPart(thr);
UnalignedMemoryAccess(thr, pc, addr, size, typ);
}
ALWAYS_INLINE USED void UnalignedMemoryAccess(ThreadState* thr, uptr pc,
uptr addr, uptr size,
AccessType typ) {
DCHECK_LE(size, 8);
FastState fast_state = thr->fast_state;
if (UNLIKELY(fast_state.GetIgnoreBit()))
return;
RawShadow* shadow_mem = MemToShadow(addr);
bool traced = false;
uptr size1 = Min<uptr>(size, RoundUp(addr + 1, kShadowCell) - addr);
{
Shadow cur(fast_state, addr, size1, typ);
LOAD_CURRENT_SHADOW(cur, shadow_mem);
if (LIKELY(ContainsSameAccess(shadow_mem, cur, shadow, access, typ)))
goto SECOND;
if (!TryTraceMemoryAccessRange(thr, pc, addr, size, typ))
return RestartUnalignedMemoryAccess(thr, pc, addr, size, typ);
traced = true;
if (UNLIKELY(CheckRaces(thr, shadow_mem, cur, shadow, access, typ)))
return;
}
SECOND:
uptr size2 = size - size1;
if (LIKELY(size2 == 0))
return;
shadow_mem += kShadowCnt;
Shadow cur(fast_state, 0, size2, typ);
LOAD_CURRENT_SHADOW(cur, shadow_mem);
if (LIKELY(ContainsSameAccess(shadow_mem, cur, shadow, access, typ)))
return;
if (!traced && !TryTraceMemoryAccessRange(thr, pc, addr, size, typ))
return RestartUnalignedMemoryAccess(thr, pc, addr, size, typ);
CheckRaces(thr, shadow_mem, cur, shadow, access, typ);
}
void ShadowSet(RawShadow* p, RawShadow* end, RawShadow v) {
DCHECK_LE(p, end);
DCHECK(IsShadowMem(p));
DCHECK(IsShadowMem(end));
UNUSED const uptr kAlign = kShadowCnt * kShadowSize;
DCHECK_EQ(reinterpret_cast<uptr>(p) % kAlign, 0);
DCHECK_EQ(reinterpret_cast<uptr>(end) % kAlign, 0);
#if !TSAN_VECTORIZE
for (; p < end; p += kShadowCnt) {
p[0] = v;
for (uptr i = 1; i < kShadowCnt; i++) p[i] = Shadow::kEmpty;
}
#else
m128 vv = _mm_setr_epi32(
static_cast<u32>(v), static_cast<u32>(Shadow::kEmpty),
static_cast<u32>(Shadow::kEmpty), static_cast<u32>(Shadow::kEmpty));
m128* vp = reinterpret_cast<m128*>(p);
m128* vend = reinterpret_cast<m128*>(end);
for (; vp < vend; vp++) _mm_store_si128(vp, vv);
#endif
}
static void MemoryRangeSet(uptr addr, uptr size, RawShadow val) {
if (size == 0)
return;
DCHECK_EQ(addr % kShadowCell, 0);
DCHECK_EQ(size % kShadowCell, 0);
// If a user passes some insane arguments (memset(0)),
// let it just crash as usual.
if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
return;
RawShadow* begin = MemToShadow(addr);
RawShadow* end = begin + size / kShadowCell * kShadowCnt;
// Don't want to touch lots of shadow memory.
// If a program maps 10MB stack, there is no need reset the whole range.
// UnmapOrDie/MmapFixedNoReserve does not work on Windows.
if (SANITIZER_WINDOWS ||
size <= common_flags()->clear_shadow_mmap_threshold) {
ShadowSet(begin, end, val);
return;
}
// The region is big, reset only beginning and end.
const uptr kPageSize = GetPageSizeCached();
// Set at least first kPageSize/2 to page boundary.
RawShadow* mid1 =
Min(end, reinterpret_cast<RawShadow*>(RoundUp(
reinterpret_cast<uptr>(begin) + kPageSize / 2, kPageSize)));
ShadowSet(begin, mid1, val);
// Reset middle part.
