1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
|
//===-- tsan_interceptors_posix.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// FIXME: move as many interceptors as possible into
// sanitizer_common/sanitizer_common_interceptors.inc
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_linux.h"
#include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
#include "sanitizer_common/sanitizer_platform_limits_posix.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_posix.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_tls_get_addr.h"
#include "interception/interception.h"
#include "tsan_interceptors.h"
#include "tsan_interface.h"
#include "tsan_platform.h"
#include "tsan_suppressions.h"
#include "tsan_rtl.h"
#include "tsan_mman.h"
#include "tsan_fd.h"
#include <stdarg.h>
using namespace __tsan;
#if SANITIZER_FREEBSD || SANITIZER_APPLE
#define stdout __stdoutp
#define stderr __stderrp
#endif
#if SANITIZER_NETBSD
#define dirfd(dirp) (*(int *)(dirp))
#define fileno_unlocked(fp) \
(((__sanitizer_FILE *)fp)->_file == -1 \
? -1 \
: (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
#define stdout ((__sanitizer_FILE*)&__sF[1])
#define stderr ((__sanitizer_FILE*)&__sF[2])
#define nanosleep __nanosleep50
#define vfork __vfork14
#endif
#ifdef __mips__
const int kSigCount = 129;
#else
const int kSigCount = 65;
#endif
#ifdef __mips__
struct ucontext_t {
u64 opaque[768 / sizeof(u64) + 1];
};
#else
struct ucontext_t {
// The size is determined by looking at sizeof of real ucontext_t on linux.
u64 opaque[936 / sizeof(u64) + 1];
};
#endif
#if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1 || \
defined(__s390x__)
#define PTHREAD_ABI_BASE "GLIBC_2.3.2"
#elif defined(__aarch64__) || SANITIZER_PPC64V2
#define PTHREAD_ABI_BASE "GLIBC_2.17"
#elif SANITIZER_LOONGARCH64
#define PTHREAD_ABI_BASE "GLIBC_2.36"
#endif
extern "C" int pthread_attr_init(void *attr);
extern "C" int pthread_attr_destroy(void *attr);
DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
extern "C" int pthread_atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));
extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
extern "C" int pthread_setspecific(unsigned key, const void *v);
DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
extern "C" int pthread_equal(void *t1, void *t2);
extern "C" void *pthread_self();
extern "C" void _exit(int status);
#if !SANITIZER_NETBSD
extern "C" int fileno_unlocked(void *stream);
extern "C" int dirfd(void *dirp);
#endif
#if SANITIZER_NETBSD
extern __sanitizer_FILE __sF[];
#else
extern __sanitizer_FILE *stdout, *stderr;
#endif
#if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
const int PTHREAD_MUTEX_RECURSIVE = 1;
const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
#else
const int PTHREAD_MUTEX_RECURSIVE = 2;
const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
#endif
#if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
const int EPOLL_CTL_ADD = 1;
#endif
const int SIGILL = 4;
const int SIGTRAP = 5;
const int SIGABRT = 6;
const int SIGFPE = 8;
const int SIGSEGV = 11;
const int SIGPIPE = 13;
const int SIGTERM = 15;
#if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
const int SIGBUS = 10;
const int SIGSYS = 12;
#else
const int SIGBUS = 7;
const int SIGSYS = 31;
#endif
const int SI_TIMER = -2;
void *const MAP_FAILED = (void*)-1;
#if SANITIZER_NETBSD
const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
#elif !SANITIZER_APPLE
const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
#endif
const int MAP_FIXED = 0x10;
typedef long long_t;
typedef __sanitizer::u16 mode_t;
// From /usr/include/unistd.h
# define F_ULOCK 0 /* Unlock a previously locked region. */
# define F_LOCK 1 /* Lock a region for exclusive use. */
# define F_TLOCK 2 /* Test and lock a region for exclusive use. */
# define F_TEST 3 /* Test a region for other processes locks. */
#if SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
const int SA_SIGINFO = 0x40;
const int SIG_SETMASK = 3;
#elif defined(__mips__)
const int SA_SIGINFO = 8;
const int SIG_SETMASK = 3;
#else
const int SA_SIGINFO = 4;
const int SIG_SETMASK = 2;
#endif
#define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
(!cur_thread_init()->is_inited)
namespace __tsan {
struct SignalDesc {
bool armed;
__sanitizer_siginfo siginfo;
ucontext_t ctx;
};
struct ThreadSignalContext {
int int_signal_send;
SignalDesc pending_signals[kSigCount];
// emptyset and oldset are too big for stack.
__sanitizer_sigset_t emptyset;
__sanitizer_sigset_t oldset;
};
void EnterBlockingFunc(ThreadState *thr) {
for (;;) {
// The order is important to not delay a signal infinitely if it's
// delivered right before we set in_blocking_func. Note: we can't call
// ProcessPendingSignals when in_blocking_func is set, or we can handle
// a signal synchronously when we are already handling a signal.
atomic_store(&thr->in_blocking_func, 1, memory_order_relaxed);
if (atomic_load(&thr->pending_signals, memory_order_relaxed) == 0)
break;
atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
ProcessPendingSignals(thr);
}
}
// The sole reason tsan wraps atexit callbacks is to establish synchronization
// between callback setup and callback execution.
struct AtExitCtx {
void (*f)();
void *arg;
uptr pc;
};
// InterceptorContext holds all global data required for interceptors.
// It's explicitly constructed in InitializeInterceptors with placement new
// and is never destroyed. This allows usage of members with non-trivial
// constructors and destructors.
struct InterceptorContext {
// The object is 64-byte aligned, because we want hot data to be located
// in a single cache line if possible (it's accessed in every interceptor).
ALIGNED(64) LibIgnore libignore;
__sanitizer_sigaction sigactions[kSigCount];
#if !SANITIZER_APPLE && !SANITIZER_NETBSD
unsigned finalize_key;
#endif
Mutex atexit_mu;
Vector<struct AtExitCtx *> AtExitStack;
InterceptorContext() : libignore(LINKER_INITIALIZED), atexit_mu(MutexTypeAtExit), AtExitStack() {}
};
static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
InterceptorContext *interceptor_ctx() {
return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
}
LibIgnore *libignore() {
return &interceptor_ctx()->libignore;
}
void InitializeLibIgnore() {
const SuppressionContext &supp = *Suppressions();
const uptr n = supp.SuppressionCount();
for (uptr i = 0; i < n; i++) {
const Suppression *s = supp.SuppressionAt(i);
if (0 == internal_strcmp(s->type, kSuppressionLib))
libignore()->AddIgnoredLibrary(s->templ);
}
if (flags()->ignore_noninstrumented_modules)
libignore()->IgnoreNoninstrumentedModules(true);
libignore()->OnLibraryLoaded(0);
}
// The following two hooks can be used by for cooperative scheduling when
// locking.
#ifdef TSAN_EXTERNAL_HOOKS
void OnPotentiallyBlockingRegionBegin();
void OnPotentiallyBlockingRegionEnd();
#else
SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
#endif
} // namespace __tsan
static ThreadSignalContext *SigCtx(ThreadState *thr) {
// This function may be called reentrantly if it is interrupted by a signal
// handler. Use CAS to handle the race.
uptr ctx = atomic_load(&thr->signal_ctx, memory_order_relaxed);
if (ctx == 0 && !thr->is_dead) {
uptr pctx =
(uptr)MmapOrDie(sizeof(ThreadSignalContext), "ThreadSignalContext");
MemoryResetRange(thr, (uptr)&SigCtx, pctx, sizeof(ThreadSignalContext));
if (atomic_compare_exchange_strong(&thr->signal_ctx, &ctx, pctx,
memory_order_relaxed)) {
ctx = pctx;
} else {
UnmapOrDie((ThreadSignalContext *)pctx, sizeof(ThreadSignalContext));
}
}
return (ThreadSignalContext *)ctx;
}
ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
uptr pc)
: thr_(thr) {
LazyInitialize(thr);
if (UNLIKELY(atomic_load(&thr->in_blocking_func, memory_order_relaxed))) {
// pthread_join is marked as blocking, but it's also known to call other
// intercepted functions (mmap, free). If we don't reset in_blocking_func
// we can get deadlocks and memory corruptions if we deliver a synchronous
// signal inside of an mmap/free interceptor.
// So reset it and restore it back in the destructor.
// See https://github.com/google/sanitizers/issues/1540
atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
in_blocking_func_ = true;
}
if (!thr_->is_inited) return;
if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
ignoring_ =
!thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
libignore()->IsIgnored(pc, &in_ignored_lib_));
EnableIgnores();
}
ScopedInterceptor::~ScopedInterceptor() {
if (!thr_->is_inited) return;
DisableIgnores();
if (UNLIKELY(in_blocking_func_))
EnterBlockingFunc(thr_);
if (!thr_->ignore_interceptors) {
ProcessPendingSignals(thr_);
FuncExit(thr_);
CheckedMutex::CheckNoLocks();
}
}
NOINLINE
void ScopedInterceptor::EnableIgnoresImpl() {
ThreadIgnoreBegin(thr_, 0);
if (flags()->ignore_noninstrumented_modules)
thr_->suppress_reports++;
if (in_ignored_lib_) {
DCHECK(!thr_->in_ignored_lib);
thr_->in_ignored_lib = true;
}
}
NOINLINE
void ScopedInterceptor::DisableIgnoresImpl() {
ThreadIgnoreEnd(thr_);
if (flags()->ignore_noninstrumented_modules)
thr_->suppress_reports--;
if (in_ignored_lib_) {
DCHECK(thr_->in_ignored_lib);
thr_->in_ignored_lib = false;
}
}
#define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
#if SANITIZER_FREEBSD || SANITIZER_NETBSD
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
#else
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
#endif
#if SANITIZER_FREEBSD
# define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func) \
INTERCEPT_FUNCTION(_pthread_##func)
#else
# define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func)
#endif
#if SANITIZER_NETBSD
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
INTERCEPT_FUNCTION(__libc_##func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
INTERCEPT_FUNCTION(__libc_thr_##func)
#else
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
#endif
#define READ_STRING_OF_LEN(thr, pc, s, len, n) \
MemoryAccessRange((thr), (pc), (uptr)(s), \
common_flags()->strict_string_checks ? (len) + 1 : (n), false)
#define READ_STRING(thr, pc, s, n) \
READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
#define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
struct BlockingCall {
explicit BlockingCall(ThreadState *thr)
: thr(thr) {
EnterBlockingFunc(thr);
// When we are in a "blocking call", we process signals asynchronously
// (right when they arrive). In this context we do not expect to be
// executing any user/runtime code. The known interceptor sequence when
// this is not true is: pthread_join -> munmap(stack). It's fine
// to ignore munmap in this case -- we handle stack shadow separately.
thr->ignore_interceptors++;
}
~BlockingCall() {
thr->ignore_interceptors--;
atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
}
ThreadState *thr;
};
TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
SCOPED_TSAN_INTERCEPTOR(sleep, sec);
unsigned res = BLOCK_REAL(sleep)(sec);
AfterSleep(thr, pc);
return res;
}
TSAN_INTERCEPTOR(int, usleep, long_t usec) {
SCOPED_TSAN_INTERCEPTOR(usleep, usec);
int res = BLOCK_REAL(usleep)(usec);
AfterSleep(thr, pc);
return res;
}
TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
int res = BLOCK_REAL(nanosleep)(req, rem);
AfterSleep(thr, pc);
return res;
}
TSAN_INTERCEPTOR(int, pause, int fake) {
SCOPED_TSAN_INTERCEPTOR(pause, fake);
return BLOCK_REAL(pause)(fake);
}
// Note: we specifically call the function in such strange way
// with "installed_at" because in reports it will appear between
// callback frames and the frame that installed the callback.
static void at_exit_callback_installed_at() {
AtExitCtx *ctx;
{
// Ensure thread-safety.