RawShadow* mid2 = RoundDown(end, kPageSize);
if (mid2 > mid1) {
if (!MmapFixedSuperNoReserve((uptr)mid1, (uptr)mid2 - (uptr)mid1))
Die();
}
// Set the ending.
ShadowSet(mid2, end, val);
}
void MemoryResetRange(ThreadState* thr, uptr pc, uptr addr, uptr size) {
uptr addr1 = RoundDown(addr, kShadowCell);
uptr size1 = RoundUp(size + addr - addr1, kShadowCell);
MemoryRangeSet(addr1, size1, Shadow::kEmpty);
}
void MemoryRangeFreed(ThreadState* thr, uptr pc, uptr addr, uptr size) {
// Callers must lock the slot to ensure synchronization with the reset.
// The problem with "freed" memory is that it's not "monotonic"
// with respect to bug detection: freed memory is bad to access,
// but then if the heap block is reallocated later, it's good to access.
// As the result a garbage "freed" shadow can lead to a false positive
// if it happens to match a real free in the thread trace,
// but the heap block was reallocated before the current memory access,
// so it's still good to access. It's not the case with data races.
DCHECK(thr->slot_locked);
DCHECK_EQ(addr % kShadowCell, 0);
size = RoundUp(size, kShadowCell);
// Processing more than 1k (2k of shadow) is expensive,
// can cause excessive memory consumption (user does not necessary touch
// the whole range) and most likely unnecessary.
size = Min<uptr>(size, 1024);
const AccessType typ = kAccessWrite | kAccessFree | kAccessSlotLocked |
kAccessCheckOnly | kAccessNoRodata;
TraceMemoryAccessRange(thr, pc, addr, size, typ);
RawShadow* shadow_mem = MemToShadow(addr);
Shadow cur(thr->fast_state, 0, kShadowCell, typ);
#if TSAN_VECTORIZE
const m128 access = _mm_set1_epi32(static_cast<u32>(cur.raw()));
const m128 freed = _mm_setr_epi32(
static_cast<u32>(Shadow::FreedMarker()),
static_cast<u32>(Shadow::FreedInfo(cur.sid(), cur.epoch())), 0, 0);
for (; size; size -= kShadowCell, shadow_mem += kShadowCnt) {
const m128 shadow = _mm_load_si128((m128*)shadow_mem);
if (UNLIKELY(CheckRaces(thr, shadow_mem, cur, shadow, access, typ)))
return;
_mm_store_si128((m128*)shadow_mem, freed);
}
#else
for (; size; size -= kShadowCell, shadow_mem += kShadowCnt) {
if (UNLIKELY(CheckRaces(thr, shadow_mem, cur, 0, 0, typ)))
return;
StoreShadow(&shadow_mem[0], Shadow::FreedMarker());
StoreShadow(&shadow_mem[1], Shadow::FreedInfo(cur.sid(), cur.epoch()));
StoreShadow(&shadow_mem[2], Shadow::kEmpty);
StoreShadow(&shadow_mem[3], Shadow::kEmpty);
}
#endif
}
void MemoryRangeImitateWrite(ThreadState* thr, uptr pc, uptr addr, uptr size) {
DCHECK_EQ(addr % kShadowCell, 0);
size = RoundUp(size, kShadowCell);
TraceMemoryAccessRange(thr, pc, addr, size, kAccessWrite);
Shadow cur(thr->fast_state, 0, 8, kAccessWrite);
MemoryRangeSet(addr, size, cur.raw());
}
void MemoryRangeImitateWriteOrResetRange(ThreadState* thr, uptr pc, uptr addr,
uptr size) {
if (thr->ignore_reads_and_writes == 0)
MemoryRangeImitateWrite(thr, pc, addr, size);
else
MemoryResetRange(thr, pc, addr, size);
}
ALWAYS_INLINE
bool MemoryAccessRangeOne(ThreadState* thr, RawShadow* shadow_mem, Shadow cur,
AccessType typ) {