Lock l(&interceptor_ctx()->atexit_mu);
// Pop AtExitCtx from the top of the stack of callback functions
uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
ctx = interceptor_ctx()->AtExitStack[element];
interceptor_ctx()->AtExitStack.PopBack();
}
ThreadState *thr = cur_thread();
Acquire(thr, ctx->pc, (uptr)ctx);
FuncEntry(thr, ctx->pc);
((void(*)())ctx->f)();
FuncExit(thr);
Free(ctx);
}
static void cxa_at_exit_callback_installed_at(void *arg) {
ThreadState *thr = cur_thread();
AtExitCtx *ctx = (AtExitCtx*)arg;
Acquire(thr, ctx->pc, (uptr)arg);
FuncEntry(thr, ctx->pc);
((void(*)(void *arg))ctx->f)(ctx->arg);
FuncExit(thr);
Free(ctx);
}
static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
void *arg, void *dso);
#if !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
if (in_symbolizer())
return 0;
// We want to setup the atexit callback even if we are in ignored lib
// or after fork.
SCOPED_INTERCEPTOR_RAW(atexit, f);
return setup_at_exit_wrapper(thr, GET_CALLER_PC(), (void (*)())f, 0, 0);
}
#endif
TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
if (in_symbolizer())
return 0;
SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
return setup_at_exit_wrapper(thr, GET_CALLER_PC(), (void (*)())f, arg, dso);
}
static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
void *arg, void *dso) {
auto *ctx = New<AtExitCtx>();
ctx->f = f;
ctx->arg = arg;
ctx->pc = pc;
Release(thr, pc, (uptr)ctx);
// Memory allocation in __cxa_atexit will race with free during exit,
// because we do not see synchronization around atexit callback list.
ThreadIgnoreBegin(thr, pc);
int res;
if (!dso) {
// NetBSD does not preserve the 2nd argument if dso is equal to 0
// Store ctx in a local stack-like structure
// Ensure thread-safety.
Lock l(&interceptor_ctx()->atexit_mu);
// __cxa_atexit calls calloc. If we don't ignore interceptors, we will fail
// due to atexit_mu held on exit from the calloc interceptor.
ScopedIgnoreInterceptors ignore;
res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_callback_installed_at,
0, 0);
// Push AtExitCtx on the top of the stack of callback functions
if (!res) {
interceptor_ctx()->AtExitStack.PushBack(ctx);
}
} else {
res = REAL(__cxa_atexit)(cxa_at_exit_callback_installed_at, ctx, dso);
}
ThreadIgnoreEnd(thr);
return res;
}
#if !SANITIZER_APPLE && !SANITIZER_NETBSD
static void on_exit_callback_installed_at(int status, void *arg) {
ThreadState *thr = cur_thread();
AtExitCtx *ctx = (AtExitCtx*)arg;
Acquire(thr, ctx->pc, (uptr)arg);
FuncEntry(thr, ctx->pc);
((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
FuncExit(thr);
Free(ctx);
}
TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
if (in_symbolizer())
return 0;
SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
auto *ctx = New<AtExitCtx>();
ctx->f = (void(*)())f;
ctx->arg = arg;
ctx->pc = GET_CALLER_PC();
Release(thr, pc, (uptr)ctx);
// Memory allocation in __cxa_atexit will race with free during exit,
// because we do not see synchronization around atexit callback list.
ThreadIgnoreBegin(thr, pc);
int res = REAL(on_exit)(on_exit_callback_installed_at, ctx);
ThreadIgnoreEnd(thr);
return res;
}
#define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
#else
#define TSAN_MAYBE_INTERCEPT_ON_EXIT
#endif
// Cleanup old bufs.
static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
JmpBuf *buf = &thr->jmp_bufs[i];
if (buf->sp <= sp) {
uptr sz = thr->jmp_bufs.Size();
internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
thr->jmp_bufs.PopBack();
i--;
}
}
}
static void SetJmp(ThreadState *thr, uptr sp) {
if (!thr->is_inited) // called from libc guts during bootstrap
return;
// Cleanup old bufs.
JmpBufGarbageCollect(thr, sp);
// Remember the buf.
JmpBuf *buf = thr->jmp_bufs.PushBack();
buf->sp = sp;
buf->shadow_stack_pos = thr->shadow_stack_pos;
ThreadSignalContext *sctx = SigCtx(thr);
buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
buf->in_blocking_func = atomic_load(&thr->in_blocking_func, memory_order_relaxed);
buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
memory_order_relaxed);
}
static void LongJmp(ThreadState *thr, uptr *env) {
uptr sp = ExtractLongJmpSp(env);
// Find the saved buf with matching sp.
for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
JmpBuf *buf = &thr->jmp_bufs[i];
if (buf->sp == sp) {
CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
// Unwind the stack.
while (thr->shadow_stack_pos > buf->shadow_stack_pos)
FuncExit(thr);
ThreadSignalContext *sctx = SigCtx(thr);
if (sctx)
sctx->int_signal_send = buf->int_signal_send;
atomic_store(&thr->in_blocking_func, buf->in_blocking_func,
memory_order_relaxed);
atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
memory_order_relaxed);
JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp
return;
}
}
Printf("ThreadSanitizer: can't find longjmp buf\n");
CHECK(0);
}
// FIXME: put everything below into a common extern "C" block?
extern "C" void __tsan_setjmp(uptr sp) { SetJmp(cur_thread_init(), sp); }
#if SANITIZER_APPLE
TSAN_INTERCEPTOR(int, setjmp, void *env);
TSAN_INTERCEPTOR(int, _setjmp, void *env);
TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
#else // SANITIZER_APPLE
#if SANITIZER_NETBSD
#define setjmp_symname __setjmp14
#define sigsetjmp_symname __sigsetjmp14
#else
#define setjmp_symname setjmp
#define sigsetjmp_symname sigsetjmp
#endif
#define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
#define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
#define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
#define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)
#define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
#define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)
// Not called. Merely to satisfy TSAN_INTERCEPT().
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int TSAN_INTERCEPTOR_SETJMP(void *env);
extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) {
CHECK(0);
return 0;
}
// FIXME: any reason to have a separate declaration?
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int __interceptor__setjmp(void *env);
extern "C" int __interceptor__setjmp(void *env) {
CHECK(0);
return 0;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int TSAN_INTERCEPTOR_SIGSETJMP(void *env);
extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) {
CHECK(0);
return 0;
}
#if !SANITIZER_NETBSD
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int __interceptor___sigsetjmp(void *env);
extern "C" int __interceptor___sigsetjmp(void *env) {
CHECK(0);
return 0;
}
#endif
extern "C" int setjmp_symname(void *env);
extern "C" int _setjmp(void *env);
extern "C" int sigsetjmp_symname(void *env);
#if !SANITIZER_NETBSD
extern "C" int __sigsetjmp(void *env);
#endif
DEFINE_REAL(int, setjmp_symname, void *env)
DEFINE_REAL(int, _setjmp, void *env)
DEFINE_REAL(int, sigsetjmp_symname, void *env)
#if !SANITIZER_NETBSD
DEFINE_REAL(int, __sigsetjmp, void *env)
#endif
#endif // SANITIZER_APPLE
#if SANITIZER_NETBSD
#define longjmp_symname __longjmp14
#define siglongjmp_symname __siglongjmp14
#else
#define longjmp_symname longjmp
#define siglongjmp_symname siglongjmp
#endif
TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
// Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
// bad things will happen. We will jump over ScopedInterceptor dtor and can
// leave thr->in_ignored_lib set.
{
SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
}
LongJmp(cur_thread(), env);
REAL(longjmp_symname)(env, val);
}
TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
{
SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
}
LongJmp(cur_thread(), env);
REAL(siglongjmp_symname)(env, val);
}
#if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
{
SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
}
LongJmp(cur_thread(), env);
REAL(_longjmp)(env, val);
}
#endif
#if !SANITIZER_APPLE
TSAN_INTERCEPTOR(void*, malloc, uptr size) {
if (in_symbolizer())
return InternalAlloc(size);
void *p = 0;
{
SCOPED_INTERCEPTOR_RAW(malloc, size);
p = user_alloc(thr, pc, size);
}
invoke_malloc_hook(p, size);
return p;
}
// In glibc<2.25, dynamic TLS blocks are allocated by __libc_memalign. Intercept
// __libc_memalign so that (1) we can detect races (2) free will not be called
// on libc internally allocated blocks.
TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
SCOPED_INTERCEPTOR_RAW(__libc_memalign, align, sz);
return user_memalign(thr, pc, align, sz);
}
TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
if (in_symbolizer())
return InternalCalloc(size, n);
void *p = 0;
{
SCOPED_INTERCEPTOR_RAW(calloc, size, n);
p = user_calloc(thr, pc, size, n);
}
invoke_malloc_hook(p, n * size);
return p;
}
TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
if (in_symbolizer())
return InternalRealloc(p, size);
if (p)
invoke_free_hook(p);
{
SCOPED_INTERCEPTOR_RAW(realloc, p, size);
p = user_realloc(thr, pc, p, size);
}
invoke_malloc_hook(p, size);
return p;
}
TSAN_INTERCEPTOR(void*, reallocarray, void *p, uptr size, uptr n) {
if (in_symbolizer())
return InternalReallocArray(p, size, n);
if (p)
invoke_free_hook(p);
{
SCOPED_INTERCEPTOR_RAW(reallocarray, p, size, n);
p = user_reallocarray(thr, pc, p, size, n);
}
invoke_malloc_hook(p, size);
return p;
}
TSAN_INTERCEPTOR(void, free, void *p) {
if (p == 0)
return;
if (in_symbolizer())
return InternalFree(p);
invoke_free_hook(p);
SCOPED_INTERCEPTOR_RAW(free, p);
user_free(thr, pc, p);
}
TSAN_INTERCEPTOR(void, cfree, void *p) {
if (p == 0)
return;
if (in_symbolizer())
return InternalFree(p);
invoke_free_hook(p);
SCOPED_INTERCEPTOR_RAW(cfree, p);
user_free(thr, pc, p);
}
TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
return user_alloc_usable_size(p);
}
#endif
TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) {
SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);
uptr srclen = internal_strlen(src);
MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
return REAL(strcpy)(dst, src);
}
TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
uptr srclen = internal_strnlen(src, n);
MemoryAccessRange(thr, pc, (uptr)dst, n, true);
MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
return REAL(strncpy)(dst, src, n);
}
TSAN_INTERCEPTOR(char*, strdup, const char *str) {
SCOPED_TSAN_INTERCEPTOR(strdup, str);
// strdup will call malloc, so no instrumentation is required here.
return REAL(strdup)(str);
}
// Zero out addr if it points into shadow memory and was provided as a hint
// only, i.e., MAP_FIXED is not set.
static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
if (*addr) {
if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
if (flags & MAP_FIXED) {
errno = errno_EINVAL;
return false;
} else {
*addr = 0;
}
}
}
return true;
}
template <class Mmap>
static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
void *addr, SIZE_T sz, int prot, int flags,
int fd, OFF64_T off) {
if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
void *res = real_mmap(addr, sz, prot, flags, fd, off);
if (res != MAP_FAILED) {
if (!IsAppMem((uptr)res) || !IsAppMem((uptr)res + sz - 1)) {
Report("ThreadSanitizer: mmap at bad address: addr=%p size=%p res=%p\n",
addr, (void*)sz, res);
Die();
}
if (fd > 0) FdAccess(thr, pc, fd);
MemoryRangeImitateWriteOrResetRange(thr, pc, (uptr)res, sz);
}
return res;
}
TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
UnmapShadow(thr, (uptr)addr, sz);
int res = REAL(munmap)(addr, sz);
return res;
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
return user_memalign(thr, pc, align, sz);
}
#define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
#else
#define TSAN_MAYBE_INTERCEPT_MEMALIGN
#endif
#if !SANITIZER_APPLE
TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
if (in_symbolizer())
return InternalAlloc(sz, nullptr, align);
SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
return user_aligned_alloc(thr, pc, align, sz);
}
TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
if (in_symbolizer())
return InternalAlloc(sz, nullptr, GetPageSizeCached());
SCOPED_INTERCEPTOR_RAW(valloc, sz);
return user_valloc(thr, pc, sz);
}
#endif
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
if (in_symbolizer()) {
uptr PageSize = GetPageSizeCached();
sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
return InternalAlloc(sz, nullptr, PageSize);
}
SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
return user_pvalloc(thr, pc, sz);
}
#define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
#else
#define TSAN_MAYBE_INTERCEPT_PVALLOC
#endif
#if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
if (in_symbolizer()) {
void *p = InternalAlloc(sz, nullptr, align);
if (!p)
return errno_ENOMEM;
*memptr = p;
return 0;
}
SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
return user_posix_memalign(thr, pc, memptr, align, sz);
}
#endif
// Both __cxa_guard_acquire and pthread_once 0-initialize
// the object initially. pthread_once does not have any
// other ABI requirements. __cxa_guard_acquire assumes
// that any non-0 value in the first byte means that
// initialization is completed. Contents of the remaining
// bytes are up to us.
constexpr u32 kGuardInit = 0;
constexpr u32 kGuardDone = 1;
constexpr u32 kGuardRunning = 1 << 16;
constexpr u32 kGuardWaiter = 1 << 17;
static int guard_acquire(ThreadState *thr, uptr pc, atomic_uint32_t *g,
bool blocking_hooks = true) {
if (blocking_hooks)
OnPotentiallyBlockingRegionBegin();
auto on_exit = at_scope_exit([blocking_hooks] {
if (blocking_hooks)
OnPotentiallyBlockingRegionEnd();
});
for (;;) {
u32 cmp = atomic_load(g, memory_order_acquire);
if (cmp == kGuardInit) {
if (atomic_compare_exchange_strong(g, &cmp, kGuardRunning,
memory_order_relaxed))
return 1;
} else if (cmp == kGuardDone) {
if (!thr->in_ignored_lib)
Acquire(thr, pc, (uptr)g);
return 0;
} else {
if ((cmp & kGuardWaiter) ||
atomic_compare_exchange_strong(g, &cmp, cmp | kGuardWaiter,
memory_order_relaxed))
FutexWait(g, cmp | kGuardWaiter);
}
}
}
static void guard_release(ThreadState *thr, uptr pc, atomic_uint32_t *g,
u32 v) {
if (!thr->in_ignored_lib)
Release(thr, pc, (uptr)g);
u32 old = atomic_exchange(g, v, memory_order_release);
if (old & kGuardWaiter)
FutexWake(g, 1 << 30);
}
// __cxa_guard_acquire and friends need to be intercepted in a special way -
// regular interceptors will break statically-linked libstdc++. Linux
// interceptors are especially defined as weak functions (so that they don't
// cause link errors when user defines them as well). So they silently
// auto-disable themselves when such symbol is already present in the binary. If
// we link libstdc++ statically, it will bring own __cxa_guard_acquire which
// will silently replace our interceptor. That's why on Linux we simply export
// these interceptors with INTERFACE_ATTRIBUTE.
// On OS X, we don't support statically linking, so we just use a regular
// interceptor.
#if SANITIZER_APPLE
#define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
#else
#define STDCXX_INTERCEPTOR(rettype, name, ...) \
extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
#endif
// Used in thread-safe function static initialization.
STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
return guard_acquire(thr, pc, g);
}
STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
guard_release(thr, pc, g, kGuardDone);
}
STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
guard_release(thr, pc, g, kGuardInit);
}
namespace __tsan {
void DestroyThreadState() {
ThreadState *thr = cur_thread();
Processor *proc = thr->proc();
ThreadFinish(thr);
ProcUnwire(proc, thr);
ProcDestroy(proc);
DTLS_Destroy();
cur_thread_finalize();
}
void PlatformCleanUpThreadState(ThreadState *thr) {
ThreadSignalContext *sctx = (ThreadSignalContext *)atomic_load(
&thr->signal_ctx, memory_order_relaxed);
if (sctx) {
atomic_store(&thr->signal_ctx, 0, memory_order_relaxed);
UnmapOrDie(sctx, sizeof(*sctx));
}
}
} // namespace __tsan
#if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
static void thread_finalize(void *v) {
uptr iter = (uptr)v;
if (iter > 1) {
if (pthread_setspecific(interceptor_ctx()->finalize_key,
(void*)(iter - 1))) {
Printf("ThreadSanitizer: failed to set thread key\n");
Die();
}
return;
}
DestroyThreadState();
}
#endif
struct ThreadParam {
void* (*callback)(void *arg);
void *param;
Tid tid;
Semaphore created;
Semaphore started;
};
extern "C" void *__tsan_thread_start_func(void *arg) {
ThreadParam *p = (ThreadParam*)arg;
void* (*callback)(void *arg) = p->callback;
void *param = p->param;
{
ThreadState *thr = cur_thread_init();
// Thread-local state is not initialized yet.
ScopedIgnoreInterceptors ignore;
#if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
ThreadIgnoreBegin(thr, 0);
if (pthread_setspecific(interceptor_ctx()->finalize_key,
(void *)GetPthreadDestructorIterations())) {
Printf("ThreadSanitizer: failed to set thread key\n");
Die();
}
ThreadIgnoreEnd(thr);
#endif
p->created.Wait();
Processor *proc = ProcCreate();
ProcWire(proc, thr);
ThreadStart(thr, p->tid, GetTid(), ThreadType::Regular);
p->started.Post();
}
void *res = callback(param);
// Prevent the callback from being tail called,
// it mixes up stack traces.
volatile int foo = 42;
foo++;
return res;
}
TSAN_INTERCEPTOR(int, pthread_create,
void *th, void *attr, void *(*callback)(void*), void * param) {
SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
MaybeSpawnBackgroundThread();
if (ctx->after_multithreaded_fork) {
if (flags()->die_after_fork) {
Report("ThreadSanitizer: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)\n");
Die();
} else {
VPrintf(1,
"ThreadSanitizer: starting new threads after multi-threaded "
"fork is not supported (pid %lu). Continuing because of "
"die_after_fork=0, but you are on your own\n",
internal_getpid());
}
}
__sanitizer_pthread_attr_t myattr;
if (attr == 0) {
pthread_attr_init(&myattr);
attr = &myattr;
}
int detached = 0;
REAL(pthread_attr_getdetachstate)(attr, &detached);
AdjustStackSize(attr);
ThreadParam p;
p.callback = callback;
p.param = param;
p.tid = kMainTid;
int res = -1;
{
// Otherwise we see false positives in pthread stack manipulation.
ScopedIgnoreInterceptors ignore;
ThreadIgnoreBegin(thr, pc);
res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
ThreadIgnoreEnd(thr);
}
if (res == 0) {
p.tid = ThreadCreate(thr, pc, *(uptr *)th, IsStateDetached(detached));
CHECK_NE(p.tid, kMainTid);
// Synchronization on p.tid serves two purposes:
// 1. ThreadCreate must finish before the new thread starts.
// Otherwise the new thread can call pthread_detach, but the pthread_t
// identifier is not yet registered in ThreadRegistry by ThreadCreate.
// 2. ThreadStart must finish before this thread continues.
// Otherwise, this thread can call pthread_detach and reset thr->sync
// before the new thread got a chance to acquire from it in ThreadStart.
p.created.Post();
p.started.Wait();
}
if (attr == &myattr)
pthread_attr_destroy(&myattr);
return res;
}
TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
ThreadIgnoreBegin(thr, pc);
int res = BLOCK_REAL(pthread_join)(th, ret);
ThreadIgnoreEnd(thr);
if (res == 0) {
ThreadJoin(thr, pc, tid);
}
return res;
}
DEFINE_REAL_PTHREAD_FUNCTIONS
TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
SCOPED_INTERCEPTOR_RAW(pthread_detach, th);
Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
int res = REAL(pthread_detach)(th);
if (res == 0) {
ThreadDetach(thr, pc, tid);
}
return res;
}
TSAN_INTERCEPTOR(void, pthread_exit, void *retval) {
{
SCOPED_INTERCEPTOR_RAW(pthread_exit, retval);
#if !SANITIZER_APPLE && !SANITIZER_ANDROID
CHECK_EQ(thr, &cur_thread_placeholder);
#endif
}
REAL(pthread_exit)(retval);
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret);
Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
ThreadIgnoreBegin(thr, pc);
int res = REAL(pthread_tryjoin_np)(th, ret);
ThreadIgnoreEnd(thr);
if (res == 0)
ThreadJoin(thr, pc, tid);
else
ThreadNotJoined(thr, pc, tid, (uptr)th);
return res;
}
TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
const struct timespec *abstime) {
SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime);
Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
ThreadIgnoreBegin(thr, pc);
int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
ThreadIgnoreEnd(thr);
if (res == 0)
ThreadJoin(thr, pc, tid);
else
ThreadNotJoined(thr, pc, tid, (uptr)th);
return res;
}
#endif
// Problem:
// NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
// pthread_cond_t has different size in the different versions.
// If call new REAL functions for old pthread_cond_t, they will corrupt memory
// after pthread_cond_t (old cond is smaller).
// If we call old REAL functions for new pthread_cond_t, we will lose some
// functionality (e.g. old functions do not support waiting against
// CLOCK_REALTIME).
// Proper handling would require to have 2 versions of interceptors as well.
// But this is messy, in particular requires linker scripts when sanitizer
// runtime is linked into a shared library.
// Instead we assume we don't have dynamic libraries built against old
// pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
// that allows to work with old libraries (but this mode does not support
// some features, e.g. pthread_condattr_getpshared).
static void *init_cond(void *c, bool force = false) {
// sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
// So we allocate additional memory on the side large enough to hold
// any pthread_cond_t object. Always call new REAL functions, but pass
// the aux object to them.
// Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
// first word of pthread_cond_t to zero.
// It's all relevant only for linux.
if (!common_flags()->legacy_pthread_cond)
return c;
atomic_uintptr_t *p = (atomic_uintptr_t*)c;
uptr cond = atomic_load(p, memory_order_acquire);
if (!force && cond != 0)
return (void*)cond;
void *newcond = WRAP(malloc)(pthread_cond_t_sz);
internal_memset(newcond, 0, pthread_cond_t_sz);
if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
memory_order_acq_rel))
return newcond;
WRAP(free)(newcond);
return (void*)cond;
}
namespace {
template <class Fn>
struct CondMutexUnlockCtx {
ScopedInterceptor *si;
ThreadState *thr;
uptr pc;
void *m;
void *c;
const Fn &fn;
int Cancel() const { return fn(); }
void Unlock() const;
};
template <class Fn>
void CondMutexUnlockCtx<Fn>::Unlock() const {
// pthread_cond_wait interceptor has enabled async signal delivery
// (see BlockingCall below). Disable async signals since we are running
// tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
// since the thread is cancelled, so we have to manually execute them
// (the thread still can run some user code due to pthread_cleanup_push).
CHECK_EQ(atomic_load(&thr->in_blocking_func, memory_order_relaxed), 1);
atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
// Undo BlockingCall ctor effects.
thr->ignore_interceptors--;
si->~ScopedInterceptor();
}
} // namespace
INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
void *cond = init_cond(c, true);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
return REAL(pthread_cond_init)(cond, a);
}
template <class Fn>
int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si, const Fn &fn,
void *c, void *m) {
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
MutexUnlock(thr, pc, (uptr)m);
int res = 0;
// This ensures that we handle mutex lock even in case of pthread_cancel.
// See test/tsan/cond_cancel.cpp.
{
// Enable signal delivery while the thread is blocked.
BlockingCall bc(thr);
CondMutexUnlockCtx<Fn> arg = {si, thr, pc, m, c, fn};
res = call_pthread_cancel_with_cleanup(
[](void *arg) -> int {
return ((const CondMutexUnlockCtx<Fn> *)arg)->Cancel();
},
[](void *arg) { ((const CondMutexUnlockCtx<Fn> *)arg)->Unlock(); },
&arg);
}
if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
return res;
}
INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
return cond_wait(
thr, pc, &si, [=]() { return REAL(pthread_cond_wait)(cond, m); }, cond,
m);
}
INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
return cond_wait(
thr, pc, &si,
[=]() { return REAL(pthread_cond_timedwait)(cond, m, abstime); }, cond,
m);
}
#if SANITIZER_LINUX
INTERCEPTOR(int, pthread_cond_clockwait, void *c, void *m,
__sanitizer_clockid_t clock, void *abstime) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_clockwait, cond, m, clock, abstime);
return cond_wait(
thr, pc, &si,
[=]() { return REAL(pthread_cond_clockwait)(cond, m, clock, abstime); },
cond, m);
}
#define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT TSAN_INTERCEPT(pthread_cond_clockwait)
#else
#define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT
#endif
#if SANITIZER_APPLE
INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
void *reltime) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
return cond_wait(
thr, pc, &si,
[=]() {
return REAL(pthread_cond_timedwait_relative_np)(cond, m, reltime);
},
cond, m);
}
#endif
INTERCEPTOR(int, pthread_cond_signal, void *c) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
return REAL(pthread_cond_signal)(cond);
}
INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
return REAL(pthread_cond_broadcast)(cond);
}
INTERCEPTOR(int, pthread_cond_destroy, void *c) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
int res = REAL(pthread_cond_destroy)(cond);
if (common_flags()->legacy_pthread_cond) {
// Free our aux cond and zero the pointer to not leave dangling pointers.
WRAP(free)(cond);
atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
int res = REAL(pthread_mutex_init)(m, a);
if (res == 0) {
u32 flagz = 0;
if (a) {
int type = 0;
if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
if (type == PTHREAD_MUTEX_RECURSIVE ||
type == PTHREAD_MUTEX_RECURSIVE_NP)
flagz |= MutexFlagWriteReentrant;
}
MutexCreate(thr, pc, (uptr)m, flagz);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
int res = REAL(pthread_mutex_destroy)(m);
if (res == 0 || res == errno_EBUSY) {
MutexDestroy(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_lock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_lock, m);
MutexPreLock(thr, pc, (uptr)m);
int res = REAL(pthread_mutex_lock)(m);
if (res == errno_EOWNERDEAD)
MutexRepair(thr, pc, (uptr)m);
if (res == 0 || res == errno_EOWNERDEAD)
MutexPostLock(thr, pc, (uptr)m);
if (res == errno_EINVAL)
MutexInvalidAccess(thr, pc, (uptr)m);
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
int res = REAL(pthread_mutex_trylock)(m);
if (res == errno_EOWNERDEAD)
MutexRepair(thr, pc, (uptr)m);
if (res == 0 || res == errno_EOWNERDEAD)
MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
return res;
}
#if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
int res = REAL(pthread_mutex_timedlock)(m, abstime);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
}
return res;
}
#endif
TSAN_INTERCEPTOR(int, pthread_mutex_unlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_unlock, m);
MutexUnlock(thr, pc, (uptr)m);
int res = REAL(pthread_mutex_unlock)(m);
if (res == errno_EINVAL)
MutexInvalidAccess(thr, pc, (uptr)m);
return res;
}
#if SANITIZER_GLIBC
# if !__GLIBC_PREREQ(2, 34)
// glibc 2.34 applies a non-default version for the two functions. They are no
// longer expected to be intercepted by programs.
TSAN_INTERCEPTOR(int, __pthread_mutex_lock, void *m) {
SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_lock, m);
MutexPreLock(thr, pc, (uptr)m);
int res = REAL(__pthread_mutex_lock)(m);
if (res == errno_EOWNERDEAD)
MutexRepair(thr, pc, (uptr)m);
if (res == 0 || res == errno_EOWNERDEAD)
MutexPostLock(thr, pc, (uptr)m);
if (res == errno_EINVAL)
MutexInvalidAccess(thr, pc, (uptr)m);
return res;
}
TSAN_INTERCEPTOR(int, __pthread_mutex_unlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_unlock, m);
MutexUnlock(thr, pc, (uptr)m);
int res = REAL(__pthread_mutex_unlock)(m);
if (res == errno_EINVAL)
MutexInvalidAccess(thr, pc, (uptr)m);
return res;
}
# endif
#endif
#if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
int res = REAL(pthread_spin_init)(m, pshared);
if (res == 0) {
MutexCreate(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
int res = REAL(pthread_spin_destroy)(m);
if (res == 0) {
MutexDestroy(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
MutexPreLock(thr, pc, (uptr)m);
int res = REAL(pthread_spin_lock)(m);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
int res = REAL(pthread_spin_trylock)(m);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
MutexUnlock(thr, pc, (uptr)m);
int res = REAL(pthread_spin_unlock)(m);
return res;
}
#endif
TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
int res = REAL(pthread_rwlock_init)(m, a);
if (res == 0) {
MutexCreate(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
int res = REAL(pthread_rwlock_destroy)(m);
if (res == 0) {
MutexDestroy(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
MutexPreReadLock(thr, pc, (uptr)m);
int res = REAL(pthread_rwlock_rdlock)(m);
if (res == 0) {
MutexPostReadLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
int res = REAL(pthread_rwlock_tryrdlock)(m);
if (res == 0) {
MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
}
return res;
}
#if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
if (res == 0) {
MutexPostReadLock(thr, pc, (uptr)m);
}
return res;
}
#endif
TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
MutexPreLock(thr, pc, (uptr)m);
int res = REAL(pthread_rwlock_wrlock)(m);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
int res = REAL(pthread_rwlock_trywrlock)(m);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
}
return res;
}
#if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
}
return res;
}
#endif
TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
MutexReadOrWriteUnlock(thr, pc, (uptr)m);
int res = REAL(pthread_rwlock_unlock)(m);
return res;
}
#if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
MemoryAccess(thr, pc, (uptr)b, 1, kAccessWrite);
int res = REAL(pthread_barrier_init)(b, a, count);
return res;
}
TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
MemoryAccess(thr, pc, (uptr)b, 1, kAccessWrite);
int res = REAL(pthread_barrier_destroy)(b);
return res;
}
TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
Release(thr, pc, (uptr)b);
MemoryAccess(thr, pc, (uptr)b, 1, kAccessRead);
int res = REAL(pthread_barrier_wait)(b);
MemoryAccess(thr, pc, (uptr)b, 1, kAccessRead);
if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
Acquire(thr, pc, (uptr)b);
}
return res;
}
#endif
TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
if (o == 0 || f == 0)
return errno_EINVAL;
atomic_uint32_t *a;
if (SANITIZER_APPLE)
a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
else if (SANITIZER_NETBSD)
a = static_cast<atomic_uint32_t*>
((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
else
a = static_cast<atomic_uint32_t*>(o);
// Mac OS X appears to use pthread_once() where calling BlockingRegion hooks
// result in crashes due to too little stack space.