LOAD_CURRENT_SHADOW(cur, shadow_mem);
if (LIKELY(ContainsSameAccess(shadow_mem, cur, shadow, access, typ)))
return false;
return CheckRaces(thr, shadow_mem, cur, shadow, access, typ);
}
template <bool is_read>
NOINLINE void RestartMemoryAccessRange(ThreadState* thr, uptr pc, uptr addr,
uptr size) {
TraceSwitchPart(thr);
MemoryAccessRangeT<is_read>(thr, pc, addr, size);
}
template <bool is_read>
void MemoryAccessRangeT(ThreadState* thr, uptr pc, uptr addr, uptr size) {
const AccessType typ =
(is_read ? kAccessRead : kAccessWrite) | kAccessNoRodata;
RawShadow* shadow_mem = MemToShadow(addr);
DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_read=%d\n", thr->tid,
(void*)pc, (void*)addr, (int)size, is_read);
#if SANITIZER_DEBUG
if (!IsAppMem(addr)) {
Printf("Access to non app mem %zx\n", addr);
DCHECK(IsAppMem(addr));
}
if (!IsAppMem(addr + size - 1)) {
Printf("Access to non app mem %zx\n", addr + size - 1);
DCHECK(IsAppMem(addr + size - 1));
}
if (!IsShadowMem(shadow_mem)) {
Printf("Bad shadow addr %p (%zx)\n", static_cast<void*>(shadow_mem), addr);
DCHECK(IsShadowMem(shadow_mem));
}
if (!IsShadowMem(shadow_mem + size * kShadowCnt - 1)) {
Printf("Bad shadow addr %p (%zx)\n",
static_cast<void*>(shadow_mem + size * kShadowCnt - 1),
addr + size - 1);
DCHECK(IsShadowMem(shadow_mem + size * kShadowCnt - 1));
}
#endif
// Access to .rodata section, no races here.
// Measurements show that it can be 10-20% of all memory accesses.
// Check here once to not check for every access separately.
// Note: we could (and should) do this only for the is_read case
// (writes shouldn't go to .rodata). But it happens in Chromium tests:
// https://bugs.chromium.org/p/chromium/issues/detail?id=1275581#c19
// Details are unknown since it happens only on CI machines.
if (*shadow_mem == Shadow::kRodata)
return;
FastState fast_state = thr->fast_state;
if (UNLIKELY(fast_state.GetIgnoreBit()))
return;
if (!TryTraceMemoryAccessRange(thr, pc, addr, size, typ))
return RestartMemoryAccessRange<is_read>(thr, pc, addr, size);
if (UNLIKELY(addr % kShadowCell)) {
// Handle unaligned beginning, if any.
uptr size1 = Min(size, RoundUp(addr, kShadowCell) - addr);
size -= size1;
Shadow cur(fast_state, addr, size1, typ);
if (UNLIKELY(MemoryAccessRangeOne(thr, shadow_mem, cur, typ)))
return;
shadow_mem += kShadowCnt;
}
// Handle middle part, if any.
Shadow cur(fast_state, 0, kShadowCell, typ);
for (; size >= kShadowCell; size -= kShadowCell, shadow_mem += kShadowCnt) {
if (UNLIKELY(MemoryAccessRangeOne(thr, shadow_mem, cur, typ)))
return;
}
// Handle ending, if any.
if (UNLIKELY(size)) {
Shadow cur(fast_state, 0, size, typ);
if (UNLIKELY(MemoryAccessRangeOne(thr, shadow_mem, cur, typ)))
return;
}
}
template void MemoryAccessRangeT<true>(ThreadState* thr, uptr pc, uptr addr,
uptr size);
template void MemoryAccessRangeT<false>(ThreadState* thr, uptr pc, uptr addr,
uptr size);
} // namespace __tsan
#if !SANITIZER_GO
// Must be included in this file to make sure everything is inlined.
# include "tsan_interface.inc"
#endif
|