if (guard_acquire(thr, pc, a, !SANITIZER_APPLE)) {
(*f)();
guard_release(thr, pc, a, kGuardDone);
}
return 0;
}
#if SANITIZER_GLIBC
TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat)(version, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
#else
#define TSAN_MAYBE_INTERCEPT___FXSTAT
#endif
TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
#if SANITIZER_GLIBC
SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat)(0, fd, buf);
#else
SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(fstat)(fd, buf);
#endif
}
#if SANITIZER_GLIBC
TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat64)(version, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
#else
#define TSAN_MAYBE_INTERCEPT___FXSTAT64
#endif
#if SANITIZER_GLIBC
TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat64)(0, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
#else
#define TSAN_MAYBE_INTERCEPT_FSTAT64
#endif
TSAN_INTERCEPTOR(int, open, const char *name, int oflag, ...) {
va_list ap;
va_start(ap, oflag);
mode_t mode = va_arg(ap, int);
va_end(ap);
SCOPED_TSAN_INTERCEPTOR(open, name, oflag, mode);
READ_STRING(thr, pc, name, 0);
int fd = REAL(open)(name, oflag, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, open64, const char *name, int oflag, ...) {
va_list ap;
va_start(ap, oflag);
mode_t mode = va_arg(ap, int);
va_end(ap);
SCOPED_TSAN_INTERCEPTOR(open64, name, oflag, mode);
READ_STRING(thr, pc, name, 0);
int fd = REAL(open64)(name, oflag, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
#else
#define TSAN_MAYBE_INTERCEPT_OPEN64
#endif
TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
READ_STRING(thr, pc, name, 0);
int fd = REAL(creat)(name, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
READ_STRING(thr, pc, name, 0);
int fd = REAL(creat64)(name, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
#else
#define TSAN_MAYBE_INTERCEPT_CREAT64
#endif
TSAN_INTERCEPTOR(int, dup, int oldfd) {
SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
int newfd = REAL(dup)(oldfd);
if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
FdDup(thr, pc, oldfd, newfd, true);
return newfd;
}
TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
int newfd2 = REAL(dup2)(oldfd, newfd);
if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
FdDup(thr, pc, oldfd, newfd2, false);
return newfd2;
}
#if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
int newfd2 = REAL(dup3)(oldfd, newfd, flags);
if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
FdDup(thr, pc, oldfd, newfd2, false);
return newfd2;
}
#endif
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
int fd = REAL(eventfd)(initval, flags);
if (fd >= 0)
FdEventCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
#else
#define TSAN_MAYBE_INTERCEPT_EVENTFD
#endif
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
SCOPED_INTERCEPTOR_RAW(signalfd, fd, mask, flags);
FdClose(thr, pc, fd);
fd = REAL(signalfd)(fd, mask, flags);
if (!MustIgnoreInterceptor(thr))
FdSignalCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
#else
#define TSAN_MAYBE_INTERCEPT_SIGNALFD
#endif
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, inotify_init, int fake) {
SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
int fd = REAL(inotify_init)(fake);
if (fd >= 0)
FdInotifyCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
#else
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
#endif
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
int fd = REAL(inotify_init1)(flags);
if (fd >= 0)
FdInotifyCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
#else
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
#endif
TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
int fd = REAL(socket)(domain, type, protocol);
if (fd >= 0)
FdSocketCreate(thr, pc, fd);
return fd;
}
TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
int res = REAL(socketpair)(domain, type, protocol, fd);
if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
FdPipeCreate(thr, pc, fd[0], fd[1]);
return res;
}
TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
FdSocketConnecting(thr, pc, fd);
int res = REAL(connect)(fd, addr, addrlen);
if (res == 0 && fd >= 0)
FdSocketConnect(thr, pc, fd);
return res;
}
TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
int res = REAL(bind)(fd, addr, addrlen);
if (fd > 0 && res == 0)
FdAccess(thr, pc, fd);
return res;
}
TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
int res = REAL(listen)(fd, backlog);
if (fd > 0 && res == 0)
FdAccess(thr, pc, fd);
return res;
}
TSAN_INTERCEPTOR(int, close, int fd) {
SCOPED_INTERCEPTOR_RAW(close, fd);
if (!in_symbolizer())
FdClose(thr, pc, fd);
return REAL(close)(fd);
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, __close, int fd) {
SCOPED_INTERCEPTOR_RAW(__close, fd);
FdClose(thr, pc, fd);
return REAL(__close)(fd);
}
#define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
#else
#define TSAN_MAYBE_INTERCEPT___CLOSE
#endif
// glibc guts
#if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
SCOPED_INTERCEPTOR_RAW(__res_iclose, state, free_addr);
int fds[64];
int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
for (int i = 0; i < cnt; i++) FdClose(thr, pc, fds[i]);
REAL(__res_iclose)(state, free_addr);
}
#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
#else
#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
#endif
TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
int res = REAL(pipe)(pipefd);
if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
return res;
}
#if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
int res = REAL(pipe2)(pipefd, flags);
if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
return res;
}
#endif
TSAN_INTERCEPTOR(int, unlink, char *path) {
SCOPED_TSAN_INTERCEPTOR(unlink, path);
Release(thr, pc, File2addr(path));
int res = REAL(unlink)(path);
return res;
}
TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
void *res = REAL(tmpfile)(fake);
if (res) {
int fd = fileno_unlocked(res);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
}
return res;
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
void *res = REAL(tmpfile64)(fake);
if (res) {
int fd = fileno_unlocked(res);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
}
return res;
}
#define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
#else
#define TSAN_MAYBE_INTERCEPT_TMPFILE64
#endif
static void FlushStreams() {
// Flushing all the streams here may freeze the process if a child thread is
// performing file stream operations at the same time.
REAL(fflush)(stdout);
REAL(fflush)(stderr);
}
TSAN_INTERCEPTOR(void, abort, int fake) {
SCOPED_TSAN_INTERCEPTOR(abort, fake);
FlushStreams();
REAL(abort)(fake);
}
TSAN_INTERCEPTOR(int, rmdir, char *path) {
SCOPED_TSAN_INTERCEPTOR(rmdir, path);
Release(thr, pc, Dir2addr(path));
int res = REAL(rmdir)(path);
return res;
}
TSAN_INTERCEPTOR(int, closedir, void *dirp) {
SCOPED_INTERCEPTOR_RAW(closedir, dirp);
if (dirp) {
int fd = dirfd(dirp);
FdClose(thr, pc, fd);
}
return REAL(closedir)(dirp);
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, epoll_create, int size) {
SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
int fd = REAL(epoll_create)(size);
if (fd >= 0)
FdPollCreate(thr, pc, fd);
return fd;
}
TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
int fd = REAL(epoll_create1)(flags);
if (fd >= 0)
FdPollCreate(thr, pc, fd);
return fd;
}
TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
if (epfd >= 0)
FdAccess(thr, pc, epfd);
if (epfd >= 0 && fd >= 0)
FdAccess(thr, pc, fd);
if (op == EPOLL_CTL_ADD && epfd >= 0) {
FdPollAdd(thr, pc, epfd, fd);
FdRelease(thr, pc, epfd);
}
int res = REAL(epoll_ctl)(epfd, op, fd, ev);
return res;
}
TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
if (epfd >= 0)
FdAccess(thr, pc, epfd);
int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
if (res > 0 && epfd >= 0)
FdAcquire(thr, pc, epfd);
return res;
}
TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
void *sigmask) {
SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
if (epfd >= 0)
FdAccess(thr, pc, epfd);
int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
if (res > 0 && epfd >= 0)
FdAcquire(thr, pc, epfd);
return res;
}
TSAN_INTERCEPTOR(int, epoll_pwait2, int epfd, void *ev, int cnt, void *timeout,
void *sigmask) {
SCOPED_INTERCEPTOR_RAW(epoll_pwait2, epfd, ev, cnt, timeout, sigmask);
// This function is new and may not be present in libc and/or kernel.
// Since we effectively add it to libc (as will be probed by the program
// using dlsym or a weak function pointer) we need to handle the case
// when it's not present in the actual libc.
if (!REAL(epoll_pwait2)) {
errno = errno_ENOSYS;
return -1;
}
if (MustIgnoreInterceptor(thr))
REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask);
if (epfd >= 0)
FdAccess(thr, pc, epfd);
int res = BLOCK_REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask);
if (res > 0 && epfd >= 0)
FdAcquire(thr, pc, epfd);
return res;
}
# define TSAN_MAYBE_INTERCEPT_EPOLL \
TSAN_INTERCEPT(epoll_create); \
TSAN_INTERCEPT(epoll_create1); \
TSAN_INTERCEPT(epoll_ctl); \
TSAN_INTERCEPT(epoll_wait); \
TSAN_INTERCEPT(epoll_pwait); \
TSAN_INTERCEPT(epoll_pwait2)
#else
#define TSAN_MAYBE_INTERCEPT_EPOLL
#endif
// The following functions are intercepted merely to process pending signals.
// If program blocks signal X, we must deliver the signal before the function
// returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
// it's better to deliver the signal straight away.
TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
return REAL(sigsuspend)(mask);
}
TSAN_INTERCEPTOR(int, sigblock, int mask) {
SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
return REAL(sigblock)(mask);
}
TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
return REAL(sigsetmask)(mask);
}
TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
__sanitizer_sigset_t *oldset) {
SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
return REAL(pthread_sigmask)(how, set, oldset);
}
namespace __tsan {
static void ReportErrnoSpoiling(ThreadState *thr, uptr pc, int sig) {
VarSizeStackTrace stack;
// StackTrace::GetNestInstructionPc(pc) is used because return address is
// expected, OutputReport() will undo this.
ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
ThreadRegistryLock l(&ctx->thread_registry);
ScopedReport rep(ReportTypeErrnoInSignal);
rep.SetSigNum(sig);
if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
rep.AddStack(stack, true);
OutputReport(thr, rep);
}
}
static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
int sig, __sanitizer_siginfo *info,
void *uctx) {
CHECK(thr->slot);
__sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
if (acquire)
Acquire(thr, 0, (uptr)&sigactions[sig]);
// Signals are generally asynchronous, so if we receive a signals when
// ignores are enabled we should disable ignores. This is critical for sync
// and interceptors, because otherwise we can miss synchronization and report
// false races.
int ignore_reads_and_writes = thr->ignore_reads_and_writes;
int ignore_interceptors = thr->ignore_interceptors;
int ignore_sync = thr->ignore_sync;
// For symbolizer we only process SIGSEGVs synchronously
// (bug in symbolizer or in tsan). But we want to reset
// in_symbolizer to fail gracefully. Symbolizer and user code
// use different memory allocators, so if we don't reset
// in_symbolizer we can get memory allocated with one being
// feed with another, which can cause more crashes.
int in_symbolizer = thr->in_symbolizer;
if (!ctx->after_multithreaded_fork) {
thr->ignore_reads_and_writes = 0;
thr->fast_state.ClearIgnoreBit();
thr->ignore_interceptors = 0;
thr->ignore_sync = 0;
thr->in_symbolizer = 0;
}
// Ensure that the handler does not spoil errno.
const int saved_errno = errno;
errno = 99;
// This code races with sigaction. Be careful to not read sa_sigaction twice.
// Also need to remember pc for reporting before the call,
// because the handler can reset it.
volatile uptr pc = (sigactions[sig].sa_flags & SA_SIGINFO)
? (uptr)sigactions[sig].sigaction
: (uptr)sigactions[sig].handler;
if (pc != sig_dfl && pc != sig_ign) {
// The callback can be either sa_handler or sa_sigaction.
// They have different signatures, but we assume that passing
// additional arguments to sa_handler works and is harmless.
((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
}
if (!ctx->after_multithreaded_fork) {
thr->ignore_reads_and_writes = ignore_reads_and_writes;
if (ignore_reads_and_writes)
thr->fast_state.SetIgnoreBit();
thr->ignore_interceptors = ignore_interceptors;
thr->ignore_sync = ignore_sync;
thr->in_symbolizer = in_symbolizer;
}
// We do not detect errno spoiling for SIGTERM,
// because some SIGTERM handlers do spoil errno but reraise SIGTERM,
// tsan reports false positive in such case.
// It's difficult to properly detect this situation (reraise),
// because in async signal processing case (when handler is called directly
// from rtl_generic_sighandler) we have not yet received the reraised
// signal; and it looks too fragile to intercept all ways to reraise a signal.
if (ShouldReport(thr, ReportTypeErrnoInSignal) && !sync && sig != SIGTERM &&
errno != 99)
ReportErrnoSpoiling(thr, pc, sig);
errno = saved_errno;
}
void ProcessPendingSignalsImpl(ThreadState *thr) {
atomic_store(&thr->pending_signals, 0, memory_order_relaxed);
ThreadSignalContext *sctx = SigCtx(thr);
if (sctx == 0)
return;
atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
internal_sigfillset(&sctx->emptyset);
int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
CHECK_EQ(res, 0);
for (int sig = 0; sig < kSigCount; sig++) {
SignalDesc *signal = &sctx->pending_signals[sig];
if (signal->armed) {
signal->armed = false;
CallUserSignalHandler(thr, false, true, sig, &signal->siginfo,
&signal->ctx);
}
}
res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
CHECK_EQ(res, 0);
atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
}
} // namespace __tsan
static bool is_sync_signal(ThreadSignalContext *sctx, int sig,
__sanitizer_siginfo *info) {
// If we are sending signal to ourselves, we must process it now.
if (sctx && sig == sctx->int_signal_send)
return true;
#if SANITIZER_HAS_SIGINFO
// POSIX timers can be configured to send any kind of signal; however, it
// doesn't make any sense to consider a timer signal as synchronous!
if (info->si_code == SI_TIMER)
return false;
#endif
return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP ||
sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS;
}
void sighandler(int sig, __sanitizer_siginfo *info, void *ctx) {
ThreadState *thr = cur_thread_init();
ThreadSignalContext *sctx = SigCtx(thr);
if (sig < 0 || sig >= kSigCount) {
VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
return;
}
// Don't mess with synchronous signals.
const bool sync = is_sync_signal(sctx, sig, info);
if (sync ||
// If we are in blocking function, we can safely process it now
// (but check if we are in a recursive interceptor,
// i.e. pthread_join()->munmap()).
atomic_load(&thr->in_blocking_func, memory_order_relaxed)) {
atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
if (atomic_load(&thr->in_blocking_func, memory_order_relaxed)) {
atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
CallUserSignalHandler(thr, sync, true, sig, info, ctx);
atomic_store(&thr->in_blocking_func, 1, memory_order_relaxed);
} else {
// Be very conservative with when we do acquire in this case.
// It's unsafe to do acquire in async handlers, because ThreadState
// can be in inconsistent state.
// SIGSYS looks relatively safe -- it's synchronous and can actually
// need some global state.
bool acq = (sig == SIGSYS);
CallUserSignalHandler(thr, sync, acq, sig, info, ctx);
}
atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
return;
}
if (sctx == 0)
return;
SignalDesc *signal = &sctx->pending_signals[sig];
if (signal->armed == false) {
signal->armed = true;
internal_memcpy(&signal->siginfo, info, sizeof(*info));
internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
atomic_store(&thr->pending_signals, 1, memory_order_relaxed);
}
}
TSAN_INTERCEPTOR(int, raise, int sig) {
SCOPED_TSAN_INTERCEPTOR(raise, sig);
ThreadSignalContext *sctx = SigCtx(thr);
CHECK_NE(sctx, 0);
int prev = sctx->int_signal_send;
sctx->int_signal_send = sig;
int res = REAL(raise)(sig);
CHECK_EQ(sctx->int_signal_send, sig);
sctx->int_signal_send = prev;
return res;
}
TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
ThreadSignalContext *sctx = SigCtx(thr);
CHECK_NE(sctx, 0);
int prev = sctx->int_signal_send;
if (pid == (int)internal_getpid()) {
sctx->int_signal_send = sig;
}
int res = REAL(kill)(pid, sig);
if (pid == (int)internal_getpid()) {
CHECK_EQ(sctx->int_signal_send, sig);
sctx->int_signal_send = prev;
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
ThreadSignalContext *sctx = SigCtx(thr);
CHECK_NE(sctx, 0);
int prev = sctx->int_signal_send;
bool self = pthread_equal(tid, pthread_self());
if (self)
sctx->int_signal_send = sig;
int res = REAL(pthread_kill)(tid, sig);
if (self) {
CHECK_EQ(sctx->int_signal_send, sig);
sctx->int_signal_send = prev;
}
return res;
}
TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
// It's intercepted merely to process pending signals.
return REAL(gettimeofday)(tv, tz);
}
TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
void *hints, void *rv) {
SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
// We miss atomic synchronization in getaddrinfo,
// and can report false race between malloc and free
// inside of getaddrinfo. So ignore memory accesses.
ThreadIgnoreBegin(thr, pc);
int res = REAL(getaddrinfo)(node, service, hints, rv);
ThreadIgnoreEnd(thr);
return res;
}
TSAN_INTERCEPTOR(int, fork, int fake) {
if (in_symbolizer())
return REAL(fork)(fake);
SCOPED_INTERCEPTOR_RAW(fork, fake);
return REAL(fork)(fake);
}
void atfork_prepare() {
if (in_symbolizer())
return;
ThreadState *thr = cur_thread();
const uptr pc = StackTrace::GetCurrentPc();
ForkBefore(thr, pc);
}
void atfork_parent() {
if (in_symbolizer())
return;
ThreadState *thr = cur_thread();
const uptr pc = StackTrace::GetCurrentPc();
ForkParentAfter(thr, pc);
}
void atfork_child() {
if (in_symbolizer())
return;
ThreadState *thr = cur_thread();
const uptr pc = StackTrace::GetCurrentPc();
ForkChildAfter(thr, pc, true);
FdOnFork(thr, pc);
}
#if !SANITIZER_IOS
TSAN_INTERCEPTOR(int, vfork, int fake) {
// Some programs (e.g. openjdk) call close for all file descriptors
// in the child process. Under tsan it leads to false positives, because
// address space is shared, so the parent process also thinks that
// the descriptors are closed (while they are actually not).
// This leads to false positives due to missed synchronization.
// Strictly saying this is undefined behavior, because vfork child is not
// allowed to call any functions other than exec/exit. But this is what
// openjdk does, so we want to handle it.
// We could disable interceptors in the child process. But it's not possible
// to simply intercept and wrap vfork, because vfork child is not allowed
// to return from the function that calls vfork, and that's exactly what
// we would do. So this would require some assembly trickery as well.
// Instead we simply turn vfork into fork.
return WRAP(fork)(fake);
}
#endif
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, clone, int (*fn)(void *), void *stack, int flags,
void *arg, int *parent_tid, void *tls, pid_t *child_tid) {
SCOPED_INTERCEPTOR_RAW(clone, fn, stack, flags, arg, parent_tid, tls,
child_tid);
struct Arg {
int (*fn)(void *);
void *arg;
};
auto wrapper = +[](void *p) -> int {
auto *thr = cur_thread();
uptr pc = GET_CURRENT_PC();
// Start the background thread for fork, but not for clone.
// For fork we did this always and it's known to work (or user code has
// adopted). But if we do this for the new clone interceptor some code
// (sandbox2) fails. So model we used to do for years and don't start the
// background thread after clone.
ForkChildAfter(thr, pc, false);
FdOnFork(thr, pc);
auto *arg = static_cast<Arg *>(p);
return arg->fn(arg->arg);
};
ForkBefore(thr, pc);
Arg arg_wrapper = {fn, arg};
int pid = REAL(clone)(wrapper, stack, flags, &arg_wrapper, parent_tid, tls,
child_tid);
ForkParentAfter(thr, pc);
return pid;
}
#endif
#if !SANITIZER_APPLE && !SANITIZER_ANDROID
typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
void *data);
struct dl_iterate_phdr_data {
ThreadState *thr;
uptr pc;
dl_iterate_phdr_cb_t cb;
void *data;
};
static bool IsAppNotRodata(uptr addr) {
return IsAppMem(addr) && *MemToShadow(addr) != Shadow::kRodata;
}
static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
void *data) {
dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
// dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
// accessible in dl_iterate_phdr callback. But we don't see synchronization
// inside of dynamic linker, so we "unpoison" it here in order to not
// produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
// because some libc functions call __libc_dlopen.
if (info && IsAppNotRodata((uptr)info->dlpi_name))
MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
internal_strlen(info->dlpi_name));
int res = cbdata->cb(info, size, cbdata->data);
// Perform the check one more time in case info->dlpi_name was overwritten
// by user callback.
if (info && IsAppNotRodata((uptr)info->dlpi_name))
MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
internal_strlen(info->dlpi_name));
return res;
}
TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
dl_iterate_phdr_data cbdata;
cbdata.thr = thr;
cbdata.pc = pc;
cbdata.cb = cb;
cbdata.data = data;
int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
return res;
}
#endif
static int OnExit(ThreadState *thr) {
int status = Finalize(thr);
FlushStreams();
return status;
}
struct TsanInterceptorContext {
ThreadState *thr;
const uptr pc;
};
#if !SANITIZER_APPLE
static void HandleRecvmsg(ThreadState *thr, uptr pc,
__sanitizer_msghdr *msg) {
int fds[64];
int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
for (int i = 0; i < cnt; i++)
FdEventCreate(thr, pc, fds[i]);
}
#endif
#include "sanitizer_common/sanitizer_platform_interceptors.h"
// Causes interceptor recursion (getaddrinfo() and fopen())
#undef SANITIZER_INTERCEPT_GETADDRINFO
// We define our own.
#if SANITIZER_INTERCEPT_TLS_GET_ADDR
#define NEED_TLS_GET_ADDR
#endif
#undef SANITIZER_INTERCEPT_TLS_GET_ADDR
#define SANITIZER_INTERCEPT_TLS_GET_OFFSET 1
#undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
#define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
#define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
INTERCEPT_FUNCTION_VER(name, ver)
#define COMMON_INTERCEPT_FUNCTION_VER_UNVERSIONED_FALLBACK(name, ver) \
(INTERCEPT_FUNCTION_VER(name, ver) || INTERCEPT_FUNCTION(name))
#define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
true)
#define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
false)
#define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
TsanInterceptorContext _ctx = {thr, pc}; \
ctx = (void *)&_ctx; \
(void)ctx;
#define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
TsanInterceptorContext _ctx = {thr, pc}; \
ctx = (void *)&_ctx; \
(void)ctx;
#define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
if (path) \
Acquire(thr, pc, File2addr(path)); \
if (file) { \
int fd = fileno_unlocked(file); \
if (fd >= 0) FdFileCreate(thr, pc, fd); \
}
#define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
if (file) { \
int fd = fileno_unlocked(file); \
FdClose(thr, pc, fd); \
}
#define COMMON_INTERCEPTOR_DLOPEN(filename, flag) \
({ \
CheckNoDeepBind(filename, flag); \
ThreadIgnoreBegin(thr, 0); \
void *res = REAL(dlopen)(filename, flag); \
ThreadIgnoreEnd(thr); \
res; \
})
#define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
libignore()->OnLibraryLoaded(filename)
#define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
libignore()->OnLibraryUnloaded()
#define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
#define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
#define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
#define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
#define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
#define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
#define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
if (pthread_equal(pthread_self(), reinterpret_cast<void *>(thread))) \
COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name); \
else \
__tsan::ctx->thread_registry.SetThreadNameByUserId(thread, name)
#define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
#define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
OnExit(((TsanInterceptorContext *) ctx)->thr)
#define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \
off) \
do { \
return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
off); \
} while (false)
#if !SANITIZER_APPLE
#define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, msg)
#endif
#define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
if (TsanThread *t = GetCurrentThread()) { \
*begin = t->tls_begin(); \
*end = t->tls_end(); \
} else { \
*begin = *end = 0; \
}
#define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
#define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
#include "sanitizer_common/sanitizer_common_interceptors.inc"
static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
__sanitizer_sigaction *old);
static __sanitizer_sighandler_ptr signal_impl(int sig,
__sanitizer_sighandler_ptr h);
#define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
{ return sigaction_impl(signo, act, oldact); }
#define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
{ return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
#include "sanitizer_common/sanitizer_signal_interceptors.inc"
int sigaction_impl(int sig, const __sanitizer_sigaction *act,
__sanitizer_sigaction *old) {
// Note: if we call REAL(sigaction) directly for any reason without proxying
// the signal handler through sighandler, very bad things will happen.
// The handler will run synchronously and corrupt tsan per-thread state.
SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
if (sig <= 0 || sig >= kSigCount) {
errno = errno_EINVAL;
return -1;
}
__sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
__sanitizer_sigaction old_stored;
if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
__sanitizer_sigaction newact;
if (act) {
// Copy act into sigactions[sig].
// Can't use struct copy, because compiler can emit call to memcpy.
// Can't use internal_memcpy, because it copies byte-by-byte,
// and signal handler reads the handler concurrently. It it can read
// some bytes from old value and some bytes from new value.
// Use volatile to prevent insertion of memcpy.
sigactions[sig].handler =
*(volatile __sanitizer_sighandler_ptr const *)&act->handler;
sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
sizeof(sigactions[sig].sa_mask));
#if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
sigactions[sig].sa_restorer = act->sa_restorer;
#endif
internal_memcpy(&newact, act, sizeof(newact));
internal_sigfillset(&newact.sa_mask);
if ((act->sa_flags & SA_SIGINFO) ||
((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl)) {
newact.sa_flags |= SA_SIGINFO;
newact.sigaction = sighandler;
}
ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
act = &newact;
}
int res = REAL(sigaction)(sig, act, old);
if (res == 0 && old && old->sigaction == sighandler)
internal_memcpy(old, &old_stored, sizeof(*old));
return res;
}
static __sanitizer_sighandler_ptr signal_impl(int sig,
__sanitizer_sighandler_ptr h) {
__sanitizer_sigaction act;
act.handler = h;
internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
act.sa_flags = 0;
__sanitizer_sigaction old;
int res = sigaction_symname(sig, &act, &old);
if (res) return (__sanitizer_sighandler_ptr)sig_err;
return old.handler;
}
#define TSAN_SYSCALL() \
ThreadState *thr = cur_thread(); \
if (thr->ignore_interceptors) \
return; \
ScopedSyscall scoped_syscall(thr)
struct ScopedSyscall {
ThreadState *thr;
explicit ScopedSyscall(ThreadState *thr) : thr(thr) { LazyInitialize(thr); }
~ScopedSyscall() {
ProcessPendingSignals(thr);
}
};
#if !SANITIZER_FREEBSD && !SANITIZER_APPLE
static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
TSAN_SYSCALL();
MemoryAccessRange(thr, pc, p, s, write);
}
static USED void syscall_acquire(uptr pc, uptr addr) {
TSAN_SYSCALL();
Acquire(thr, pc, addr);
DPrintf("syscall_acquire(0x%zx))\n", addr);
}
static USED void syscall_release(uptr pc, uptr addr) {
TSAN_SYSCALL();
DPrintf("syscall_release(0x%zx)\n", addr);
Release(thr, pc, addr);
}
static void syscall_fd_close(uptr pc, int fd) {
auto *thr = cur_thread();
FdClose(thr, pc, fd);
}
static USED void syscall_fd_acquire(uptr pc, int fd) {
TSAN_SYSCALL();
FdAcquire(thr, pc, fd);
DPrintf("syscall_fd_acquire(%d)\n", fd);
}
static USED void syscall_fd_release(uptr pc, int fd) {
TSAN_SYSCALL();
DPrintf("syscall_fd_release(%d)\n", fd);
FdRelease(thr, pc, fd);
}
static void syscall_pre_fork(uptr pc) { ForkBefore(cur_thread(), pc); }
static void syscall_post_fork(uptr pc, int pid) {
ThreadState *thr = cur_thread();
if (pid == 0) {
// child
ForkChildAfter(thr, pc, true);
FdOnFork(thr, pc);
} else if (pid > 0) {
// parent
ForkParentAfter(thr, pc);
} else {
// error
ForkParentAfter(thr, pc);
}
}
#endif
#define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
#define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
#define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
do { \
(void)(p); \
(void)(s); \
} while (false)
#define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
do { \
(void)(p); \
(void)(s); \
} while (false)
#define COMMON_SYSCALL_ACQUIRE(addr) \
syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
#define COMMON_SYSCALL_RELEASE(addr) \
syscall_release(GET_CALLER_PC(), (uptr)(addr))
#define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
#define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
#define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
#define COMMON_SYSCALL_PRE_FORK() \
syscall_pre_fork(GET_CALLER_PC())
#define COMMON_SYSCALL_POST_FORK(res) \
syscall_post_fork(GET_CALLER_PC(), res)
#include "sanitizer_common/sanitizer_common_syscalls.inc"
#include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
#ifdef NEED_TLS_GET_ADDR
static void handle_tls_addr(void *arg, void *res) {
ThreadState *thr = cur_thread();
if (!thr)
return;
DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
thr->tls_addr + thr->tls_size);
if (!dtv)
return;
// New DTLS block has been allocated.
MemoryResetRange(thr, 0, dtv->beg, dtv->size);
}
#if !SANITIZER_S390
// Define own interceptor instead of sanitizer_common's for three reasons:
// 1. It must not process pending signals.
// Signal handlers may contain MOVDQA instruction (see below).
// 2. It must be as simple as possible to not contain MOVDQA.
// 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
// is empty for tsan (meant only for msan).
// Note: __tls_get_addr can be called with mis-aligned stack due to:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
// So the interceptor must work with mis-aligned stack, in particular, does not
// execute MOVDQA with stack addresses.
TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
void *res = REAL(__tls_get_addr)(arg);
handle_tls_addr(arg, res);
return res;
}
#else // SANITIZER_S390
TSAN_INTERCEPTOR(uptr, __tls_get_addr_internal, void *arg) {
uptr res = __tls_get_offset_wrapper(arg, REAL(__tls_get_offset));
char *tp = static_cast<char *>(__builtin_thread_pointer());
handle_tls_addr(arg, res + tp);
return res;
}
#endif
#endif
#if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void, _lwp_exit) {
SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
DestroyThreadState();
REAL(_lwp_exit)();
}
#define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
#else
#define TSAN_MAYBE_INTERCEPT__LWP_EXIT
#endif
#if SANITIZER_FREEBSD
TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
DestroyThreadState();
REAL(thr_exit(state));
}
#define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
#else
#define TSAN_MAYBE_INTERCEPT_THR_EXIT
#endif
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_init, void *c, void *a)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_destroy, void *c)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_signal, void *c)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_broadcast, void *c)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_wait, void *c, void *m)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_init, void *m, void *a)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_destroy, void *m)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_lock, void *m)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_trylock, void *m)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_unlock, void *m)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_init, void *l, void *a)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_destroy, void *l)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_rdlock, void *l)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_tryrdlock, void *l)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_wrlock, void *l)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_trywrlock, void *l)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_unlock, void *l)
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, once, void *o, void (*i)())
TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, sigmask, int f, void *n, void *o)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_lock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_unlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
void *c)
namespace __tsan {
static void finalize(void *arg) {
ThreadState *thr = cur_thread();
int status = Finalize(thr);
// Make sure the output is not lost.
FlushStreams();
if (status)
Die();
}
#if !SANITIZER_APPLE && !SANITIZER_ANDROID
static void unreachable() {
Report("FATAL: ThreadSanitizer: unreachable called\n");
Die();
}
#endif
// Define default implementation since interception of libdispatch is optional.
SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {}
void InitializeInterceptors() {
#if !SANITIZER_APPLE
// We need to setup it early, because functions like dlsym() can call it.
REAL(memset) = internal_memset;
REAL(memcpy) = internal_memcpy;
#endif
new(interceptor_ctx()) InterceptorContext();
InitializeCommonInterceptors();
InitializeSignalInterceptors();
InitializeLibdispatchInterceptors();
#if !SANITIZER_APPLE
// We can not use TSAN_INTERCEPT to get setjmp addr,
// because it does &setjmp and setjmp is not present in some versions of libc.
using __interception::InterceptFunction;
InterceptFunction(TSAN_STRING_SETJMP, (uptr*)&REAL(setjmp_symname), 0, 0);
InterceptFunction("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
InterceptFunction(TSAN_STRING_SIGSETJMP, (uptr*)&REAL(sigsetjmp_symname), 0,
0);
#if !SANITIZER_NETBSD
InterceptFunction("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
#endif
#endif
TSAN_INTERCEPT(longjmp_symname);
TSAN_INTERCEPT(siglongjmp_symname);
#if SANITIZER_NETBSD
TSAN_INTERCEPT(_longjmp);
#endif
TSAN_INTERCEPT(malloc);
TSAN_INTERCEPT(__libc_memalign);
TSAN_INTERCEPT(calloc);
TSAN_INTERCEPT(realloc);
TSAN_INTERCEPT(reallocarray);
TSAN_INTERCEPT(free);
TSAN_INTERCEPT(cfree);
TSAN_INTERCEPT(munmap);
TSAN_MAYBE_INTERCEPT_MEMALIGN;
TSAN_INTERCEPT(valloc);
TSAN_MAYBE_INTERCEPT_PVALLOC;
TSAN_INTERCEPT(posix_memalign);
TSAN_INTERCEPT(strcpy);
TSAN_INTERCEPT(strncpy);
TSAN_INTERCEPT(strdup);
TSAN_INTERCEPT(pthread_create);
TSAN_INTERCEPT(pthread_join);
TSAN_INTERCEPT(pthread_detach);
TSAN_INTERCEPT(pthread_exit);
#if SANITIZER_LINUX
TSAN_INTERCEPT(pthread_tryjoin_np);
TSAN_INTERCEPT(pthread_timedjoin_np);
#endif
TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT;
TSAN_INTERCEPT(pthread_mutex_init);
TSAN_INTERCEPT(pthread_mutex_destroy);
TSAN_INTERCEPT(pthread_mutex_lock);
TSAN_INTERCEPT(pthread_mutex_trylock);
TSAN_INTERCEPT(pthread_mutex_timedlock);
TSAN_INTERCEPT(pthread_mutex_unlock);
#if SANITIZER_GLIBC
# if !__GLIBC_PREREQ(2, 34)
TSAN_INTERCEPT(__pthread_mutex_lock);
TSAN_INTERCEPT(__pthread_mutex_unlock);
# endif
#endif
TSAN_INTERCEPT(pthread_spin_init);
TSAN_INTERCEPT(pthread_spin_destroy);
TSAN_INTERCEPT(pthread_spin_lock);
TSAN_INTERCEPT(pthread_spin_trylock);
TSAN_INTERCEPT(pthread_spin_unlock);
TSAN_INTERCEPT(pthread_rwlock_init);
TSAN_INTERCEPT(pthread_rwlock_destroy);
TSAN_INTERCEPT(pthread_rwlock_rdlock);
TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
TSAN_INTERCEPT(pthread_rwlock_wrlock);
TSAN_INTERCEPT(pthread_rwlock_trywrlock);
TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
TSAN_INTERCEPT(pthread_rwlock_unlock);
TSAN_INTERCEPT(pthread_barrier_init);
TSAN_INTERCEPT(pthread_barrier_destroy);
TSAN_INTERCEPT(pthread_barrier_wait);
TSAN_INTERCEPT(pthread_once);
TSAN_INTERCEPT(fstat);
TSAN_MAYBE_INTERCEPT___FXSTAT;
TSAN_MAYBE_INTERCEPT_FSTAT64;
TSAN_MAYBE_INTERCEPT___FXSTAT64;
TSAN_INTERCEPT(open);
TSAN_MAYBE_INTERCEPT_OPEN64;
TSAN_INTERCEPT(creat);
TSAN_MAYBE_INTERCEPT_CREAT64;
TSAN_INTERCEPT(dup);
TSAN_INTERCEPT(dup2);
TSAN_INTERCEPT(dup3);
TSAN_MAYBE_INTERCEPT_EVENTFD;
TSAN_MAYBE_INTERCEPT_SIGNALFD;
TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
TSAN_INTERCEPT(socket);
TSAN_INTERCEPT(socketpair);
TSAN_INTERCEPT(connect);
TSAN_INTERCEPT(bind);
TSAN_INTERCEPT(listen);
TSAN_MAYBE_INTERCEPT_EPOLL;
TSAN_INTERCEPT(close);
TSAN_MAYBE_INTERCEPT___CLOSE;
TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
TSAN_INTERCEPT(pipe);
TSAN_INTERCEPT(pipe2);
TSAN_INTERCEPT(unlink);
TSAN_INTERCEPT(tmpfile);
TSAN_MAYBE_INTERCEPT_TMPFILE64;
TSAN_INTERCEPT(abort);
TSAN_INTERCEPT(rmdir);
TSAN_INTERCEPT(closedir);
TSAN_INTERCEPT(sigsuspend);
TSAN_INTERCEPT(sigblock);
TSAN_INTERCEPT(sigsetmask);
TSAN_INTERCEPT(pthread_sigmask);
TSAN_INTERCEPT(raise);
TSAN_INTERCEPT(kill);
TSAN_INTERCEPT(pthread_kill);
TSAN_INTERCEPT(sleep);
TSAN_INTERCEPT(usleep);
TSAN_INTERCEPT(nanosleep);
TSAN_INTERCEPT(pause);
TSAN_INTERCEPT(gettimeofday);
TSAN_INTERCEPT(getaddrinfo);
TSAN_INTERCEPT(fork);
TSAN_INTERCEPT(vfork);
#if SANITIZER_LINUX
TSAN_INTERCEPT(clone);
#endif
#if !SANITIZER_ANDROID
TSAN_INTERCEPT(dl_iterate_phdr);
#endif
TSAN_MAYBE_INTERCEPT_ON_EXIT;
TSAN_INTERCEPT(__cxa_atexit);
TSAN_INTERCEPT(_exit);
#ifdef NEED_TLS_GET_ADDR
#if !SANITIZER_S390
TSAN_INTERCEPT(__tls_get_addr);
#else
TSAN_INTERCEPT(__tls_get_addr_internal);
TSAN_INTERCEPT(__tls_get_offset);
#endif
#endif
TSAN_MAYBE_INTERCEPT__LWP_EXIT;
TSAN_MAYBE_INTERCEPT_THR_EXIT;
#if !SANITIZER_APPLE && !SANITIZER_ANDROID
// Need to setup it, because interceptors check that the function is resolved.
// But atexit is emitted directly into the module, so can't be resolved.
REAL(atexit) = (int(*)(void(*)()))unreachable;
#endif
if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
Printf("ThreadSanitizer: failed to setup atexit callback\n");
Die();
}
if (pthread_atfork(atfork_prepare, atfork_parent, atfork_child)) {
Printf("ThreadSanitizer: failed to setup atfork callbacks\n");
Die();
}
#if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
Printf("ThreadSanitizer: failed to create thread key\n");
Die();
}
#endif
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_init);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_destroy);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_signal);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_broadcast);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_wait);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_init);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_destroy);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_lock);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_trylock);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_unlock);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_init);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_destroy);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_rdlock);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_tryrdlock);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_wrlock);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_trywrlock);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_unlock);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(once);
TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(sigmask);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_lock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_unlock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);
FdInit();
}
} // namespace __tsan
// Invisible barrier for tests.
// There were several unsuccessful iterations for this functionality:
// 1. Initially it was implemented in user code using
// REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
// MacOS. Futexes are linux-specific for this matter.
// 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
// "as-if synchronized via sleep" messages in reports which failed some
// output tests.
// 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
// visible events, which lead to "failed to restore stack trace" failures.
// Note that no_sanitize_thread attribute does not turn off atomic interception
// so attaching it to the function defined in user code does not help.
// That's why we now have what we have.
constexpr u32 kBarrierThreadBits = 10;
constexpr u32 kBarrierThreads = 1 << kBarrierThreadBits;
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_init(
atomic_uint32_t *barrier, u32 num_threads) {
if (num_threads >= kBarrierThreads) {
Printf("barrier_init: count is too large (%d)\n", num_threads);
Die();
}
// kBarrierThreadBits lsb is thread count,
// the remaining are count of entered threads.
atomic_store(barrier, num_threads, memory_order_relaxed);
}
static u32 barrier_epoch(u32 value) {
return (value >> kBarrierThreadBits) / (value & (kBarrierThreads - 1));
}
SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_wait(
atomic_uint32_t *barrier) {
u32 old = atomic_fetch_add(barrier, kBarrierThreads, memory_order_relaxed);
u32 old_epoch = barrier_epoch(old);
if (barrier_epoch(old + kBarrierThreads) != old_epoch) {
FutexWake(barrier, (1 << 30));
return;
}
for (;;) {
u32 cur = atomic_load(barrier, memory_order_relaxed);
if (barrier_epoch(cur) != old_epoch)
return;
FutexWait(barrier, cur);
}
}
void *__tsan_memcpy(void *dst, const void *src, uptr size) {
void *ctx;
#if PLATFORM_HAS_DIFFERENT_MEMCPY_AND_MEMMOVE
COMMON_INTERCEPTOR_MEMCPY_IMPL(ctx, dst, src, size);
#else
COMMON_INTERCEPTOR_MEMMOVE_IMPL(ctx, dst, src, size);
#endif
}
void *__tsan_memset(void *dst, int c, uptr size) {
void *ctx;
COMMON_INTERCEPTOR_MEMSET_IMPL(ctx, dst, c, size);
}
void *__tsan_memmove(void *dst, const void *src, uptr size) {
void *ctx;
COMMON_INTERCEPTOR_MEMMOVE_IMPL(ctx, dst, src, size);
}
}
|